Normalized defining polynomial
\( x^{12} + 93 x^{10} + 4164 x^{8} + 115271 x^{6} + 1988841 x^{4} + 19219578 x^{2} + 78446449 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(240148397880610960674816=2^{12}\cdot 3^{18}\cdot 73^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2628=2^{2}\cdot 3^{2}\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2628}(1,·)$, $\chi_{2628}(1459,·)$, $\chi_{2628}(1313,·)$, $\chi_{2628}(1607,·)$, $\chi_{2628}(583,·)$, $\chi_{2628}(2189,·)$, $\chi_{2628}(877,·)$, $\chi_{2628}(2483,·)$, $\chi_{2628}(437,·)$, $\chi_{2628}(1753,·)$, $\chi_{2628}(731,·)$, $\chi_{2628}(2335,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{37} a^{8} - \frac{1}{37} a^{6} + \frac{13}{37} a^{4} + \frac{5}{37} a^{2} + \frac{10}{37}$, $\frac{1}{37} a^{9} - \frac{1}{37} a^{7} + \frac{13}{37} a^{5} + \frac{5}{37} a^{3} + \frac{10}{37} a$, $\frac{1}{6273924499} a^{10} - \frac{52762380}{6273924499} a^{8} - \frac{2132892469}{6273924499} a^{6} + \frac{2597138409}{6273924499} a^{4} + \frac{1642165230}{6273924499} a^{2} - \frac{473107472}{6273924499}$, $\frac{1}{55568149287643} a^{11} + \frac{96599588010}{55568149287643} a^{9} + \frac{21652910995174}{55568149287643} a^{7} + \frac{26549267348948}{55568149287643} a^{5} + \frac{8986071613325}{55568149287643} a^{3} - \frac{13840411421212}{55568149287643} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{364}$, which has order $11648$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325.67540279491664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-73}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-219}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{3}, \sqrt{-73})\), 6.0.163349794368.4, \(\Q(\zeta_{36})^+\), 6.0.7657021611.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $73$ | 73.2.1.1 | $x^{2} - 73$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 73.2.1.1 | $x^{2} - 73$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 73.2.1.1 | $x^{2} - 73$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 73.2.1.1 | $x^{2} - 73$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 73.2.1.1 | $x^{2} - 73$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 73.2.1.1 | $x^{2} - 73$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |