Normalized defining polynomial
\( x^{12} - 3 x^{11} - 39 x^{10} + 92 x^{9} + 543 x^{8} - 882 x^{7} - 3153 x^{6} + 2880 x^{5} + 7236 x^{4} + \cdots + 648 \)
Invariants
Degree: | $12$ |
| |
Signature: | $[12, 0]$ |
| |
Discriminant: |
\(5514297181968073041\)
\(\medspace = 3^{16}\cdot 71^{6}\)
|
| |
Root discriminant: | \(36.46\) |
| |
Galois root discriminant: | $3^{4/3}71^{1/2}\approx 36.45783266912841$ | ||
Ramified primes: |
\(3\), \(71\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $A_4$ |
| |
This field is Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{6}a^{6}-\frac{1}{2}a^{4}-\frac{1}{6}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{12}a^{7}-\frac{1}{12}a^{6}-\frac{1}{4}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{72}a^{8}-\frac{1}{24}a^{7}+\frac{1}{24}a^{6}+\frac{7}{36}a^{5}+\frac{1}{6}a^{4}+\frac{7}{24}a^{3}+\frac{1}{6}a^{2}-\frac{1}{2}a$, $\frac{1}{432}a^{9}+\frac{1}{72}a^{7}-\frac{13}{432}a^{6}-\frac{1}{8}a^{5}+\frac{1}{48}a^{4}+\frac{49}{144}a^{3}-\frac{1}{12}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{1728}a^{10}+\frac{1}{1728}a^{9}-\frac{1}{288}a^{8}+\frac{65}{1728}a^{7}-\frac{139}{1728}a^{6}-\frac{107}{576}a^{5}-\frac{47}{144}a^{4}-\frac{143}{576}a^{3}-\frac{5}{48}a^{2}-\frac{7}{16}a+\frac{1}{8}$, $\frac{1}{5609088}a^{11}+\frac{79}{467424}a^{10}+\frac{1871}{1869696}a^{9}+\frac{27599}{5609088}a^{8}+\frac{6223}{233712}a^{7}+\frac{15919}{311616}a^{6}+\frac{338611}{1869696}a^{5}+\frac{30919}{69248}a^{4}+\frac{59471}{207744}a^{3}+\frac{3065}{12984}a^{2}+\frac{4191}{17312}a-\frac{223}{8656}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$, $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1295}{1869696}a^{11}-\frac{457}{233712}a^{10}-\frac{15883}{623232}a^{9}+\frac{99625}{1869696}a^{8}+\frac{149069}{467424}a^{7}-\frac{121907}{311616}a^{6}-\frac{905447}{623232}a^{5}+\frac{277363}{623232}a^{4}+\frac{112877}{69248}a^{3}+\frac{13853}{6492}a^{2}+\frac{32559}{17312}a-\frac{11575}{8656}$, $\frac{125}{103872}a^{11}-\frac{1975}{934848}a^{10}-\frac{2731}{51936}a^{9}+\frac{5869}{103872}a^{8}+\frac{774637}{934848}a^{7}-\frac{13063}{34624}a^{6}-\frac{106691}{19476}a^{5}-\frac{2719}{311616}a^{4}+\frac{359995}{25968}a^{3}+\frac{113807}{25968}a^{2}-\frac{28583}{4328}a-\frac{688}{541}$, $\frac{15757}{5609088}a^{11}-\frac{8191}{934848}a^{10}-\frac{22351}{207744}a^{9}+\frac{1516967}{5609088}a^{8}+\frac{1361023}{934848}a^{7}-\frac{307915}{116856}a^{6}-\frac{14943455}{1869696}a^{5}+\frac{615283}{69248}a^{4}+\frac{9928591}{623232}a^{3}-\frac{165817}{25968}a^{2}-\frac{86679}{17312}a+\frac{16755}{8656}$, $\frac{10049}{5609088}a^{11}-\frac{317}{467424}a^{10}-\frac{159289}{1869696}a^{9}-\frac{73793}{5609088}a^{8}+\frac{336157}{233712}a^{7}+\frac{763705}{934848}a^{6}-\frac{18582061}{1869696}a^{5}-\frac{5104201}{623232}a^{4}+\frac{15228469}{623232}a^{3}+\frac{319163}{12984}a^{2}-\frac{69657}{17312}a-\frac{55287}{8656}$, $\frac{4037}{467424}a^{11}-\frac{29671}{934848}a^{10}-\frac{297217}{934848}a^{9}+\frac{59219}{58428}a^{8}+\frac{3842329}{934848}a^{7}-\frac{9809819}{934848}a^{6}-\frac{748253}{34624}a^{5}+\frac{6221557}{155808}a^{4}+\frac{13385747}{311616}a^{3}-\frac{1177429}{25968}a^{2}-\frac{154105}{8656}a+\frac{56643}{4328}$, $\frac{29881}{1869696}a^{11}-\frac{2633}{51936}a^{10}-\frac{1143523}{1869696}a^{9}+\frac{2928359}{1869696}a^{8}+\frac{322801}{38952}a^{7}-\frac{14236357}{934848}a^{6}-\frac{28627453}{623232}a^{5}+\frac{3543709}{69248}a^{4}+\frac{59126567}{623232}a^{3}-\frac{171581}{4328}a^{2}-\frac{543555}{17312}a+\frac{121827}{8656}$, $\frac{5521}{1869696}a^{11}-\frac{1403}{116856}a^{10}-\frac{63901}{623232}a^{9}+\frac{707975}{1869696}a^{8}+\frac{566885}{467424}a^{7}-\frac{131609}{34624}a^{6}-\frac{3412241}{623232}a^{5}+\frac{8182765}{623232}a^{4}+\frac{560475}{69248}a^{3}-\frac{5825}{541}a^{2}-\frac{33719}{17312}a+\frac{17711}{8656}$, $\frac{6329}{1869696}a^{11}-\frac{6391}{934848}a^{10}-\frac{260309}{1869696}a^{9}+\frac{331411}{1869696}a^{8}+\frac{1899763}{934848}a^{7}-\frac{501961}{467424}a^{6}-\frac{2499317}{207744}a^{5}-\frac{688187}{623232}a^{4}+\frac{15919333}{623232}a^{3}+\frac{374483}{25968}a^{2}-\frac{122357}{17312}a-\frac{37023}{8656}$, $\frac{49}{77904}a^{11}-\frac{763}{233712}a^{10}-\frac{4783}{233712}a^{9}+\frac{8507}{77904}a^{8}+\frac{51277}{233712}a^{7}-\frac{69665}{58428}a^{6}-\frac{16493}{19476}a^{5}+\frac{174631}{38952}a^{4}+\frac{66341}{77904}a^{3}-\frac{5261}{2164}a^{2}+\frac{175}{2164}a+\frac{119}{1082}$, $\frac{2959}{2804544}a^{11}-\frac{869}{155808}a^{10}-\frac{26273}{934848}a^{9}+\frac{469997}{2804544}a^{8}+\frac{24853}{155808}a^{7}-\frac{363023}{233712}a^{6}+\frac{776431}{934848}a^{5}+\frac{1443113}{311616}a^{4}-\frac{1841527}{311616}a^{3}-\frac{12075}{4328}a^{2}+\frac{22007}{8656}a+\frac{1245}{4328}$, $\frac{63589}{5609088}a^{11}-\frac{38801}{934848}a^{10}-\frac{779659}{1869696}a^{9}+\frac{7430807}{5609088}a^{8}+\frac{5022773}{934848}a^{7}-\frac{711763}{51936}a^{6}-\frac{52325891}{1869696}a^{5}+\frac{32484523}{623232}a^{4}+\frac{11280905}{207744}a^{3}-\frac{1539895}{25968}a^{2}-\frac{353243}{17312}a+\frac{155071}{8656}$
|
| |
Regulator: | \( 1188211.01781 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 1188211.01781 \cdot 1}{2\cdot\sqrt{5514297181968073041}}\cr\approx \mathstrut & 1.03628316651 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 12 |
The 4 conjugacy class representatives for $A_4$ |
Character table for $A_4$ |
Intermediate fields
\(\Q(\zeta_{9})^+\), 4.4.408321.1 x4, 6.6.33074001.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 4 sibling: | 4.4.408321.1 |
Degree 6 sibling: | 6.6.33074001.1 |
Minimal sibling: | 4.4.408321.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/5.3.0.1}{3} }^{4}$ | ${\href{/padicField/7.3.0.1}{3} }^{4}$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.3.0.1}{3} }^{4}$ | ${\href{/padicField/29.3.0.1}{3} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{6}$ | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ |
3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
\(71\)
| 71.2.2.2a1.2 | $x^{4} + 138 x^{3} + 4775 x^{2} + 966 x + 120$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
71.2.2.2a1.2 | $x^{4} + 138 x^{3} + 4775 x^{2} + 966 x + 120$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
71.2.2.2a1.2 | $x^{4} + 138 x^{3} + 4775 x^{2} + 966 x + 120$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |