Normalized defining polynomial
\( x^{12} - 3x^{10} - 2x^{8} + 102x^{6} - 255x^{4} + 157x^{2} + 256 \)
Invariants
Degree: | $12$ |
| |
Signature: | $[0, 6]$ |
| |
Discriminant: |
\(3493441689358336\)
\(\medspace = 2^{12}\cdot 31^{8}\)
|
| |
Root discriminant: | \(19.74\) |
| |
Galois root discriminant: | $2\cdot 31^{2/3}\approx 19.736544806437948$ | ||
Ramified primes: |
\(2\), \(31\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $A_4$ |
| |
This field is Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{8}a^{5}-\frac{1}{8}a$, $\frac{1}{16}a^{6}-\frac{1}{16}a^{5}+\frac{7}{16}a^{2}-\frac{7}{16}a$, $\frac{1}{16}a^{7}-\frac{1}{16}a^{5}-\frac{1}{16}a^{3}+\frac{1}{16}a$, $\frac{1}{16}a^{8}-\frac{1}{16}a^{5}-\frac{1}{16}a^{4}-\frac{1}{2}a^{2}-\frac{7}{16}a$, $\frac{1}{32}a^{9}-\frac{1}{32}a^{8}-\frac{1}{32}a^{7}-\frac{1}{32}a^{6}+\frac{1}{32}a^{5}+\frac{1}{32}a^{4}+\frac{1}{32}a^{3}+\frac{1}{32}a^{2}-\frac{1}{16}a$, $\frac{1}{3968}a^{10}+\frac{1}{124}a^{8}-\frac{61}{1984}a^{6}-\frac{1}{16}a^{5}-\frac{7}{62}a^{4}-\frac{807}{3968}a^{2}-\frac{7}{16}a+\frac{15}{31}$, $\frac{1}{7936}a^{11}-\frac{1}{7936}a^{10}+\frac{1}{248}a^{9}+\frac{27}{992}a^{8}+\frac{63}{3968}a^{7}+\frac{61}{3968}a^{6}+\frac{3}{496}a^{5}+\frac{25}{992}a^{4}-\frac{1055}{7936}a^{3}+\frac{2791}{7936}a^{2}+\frac{213}{496}a+\frac{8}{31}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | $C_{4}$, which has order $4$ |
| |
Narrow class group: | $C_{4}$, which has order $4$ |
|
Unit group
Rank: | $5$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{15}{1984}a^{11}-\frac{29}{3968}a^{10}-\frac{1}{124}a^{9}+\frac{1}{62}a^{8}-\frac{47}{992}a^{7}+\frac{33}{1984}a^{6}+\frac{335}{496}a^{5}-\frac{45}{62}a^{4}-\frac{1441}{1984}a^{3}+\frac{4059}{3968}a^{2}-\frac{271}{496}a+\frac{30}{31}$, $\frac{5}{992}a^{11}-\frac{29}{3968}a^{10}-\frac{13}{496}a^{9}+\frac{1}{62}a^{8}+\frac{5}{496}a^{7}+\frac{33}{1984}a^{6}+\frac{275}{496}a^{5}-\frac{45}{62}a^{4}-\frac{2423}{992}a^{3}+\frac{4059}{3968}a^{2}+\frac{447}{248}a-\frac{63}{31}$, $\frac{43}{3968}a^{11}-\frac{19}{1984}a^{10}-\frac{7}{248}a^{9}+\frac{3}{496}a^{8}-\frac{19}{1984}a^{7}+\frac{43}{992}a^{6}+\frac{537}{496}a^{5}-\frac{383}{496}a^{4}-\frac{9157}{3968}a^{3}+\frac{1197}{1984}a^{2}+\frac{1485}{496}a-\frac{12}{31}$, $\frac{1}{496}a^{11}+\frac{1}{496}a^{9}+\frac{1}{248}a^{7}+\frac{55}{248}a^{5}+\frac{61}{496}a^{3}-\frac{95}{496}a$, $\frac{11}{1984}a^{11}-\frac{5}{496}a^{9}-\frac{51}{992}a^{7}+\frac{16}{31}a^{5}-\frac{1189}{1984}a^{3}-\frac{1323}{496}a$
|
| |
Regulator: | \( 4903.16351074 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 4903.16351074 \cdot 4}{2\cdot\sqrt{3493441689358336}}\cr\approx \mathstrut & 10.2084271252 \end{aligned}\]
Galois group
A solvable group of order 12 |
The 4 conjugacy class representatives for $A_4$ |
Character table for $A_4$ |
Intermediate fields
3.3.961.1, 4.0.15376.1 x4, 6.2.14776336.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 4 sibling: | 4.0.15376.1 |
Degree 6 sibling: | 6.2.14776336.1 |
Minimal sibling: | 4.0.15376.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{4}$ | ${\href{/padicField/5.3.0.1}{3} }^{4}$ | ${\href{/padicField/7.3.0.1}{3} }^{4}$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
\(31\)
| 31.1.3.2a1.1 | $x^{3} + 31$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
31.1.3.2a1.1 | $x^{3} + 31$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
31.1.3.2a1.1 | $x^{3} + 31$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
31.1.3.2a1.1 | $x^{3} + 31$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |