Normalized defining polynomial
\( x^{12} - 6 x^{11} + 45 x^{10} + 6346 x^{9} - 28632 x^{8} + 56838 x^{7} + 20608493 x^{6} + \cdots + 25518486110788 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(1622827545666780088361541738287738688918257664\)
\(\medspace = 2^{18}\cdot 3^{20}\cdot 19^{6}\cdot 181^{10}\)
|
| |
| Root discriminant: | \(5854.94\) |
| |
| Galois root discriminant: | $2^{3/2}3^{11/6}19^{1/2}181^{5/6}\approx 7031.417842506584$ | ||
| Ramified primes: |
\(2\), \(3\), \(19\), \(181\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-19}, \sqrt{-362})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{3}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{81}a^{6}-\frac{1}{27}a^{5}-\frac{1}{9}a^{4}-\frac{40}{81}a^{3}+\frac{1}{9}a^{2}+\frac{11}{27}a-\frac{19}{81}$, $\frac{1}{81}a^{7}+\frac{1}{9}a^{5}-\frac{13}{81}a^{4}-\frac{10}{27}a^{3}+\frac{2}{27}a^{2}-\frac{1}{81}a-\frac{10}{27}$, $\frac{1}{1134}a^{8}-\frac{2}{567}a^{7}-\frac{1}{567}a^{6}-\frac{8}{567}a^{5}-\frac{1}{81}a^{4}-\frac{230}{567}a^{3}-\frac{313}{1134}a^{2}+\frac{278}{567}a+\frac{97}{567}$, $\frac{1}{1134}a^{9}-\frac{2}{567}a^{7}+\frac{2}{567}a^{6}-\frac{2}{63}a^{5}+\frac{92}{567}a^{4}-\frac{97}{378}a^{3}-\frac{20}{63}a^{2}-\frac{37}{567}a-\frac{88}{567}$, $\frac{1}{23814}a^{10}-\frac{5}{23814}a^{9}-\frac{1}{3402}a^{8}+\frac{53}{11907}a^{7}-\frac{20}{3969}a^{6}+\frac{1760}{11907}a^{5}+\frac{19}{378}a^{4}-\frac{3251}{23814}a^{3}+\frac{5479}{23814}a^{2}-\frac{4951}{11907}a+\frac{2788}{11907}$, $\frac{1}{21\cdots 98}a^{11}-\frac{21\cdots 31}{10\cdots 99}a^{10}+\frac{86\cdots 89}{21\cdots 98}a^{9}+\frac{30\cdots 65}{21\cdots 98}a^{8}-\frac{10\cdots 40}{51\cdots 19}a^{7}+\frac{30\cdots 45}{10\cdots 99}a^{6}+\frac{47\cdots 71}{71\cdots 66}a^{5}-\frac{93\cdots 30}{10\cdots 99}a^{4}-\frac{46\cdots 07}{21\cdots 98}a^{3}+\frac{26\cdots 07}{21\cdots 98}a^{2}+\frac{22\cdots 31}{21\cdots 51}a-\frac{14\cdots 18}{35\cdots 33}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{6}\times C_{6}\times C_{72}$, which has order $2592$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}\times C_{6}\times C_{72}$, which has order $2592$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{10\cdots 94}{46\cdots 87}a^{11}-\frac{10\cdots 27}{41\cdots 83}a^{10}+\frac{51\cdots 17}{41\cdots 83}a^{9}-\frac{31\cdots 00}{12\cdots 49}a^{8}-\frac{20\cdots 82}{12\cdots 49}a^{7}+\frac{21\cdots 38}{37\cdots 47}a^{6}-\frac{70\cdots 62}{12\cdots 49}a^{5}-\frac{50\cdots 95}{12\cdots 49}a^{4}+\frac{36\cdots 53}{37\cdots 47}a^{3}+\frac{10\cdots 62}{12\cdots 49}a^{2}-\frac{20\cdots 96}{46\cdots 87}a-\frac{92\cdots 61}{37\cdots 47}$, $\frac{18\cdots 96}{35\cdots 33}a^{11}-\frac{90\cdots 22}{35\cdots 33}a^{10}-\frac{15\cdots 58}{35\cdots 33}a^{9}+\frac{30\cdots 36}{11\cdots 11}a^{8}-\frac{49\cdots 64}{35\cdots 33}a^{7}-\frac{11\cdots 40}{35\cdots 33}a^{6}+\frac{24\cdots 28}{35\cdots 33}a^{5}-\frac{36\cdots 64}{11\cdots 11}a^{4}-\frac{72\cdots 14}{56\cdots 91}a^{3}+\frac{11\cdots 14}{35\cdots 33}a^{2}-\frac{21\cdots 20}{35\cdots 33}a-\frac{51\cdots 95}{35\cdots 33}$, $\frac{15\cdots 78}{51\cdots 19}a^{11}+\frac{13\cdots 95}{73\cdots 17}a^{10}+\frac{15\cdots 93}{51\cdots 19}a^{9}-\frac{37\cdots 01}{24\cdots 39}a^{8}+\frac{73\cdots 02}{73\cdots 17}a^{7}+\frac{10\cdots 56}{51\cdots 19}a^{6}-\frac{21\cdots 94}{51\cdots 19}a^{5}+\frac{39\cdots 61}{17\cdots 73}a^{4}+\frac{14\cdots 81}{17\cdots 73}a^{3}-\frac{91\cdots 47}{51\cdots 19}a^{2}+\frac{20\cdots 34}{51\cdots 19}a+\frac{47\cdots 19}{51\cdots 19}$, $\frac{29\cdots 17}{10\cdots 38}a^{11}-\frac{20\cdots 07}{23\cdots 22}a^{10}-\frac{38\cdots 93}{35\cdots 33}a^{9}-\frac{29\cdots 25}{10\cdots 38}a^{8}-\frac{73\cdots 68}{11\cdots 11}a^{7}-\frac{23\cdots 14}{35\cdots 33}a^{6}-\frac{80\cdots 23}{79\cdots 74}a^{5}-\frac{66\cdots 17}{37\cdots 94}a^{4}-\frac{54\cdots 54}{35\cdots 33}a^{3}-\frac{82\cdots 43}{71\cdots 66}a^{2}-\frac{58\cdots 57}{39\cdots 37}a-\frac{32\cdots 22}{39\cdots 37}$, $\frac{59\cdots 21}{35\cdots 33}a^{11}-\frac{98\cdots 62}{39\cdots 37}a^{10}+\frac{79\cdots 87}{35\cdots 33}a^{9}+\frac{38\cdots 83}{35\cdots 33}a^{8}-\frac{22\cdots 60}{11\cdots 11}a^{7}+\frac{68\cdots 76}{35\cdots 33}a^{6}+\frac{79\cdots 77}{35\cdots 33}a^{5}-\frac{53\cdots 41}{11\cdots 11}a^{4}+\frac{16\cdots 27}{35\cdots 33}a^{3}+\frac{17\cdots 01}{11\cdots 11}a^{2}-\frac{40\cdots 01}{11\cdots 11}a+\frac{44\cdots 67}{11\cdots 11}$
|
| |
| Regulator: | \( 1054956121597384.5 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1054956121597384.5 \cdot 2592}{2\cdot\sqrt{1622827545666780088361541738287738688918257664}}\cr\approx \mathstrut & 2.08824967681451 \end{aligned}\] (assuming GRH)
Galois group
$S_3\times D_6$ (as 12T37):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $S_3\times D_6$ |
| Character table for $S_3\times D_6$ |
Intermediate fields
| \(\Q(\sqrt{-362}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{6878}) \), \(\Q(\sqrt{-19}, \sqrt{-362})\), 6.0.5873208011345484288.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(3\)
| 3.2.3.10a1.1 | $x^{6} + 6 x^{5} + 18 x^{4} + 32 x^{3} + 36 x^{2} + 24 x + 11$ | $3$ | $2$ | $10$ | $D_{6}$ | $$[\frac{5}{2}]_{2}^{2}$$ |
| 3.2.3.10a1.1 | $x^{6} + 6 x^{5} + 18 x^{4} + 32 x^{3} + 36 x^{2} + 24 x + 11$ | $3$ | $2$ | $10$ | $D_{6}$ | $$[\frac{5}{2}]_{2}^{2}$$ | |
|
\(19\)
| 19.2.2.2a1.2 | $x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 19.2.2.2a1.2 | $x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 19.2.2.2a1.2 | $x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(181\)
| 181.2.6.10a1.4 | $x^{12} + 1062 x^{11} + 469947 x^{10} + 110915280 x^{9} + 14726353155 x^{8} + 1043025098382 x^{7} + 30808510677349 x^{6} + 2086050196764 x^{5} + 58905412620 x^{4} + 887322240 x^{3} + 7519152 x^{2} + 42672 x + 27757$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $$[\ ]_{6}^{2}$$ |