Normalized defining polynomial
\( x^{12} - x^{11} + 62 x^{10} - 226 x^{9} + 577 x^{8} - 2377 x^{7} - 3136 x^{6} + 12956 x^{5} + 79168 x^{4} + 61904 x^{3} + 194304 x^{2} + 378688 x + 235264 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(246168290724753398765625=3^{6}\cdot 5^{6}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(645=3\cdot 5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{645}(1,·)$, $\chi_{645}(386,·)$, $\chi_{645}(214,·)$, $\chi_{645}(424,·)$, $\chi_{645}(394,·)$, $\chi_{645}(44,·)$, $\chi_{645}(466,·)$, $\chi_{645}(436,·)$, $\chi_{645}(566,·)$, $\chi_{645}(596,·)$, $\chi_{645}(509,·)$, $\chi_{645}(479,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{5} - \frac{1}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{6} - \frac{1}{32} a^{5} - \frac{1}{32} a^{4} + \frac{5}{32} a^{3} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{64} a^{7} - \frac{1}{32} a^{5} - \frac{1}{16} a^{4} + \frac{5}{64} a^{3} - \frac{3}{16} a^{2} - \frac{1}{16} a + \frac{1}{4}$, $\frac{1}{768} a^{8} - \frac{1}{384} a^{7} + \frac{5}{384} a^{6} - \frac{1}{64} a^{5} - \frac{31}{768} a^{4} - \frac{61}{384} a^{3} + \frac{7}{64} a^{2} + \frac{15}{32} a + \frac{5}{24}$, $\frac{1}{3072} a^{9} + \frac{1}{512} a^{7} - \frac{5}{384} a^{6} - \frac{55}{3072} a^{5} - \frac{17}{384} a^{4} - \frac{23}{96} a^{3} + \frac{15}{64} a^{2} + \frac{7}{192} a - \frac{19}{48}$, $\frac{1}{73728} a^{10} - \frac{1}{8192} a^{9} + \frac{5}{36864} a^{8} - \frac{27}{4096} a^{7} + \frac{115}{24576} a^{6} + \frac{119}{73728} a^{5} - \frac{773}{18432} a^{4} - \frac{2047}{9216} a^{3} + \frac{1135}{4608} a^{2} + \frac{239}{4608} a + \frac{421}{1152}$, $\frac{1}{438019951951872} a^{11} - \frac{907094945}{146006650650624} a^{10} + \frac{9067956457}{109504987987968} a^{9} - \frac{24836684615}{73003325325312} a^{8} - \frac{506672895289}{146006650650624} a^{7} - \frac{6329006042707}{438019951951872} a^{6} + \frac{2216535372803}{219009975975936} a^{5} + \frac{42901020757}{27376246996992} a^{4} - \frac{2319334628251}{13688123498496} a^{3} - \frac{1515511855927}{27376246996992} a^{2} + \frac{1805368794239}{13688123498496} a + \frac{85245910287}{380225652736}$
Class group and class number
$C_{16226}$, which has order $16226$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 589381.2229376945 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-215}) \), \(\Q(\sqrt{129}) \), \(\Q(\sqrt{-15}) \), 3.3.1849.1, \(\Q(\sqrt{-15}, \sqrt{129})\), 6.0.18376055375.1, 6.6.3969227961.1, 6.0.11538453375.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{12}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $43$ | 43.12.10.1 | $x^{12} - 430 x^{6} + 1347921$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |