Normalized defining polynomial
\( x^{12} - 3 x^{11} - 39 x^{10} + 92 x^{9} + 543 x^{8} - 882 x^{7} - 3153 x^{6} + 2880 x^{5} + 7236 x^{4} - 1899 x^{3} - 4212 x^{2} + 324 x + 648 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5514297181968073041=3^{16}\cdot 71^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{72} a^{8} - \frac{1}{24} a^{7} + \frac{1}{24} a^{6} + \frac{7}{36} a^{5} + \frac{1}{6} a^{4} + \frac{7}{24} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{432} a^{9} + \frac{1}{72} a^{7} - \frac{13}{432} a^{6} - \frac{1}{8} a^{5} + \frac{1}{48} a^{4} + \frac{49}{144} a^{3} - \frac{1}{12} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{1728} a^{10} + \frac{1}{1728} a^{9} - \frac{1}{288} a^{8} + \frac{65}{1728} a^{7} - \frac{139}{1728} a^{6} - \frac{107}{576} a^{5} - \frac{47}{144} a^{4} - \frac{143}{576} a^{3} - \frac{5}{48} a^{2} - \frac{7}{16} a + \frac{1}{8}$, $\frac{1}{5609088} a^{11} + \frac{79}{467424} a^{10} + \frac{1871}{1869696} a^{9} + \frac{27599}{5609088} a^{8} + \frac{6223}{233712} a^{7} + \frac{15919}{311616} a^{6} + \frac{338611}{1869696} a^{5} + \frac{30919}{69248} a^{4} + \frac{59471}{207744} a^{3} + \frac{3065}{12984} a^{2} + \frac{4191}{17312} a - \frac{223}{8656}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1188211.01781 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 4 conjugacy class representatives for $A_4$ |
| Character table for $A_4$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 4.4.408321.1 x4, 6.6.33074001.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |