Properties

Label 3.12.16.14
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(16\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 24 x^{11} + 216 x^{10} + 768 x^{9} - 432 x^{8} - 10368 x^{7} - 18414 x^{6} + 27864 x^{5} + 83592 x^{4} + 10800 x^{3} + 64800 x^{2} + 901125\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 3 }) }$: $12$
This field is Galois and abelian over $\Q_{3}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.3.4.2, 3.4.0.1, 3.6.8.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} + 2 x^{3} + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 6 x^{2} + 9 t^{3} + 18 t + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 2$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_3$
Wild inertia group:$C_3$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:$[2]$
Galois mean slope:$4/3$
Galois splitting model:$x^{12} + 3 x^{10} - x^{9} + 9 x^{8} + 9 x^{7} + 28 x^{6} + 18 x^{5} + 75 x^{4} + 26 x^{3} + 9 x^{2} + 3 x + 1$