Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $C_6\times C_2$ | |
| CHM label : | $E(4)[x]C(3)=6x2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $1$ | |
| Generators: | (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) | |
| $|\Aut(F/K)|$: | $12$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $C_3$
Degree 4: $C_2^2$
Degree 6: $C_6$ x 3
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1, 2, 9,10, 5, 6)( 3, 4,11,12, 7, 8)$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1, 6, 5,10, 9, 2)( 3, 8, 7,12,11, 4)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1, 8, 9, 4, 5,12)( 2, 3,10,11, 6, 7)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 5)( 3,12)( 4, 7)( 6, 9)( 8,11)$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1,11, 9, 7, 5, 3)( 2,12,10, 8, 6, 4)$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1,12, 5, 4, 9, 8)( 2, 7, 6,11,10, 3)$ |
Group invariants
| Order: | $12=2^{2} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | Yes | |
| Solvable: | Yes | |
| GAP id: | [12, 5] |
| Character table: |
2 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 1
1a 6a 6b 2a 3a 6c 2b 6d 3b 2c 6e 6f
2P 1a 3b 3a 1a 3b 3a 1a 3b 3a 1a 3b 3a
3P 1a 2c 2b 2a 1a 2c 2b 2a 1a 2c 2b 2a
5P 1a 6c 6e 2a 3b 6a 2b 6f 3a 2c 6b 6d
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
X.3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
X.4 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
X.5 1 A /A 1 -A /A -1 -A -/A -1 A -/A
X.6 1 /A A 1 -/A A -1 -/A -A -1 /A -A
X.7 1 A -/A -1 -A /A 1 A -/A -1 -A /A
X.8 1 /A -A -1 -/A A 1 /A -A -1 -/A A
X.9 1 -/A A -1 -/A -A -1 /A -A 1 /A A
X.10 1 -A /A -1 -A -/A -1 A -/A 1 A /A
X.11 1 -/A -A 1 -/A -A 1 -/A -A 1 -/A -A
X.12 1 -A -/A 1 -A -/A 1 -A -/A 1 -A -/A
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
|