Normalized defining polynomial
\( x^{10} - 20x^{7} + 30x^{6} + 100x^{4} - 300x^{3} + 225x^{2} + 540 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[0, 5]$ |
| |
Discriminant: |
\(-57665039062500000\)
\(\medspace = -\,2^{5}\cdot 3^{10}\cdot 5^{15}\)
|
| |
Root discriminant: | \(47.43\) |
| |
Galois root discriminant: | $2^{2}3^{5/4}5^{163/100}\approx 217.6620257611859$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-10}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-15}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{12}a^{5}+\frac{1}{6}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{12}a^{6}+\frac{1}{6}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{24}a^{7}-\frac{1}{24}a^{6}+\frac{1}{12}a^{4}+\frac{1}{24}a^{3}+\frac{1}{8}a^{2}-\frac{1}{4}a$, $\frac{1}{144}a^{8}-\frac{1}{72}a^{7}-\frac{5}{144}a^{6}-\frac{1}{36}a^{5}-\frac{1}{144}a^{4}-\frac{17}{72}a^{3}-\frac{7}{16}a^{2}-\frac{1}{4}$, $\frac{1}{288}a^{9}-\frac{1}{288}a^{8}+\frac{5}{288}a^{7}-\frac{1}{32}a^{6}-\frac{5}{288}a^{5}-\frac{11}{288}a^{4}+\frac{11}{288}a^{3}+\frac{1}{32}a^{2}-\frac{3}{8}a+\frac{3}{8}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1}{12}a^{9}+\frac{7}{144}a^{8}-\frac{2}{9}a^{7}-\frac{233}{144}a^{6}+\frac{31}{18}a^{5}+\frac{857}{144}a^{4}+\frac{59}{36}a^{3}-\frac{953}{48}a^{2}-\frac{15}{2}a+\frac{311}{4}$, $\frac{95}{288}a^{9}-\frac{17}{96}a^{8}-\frac{83}{96}a^{7}-\frac{511}{288}a^{6}+\frac{799}{96}a^{5}+\frac{701}{96}a^{4}-\frac{15055}{288}a^{3}+\frac{3709}{96}a^{2}+\frac{95}{8}a+\frac{917}{8}$, $\frac{989}{32}a^{9}+\frac{9773}{288}a^{8}-\frac{1915}{288}a^{7}-\frac{215407}{288}a^{6}-\frac{22697}{288}a^{5}+\frac{200431}{288}a^{4}+\frac{1532731}{288}a^{3}-\frac{210827}{96}a^{2}-\frac{10495}{8}a-\frac{65563}{8}$, $\frac{317}{16}a^{9}-\frac{5275}{144}a^{8}+\frac{1451}{144}a^{7}-\frac{51949}{144}a^{6}+\frac{183427}{144}a^{5}-\frac{182717}{144}a^{4}+\frac{228937}{144}a^{3}-\frac{367237}{48}a^{2}+\frac{59455}{4}a-\frac{32729}{4}$
|
| |
Regulator: | \( 240128.203156 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 240128.203156 \cdot 2}{2\cdot\sqrt{57665039062500000}}\cr\approx \mathstrut & 9.79233398925 \end{aligned}\] (assuming GRH)
Galois group
$S_5\wr C_2$ (as 10T43):
A non-solvable group of order 28800 |
The 35 conjugacy class representatives for $S_5^2 \wr C_2$ |
Character table for $S_5^2 \wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-15}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 20 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 25 sibling: | data not computed |
Degree 30 sibling: | data not computed |
Degree 36 sibling: | data not computed |
Degree 40 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.10.0.1}{10} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
\(3\)
| 3.1.4.3a1.2 | $x^{4} + 6$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |
3.1.6.7a1.4 | $x^{6} + 3 x^{3} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3\times C_3$ | $$[\frac{3}{2}]_{2}^{3}$$ | |
\(5\)
| 5.1.10.15a2.9 | $x^{10} + 10 x^{7} + 5 x^{6} + 10$ | $10$ | $1$ | $15$ | $C_5^2 : C_4$ | $$[\frac{5}{4}, \frac{7}{4}]_{4}$$ |