Normalized defining polynomial
\( x^{12} + 4x^{10} - 3372x^{8} + 277432x^{6} + 2870368x^{4} - 325351584x^{2} + 9308390400 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(8148798716588303489414930185744360144896\)
\(\medspace = 2^{20}\cdot 3^{6}\cdot 7^{10}\cdot 181^{10}\)
|
| |
| Root discriminant: | \(2117.99\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}7^{5/6}181^{5/6}\approx 2377.366462449021$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(181\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-6}, \sqrt{-2534})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{12}a^{5}+\frac{1}{6}a^{3}+\frac{1}{3}a$, $\frac{1}{24}a^{6}+\frac{1}{12}a^{4}+\frac{1}{6}a^{2}$, $\frac{1}{96}a^{7}-\frac{1}{12}a$, $\frac{1}{1152}a^{8}-\frac{1}{48}a^{6}-\frac{1}{24}a^{4}-\frac{13}{144}a^{2}$, $\frac{1}{771840}a^{9}+\frac{77}{16080}a^{7}-\frac{19}{1072}a^{5}-\frac{3421}{96480}a^{3}+\frac{1571}{4020}a$, $\frac{1}{16371640258560}a^{10}+\frac{2558892983}{8185820129280}a^{8}-\frac{586607507}{34107583872}a^{6}+\frac{242278253039}{2046455032320}a^{4}+\frac{197111645377}{1023227516160}a^{2}-\frac{3229235}{10605592}$, $\frac{1}{49114920775680}a^{11}+\frac{13550903}{24557460387840}a^{9}-\frac{347981687}{102322751616}a^{7}+\frac{249914279279}{6139365096960}a^{5}+\frac{718906771777}{3069682548480}a^{3}-\frac{245524123}{2131723992}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}\times C_{3}\times C_{3}\times C_{30}\times C_{180}$, which has order $145800$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{3}\times C_{3}\times C_{30}\times C_{180}$, which has order $145800$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{920945675}{3274328051712}a^{10}-\frac{30598388093}{1637164025856}a^{8}+\frac{13758536437}{34107583872}a^{6}+\frac{2745076669883}{409291006464}a^{4}-\frac{182384184684331}{204645503232}a^{2}+\frac{53733587797}{10605592}$, $\frac{3632246820125}{363814227968}a^{10}-\frac{21\cdots 53}{1637164025856}a^{8}+\frac{892296989008111}{11369194624}a^{6}+\frac{81\cdots 07}{45476778496}a^{4}-\frac{27\cdots 51}{204645503232}a^{2}+\frac{36\cdots 01}{10605592}$, $\frac{68\cdots 01}{4911492077568}a^{11}+\frac{25\cdots 57}{1637164025856}a^{10}-\frac{34\cdots 87}{2455746038784}a^{9}+\frac{92\cdots 95}{90953556992}a^{8}-\frac{65\cdots 77}{51161375808}a^{7}-\frac{48\cdots 83}{17053791936}a^{6}+\frac{44\cdots 69}{613936509696}a^{5}-\frac{76\cdots 77}{204645503232}a^{4}-\frac{90\cdots 57}{306968254848}a^{3}+\frac{17\cdots 95}{34107583872}a^{2}-\frac{93\cdots 31}{1065861996}a-\frac{30\cdots 79}{5302796}$, $\frac{92\cdots 79}{113691946240}a^{10}+\frac{64\cdots 73}{511613758080}a^{8}-\frac{33\cdots 51}{710574664}a^{6}+\frac{17\cdots 21}{14211493280}a^{4}+\frac{26\cdots 67}{63951719760}a^{2}-\frac{19\cdots 51}{1325699}$, $\frac{21\cdots 63}{19428370560}a^{11}+\frac{10\cdots 25}{16290189312}a^{10}-\frac{13\cdots 97}{38856741120}a^{9}+\frac{39\cdots 65}{2715031552}a^{8}+\frac{52\cdots 91}{1619030880}a^{7}-\frac{10\cdots 41}{509068416}a^{6}-\frac{22\cdots 71}{1214273160}a^{5}+\frac{24\cdots 63}{2036273664}a^{4}-\frac{46\cdots 43}{4857092640}a^{3}+\frac{48\cdots 85}{1018136832}a^{2}+\frac{27\cdots 17}{16864905}a-\frac{15\cdots 71}{10605592}$
|
| |
| Regulator: | \( 337066535001.9145 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 337066535001.9145 \cdot 145800}{2\cdot\sqrt{8148798716588303489414930185744360144896}}\cr\approx \mathstrut & 16.7484869742379 \end{aligned}\] (assuming GRH)
Galois group
$S_3\times D_6$ (as 12T37):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $S_3\times D_6$ |
| Character table for $S_3\times D_6$ |
Intermediate fields
| \(\Q(\sqrt{-2534}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{3801}) \), \(\Q(\sqrt{-6}, \sqrt{-2534})\), 6.2.352619909717519556.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.1.0.1}{1} }^{12}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.1.6.11a1.6 | $x^{6} + 4 x^{3} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(7\)
| 7.1.6.5a1.3 | $x^{6} + 21$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
| 7.1.6.5a1.3 | $x^{6} + 21$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
|
\(181\)
| 181.2.6.10a1.4 | $x^{12} + 1062 x^{11} + 469947 x^{10} + 110915280 x^{9} + 14726353155 x^{8} + 1043025098382 x^{7} + 30808510677349 x^{6} + 2086050196764 x^{5} + 58905412620 x^{4} + 887322240 x^{3} + 7519152 x^{2} + 42672 x + 27757$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $$[\ ]_{6}^{2}$$ |