Normalized defining polynomial
\( x^{12} - 3 x^{11} + 5 x^{10} - 8 x^{9} + 11 x^{8} - 13 x^{7} + 18 x^{6} - 13 x^{5} + 11 x^{4} - 8 x^{3} + 5 x^{2} - 3 x + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(470596000000\)
\(\medspace = 2^{8}\cdot 5^{6}\cdot 7^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.39\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(5\), \(7\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{10}a^{10}-\frac{1}{10}a^{8}-\frac{1}{10}a^{7}-\frac{1}{10}a^{6}-\frac{1}{10}a^{4}+\frac{2}{5}a^{3}-\frac{1}{10}a^{2}-\frac{1}{2}a+\frac{1}{10}$, $\frac{1}{20}a^{11}-\frac{1}{20}a^{9}-\frac{1}{20}a^{8}+\frac{1}{5}a^{7}-\frac{1}{4}a^{6}-\frac{1}{20}a^{5}+\frac{1}{5}a^{4}+\frac{9}{20}a^{3}+\frac{1}{4}a^{2}-\frac{1}{5}a+\frac{1}{4}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{7}{10}a^{11}-\frac{19}{10}a^{10}+\frac{33}{10}a^{9}-\frac{53}{10}a^{8}+\frac{67}{10}a^{7}-\frac{81}{10}a^{6}+\frac{113}{10}a^{5}-\frac{63}{10}a^{4}+\frac{77}{10}a^{3}-\frac{21}{10}a^{2}+\frac{27}{10}a-\frac{19}{10}$, $\frac{2}{5}a^{11}-\frac{3}{10}a^{10}-\frac{2}{5}a^{9}+\frac{2}{5}a^{8}-\frac{11}{10}a^{7}+\frac{9}{5}a^{6}-\frac{2}{5}a^{5}+\frac{59}{10}a^{4}-\frac{3}{5}a^{3}+\frac{9}{5}a^{2}-\frac{1}{10}a+\frac{1}{5}$, $\frac{13}{20}a^{11}-\frac{13}{10}a^{10}+\frac{37}{20}a^{9}-\frac{67}{20}a^{8}+\frac{39}{10}a^{7}-\frac{89}{20}a^{6}+\frac{147}{20}a^{5}-\frac{11}{10}a^{4}+\frac{103}{20}a^{3}-\frac{9}{20}a^{2}+\frac{9}{10}a-\frac{11}{20}$, $\frac{19}{20}a^{11}-\frac{23}{10}a^{10}+\frac{71}{20}a^{9}-\frac{123}{20}a^{8}+\frac{81}{10}a^{7}-\frac{189}{20}a^{6}+\frac{281}{20}a^{5}-\frac{69}{10}a^{4}+\frac{197}{20}a^{3}-\frac{109}{20}a^{2}+\frac{27}{10}a-\frac{31}{20}$, $\frac{17}{20}a^{11}-\frac{12}{5}a^{10}+\frac{73}{20}a^{9}-\frac{119}{20}a^{8}+\frac{83}{10}a^{7}-\frac{187}{20}a^{6}+\frac{263}{20}a^{5}-\frac{41}{5}a^{4}+\frac{131}{20}a^{3}-\frac{117}{20}a^{2}+\frac{21}{10}a-\frac{13}{20}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 6.67082664998 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} \approx\frac{2^{0}\cdot(2\pi)^{6}\cdot 6.67082664998 \cdot 1}{2\cdot\sqrt{470596000000}}\approx 0.299160846811$
Galois group
A solvable group of order 12 |
The 6 conjugacy class representatives for $D_6$ |
Character table for $D_6$ |
Intermediate fields
\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{5}) \), 3.1.140.1 x3, \(\Q(\sqrt{5}, \sqrt{-7})\), 6.0.686000.1, 6.0.137200.1 x3, 6.2.98000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 6 siblings: | 6.0.137200.1, 6.2.98000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.3.0.1}{3} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.2.0.1}{2} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(5\)
| 5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(7\)
| 7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |