Normalized defining polynomial
\( x^{12} - 3 x^{11} + 129 x^{10} - 381 x^{9} + 7305 x^{8} - 20358 x^{7} + 228508 x^{6} - 535884 x^{5} + 4054374 x^{4} - 6735844 x^{3} + 38602548 x^{2} - 36067335 x + 160801651 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(215715056426865017578125=3^{16}\cdot 5^{9}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1665=3^{2}\cdot 5\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1665}(1,·)$, $\chi_{1665}(1444,·)$, $\chi_{1665}(517,·)$, $\chi_{1665}(73,·)$, $\chi_{1665}(556,·)$, $\chi_{1665}(334,·)$, $\chi_{1665}(1072,·)$, $\chi_{1665}(628,·)$, $\chi_{1665}(1111,·)$, $\chi_{1665}(889,·)$, $\chi_{1665}(1627,·)$, $\chi_{1665}(1183,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{19} a^{8} + \frac{1}{19} a^{7} - \frac{5}{19} a^{6} - \frac{5}{19} a^{5} + \frac{9}{19} a^{4} - \frac{3}{19} a^{3} + \frac{1}{19} a^{2} + \frac{7}{19} a - \frac{6}{19}$, $\frac{1}{2071} a^{9} - \frac{30}{2071} a^{8} + \frac{154}{2071} a^{7} - \frac{876}{2071} a^{6} - \frac{64}{2071} a^{5} - \frac{909}{2071} a^{4} - \frac{514}{2071} a^{3} + \frac{1002}{2071} a^{2} + \frac{138}{2071} a - \frac{555}{2071}$, $\frac{1}{2071} a^{10} + \frac{17}{2071} a^{8} + \frac{365}{2071} a^{7} + \frac{906}{2071} a^{6} - \frac{431}{2071} a^{5} - \frac{207}{2071} a^{4} - \frac{139}{2071} a^{3} - \frac{104}{2071} a^{2} + \frac{642}{2071} a - \frac{518}{2071}$, $\frac{1}{7261804429365008085368348321} a^{11} - \frac{57977464543590943609970}{382200233124474109756228859} a^{10} + \frac{946624993173542428174730}{7261804429365008085368348321} a^{9} - \frac{68689325147574016897171019}{7261804429365008085368348321} a^{8} - \frac{497268243336208516071279057}{7261804429365008085368348321} a^{7} + \frac{1472532204712477262421934312}{7261804429365008085368348321} a^{6} - \frac{3621974923884971172664130098}{7261804429365008085368348321} a^{5} + \frac{2788842572820432080244355698}{7261804429365008085368348321} a^{4} - \frac{2350485107428525020945452065}{7261804429365008085368348321} a^{3} - \frac{1283224198929347492880393577}{7261804429365008085368348321} a^{2} + \frac{162083869942721182042624506}{382200233124474109756228859} a + \frac{1638173877972836954649758777}{7261804429365008085368348321}$
Class group and class number
$C_{2}\times C_{14}\times C_{910}$, which has order $25480$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.000834787 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 4.0.171125.1, 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.16.14 | $x^{12} + 72 x^{11} - 36 x^{10} + 108 x^{9} - 108 x^{8} + 54 x^{7} + 72 x^{6} - 81 x^{5} - 81 x^{4} - 81 x^{3} + 81 x^{2} - 81$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $37$ | 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |