Properties

Label 10.0.42917292635.1
Degree $10$
Signature $[0, 5]$
Discriminant $-42917292635$
Root discriminant \(11.57\)
Ramified primes $5,7,23,41,431$
Class number $2$
Class group [2]
Galois group $C_2 \wr S_5$ (as 10T39)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 8*x^8 - 19*x^7 + 38*x^6 - 56*x^5 + 82*x^4 - 101*x^3 + 86*x^2 - 70*x + 35)
 
gp: K = bnfinit(y^10 - 3*y^9 + 8*y^8 - 19*y^7 + 38*y^6 - 56*y^5 + 82*y^4 - 101*y^3 + 86*y^2 - 70*y + 35, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 3*x^9 + 8*x^8 - 19*x^7 + 38*x^6 - 56*x^5 + 82*x^4 - 101*x^3 + 86*x^2 - 70*x + 35);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 3*x^9 + 8*x^8 - 19*x^7 + 38*x^6 - 56*x^5 + 82*x^4 - 101*x^3 + 86*x^2 - 70*x + 35)
 

\( x^{10} - 3x^{9} + 8x^{8} - 19x^{7} + 38x^{6} - 56x^{5} + 82x^{4} - 101x^{3} + 86x^{2} - 70x + 35 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-42917292635\) \(\medspace = -\,5\cdot 7^{2}\cdot 23\cdot 41\cdot 431^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.57\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}7^{1/2}23^{1/2}41^{1/2}431^{1/2}\approx 3771.624981357505$
Ramified primes:   \(5\), \(7\), \(23\), \(41\), \(431\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-4715}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{59239}a^{9}+\frac{18862}{59239}a^{8}-\frac{17035}{59239}a^{7}+\frac{6281}{59239}a^{6}+\frac{13103}{59239}a^{5}-\frac{16308}{59239}a^{4}-\frac{22211}{59239}a^{3}-\frac{13169}{59239}a^{2}+\frac{15267}{59239}a-\frac{8133}{59239}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{3737}{59239}a^{9}-\frac{7116}{59239}a^{8}+\frac{22130}{59239}a^{7}-\frac{45786}{59239}a^{6}+\frac{93736}{59239}a^{5}-\frac{104543}{59239}a^{4}+\frac{169049}{59239}a^{3}-\frac{162661}{59239}a^{2}+\frac{124100}{59239}a-\frac{62653}{59239}$, $\frac{3153}{59239}a^{9}-\frac{4070}{59239}a^{8}+\frac{18418}{59239}a^{7}-\frac{41072}{59239}a^{6}+\frac{83415}{59239}a^{5}-\frac{118150}{59239}a^{4}+\frac{226171}{59239}a^{3}-\frac{232274}{59239}a^{2}+\frac{212500}{59239}a-\frac{170579}{59239}$, $\frac{3737}{59239}a^{9}-\frac{7116}{59239}a^{8}+\frac{22130}{59239}a^{7}-\frac{45786}{59239}a^{6}+\frac{93736}{59239}a^{5}-\frac{104543}{59239}a^{4}+\frac{169049}{59239}a^{3}-\frac{162661}{59239}a^{2}+\frac{64861}{59239}a-\frac{62653}{59239}$, $\frac{2179}{59239}a^{9}-\frac{11568}{59239}a^{8}+\frac{23588}{59239}a^{7}-\frac{57149}{59239}a^{6}+\frac{116717}{59239}a^{5}-\frac{169449}{59239}a^{4}+\frac{178211}{59239}a^{3}-\frac{260531}{59239}a^{2}+\frac{211431}{59239}a-\frac{9346}{59239}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8.28396501261 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 8.28396501261 \cdot 2}{2\cdot\sqrt{42917292635}}\cr\approx \mathstrut & 0.391580844851 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 8*x^8 - 19*x^7 + 38*x^6 - 56*x^5 + 82*x^4 - 101*x^3 + 86*x^2 - 70*x + 35)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - 3*x^9 + 8*x^8 - 19*x^7 + 38*x^6 - 56*x^5 + 82*x^4 - 101*x^3 + 86*x^2 - 70*x + 35, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - 3*x^9 + 8*x^8 - 19*x^7 + 38*x^6 - 56*x^5 + 82*x^4 - 101*x^3 + 86*x^2 - 70*x + 35);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 3*x^9 + 8*x^8 - 19*x^7 + 38*x^6 - 56*x^5 + 82*x^4 - 101*x^3 + 86*x^2 - 70*x + 35);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\wr S_5$ (as 10T39):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 3840
The 36 conjugacy class representatives for $C_2 \wr S_5$
Character table for $C_2 \wr S_5$

Intermediate fields

5.1.3017.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 10 sibling: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }$ ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ R R ${\href{/padicField/11.5.0.1}{5} }^{2}$ ${\href{/padicField/13.5.0.1}{5} }^{2}$ ${\href{/padicField/17.10.0.1}{10} }$ ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ R ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ R ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.10.0.1}{10} }$ ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.0.1$x^{4} + 4 x^{2} + 4 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.4.0.1$x^{4} + 4 x^{2} + 4 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
\(7\) Copy content Toggle raw display 7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.6.0.1$x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
\(23\) Copy content Toggle raw display 23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.0.1$x^{4} + 3 x^{2} + 19 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
\(41\) Copy content Toggle raw display 41.2.1.1$x^{2} + 41$$2$$1$$1$$C_2$$[\ ]_{2}$
41.4.0.1$x^{4} + 23 x + 6$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.0.1$x^{4} + 23 x + 6$$1$$4$$0$$C_4$$[\ ]^{4}$
\(431\) Copy content Toggle raw display $\Q_{431}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{431}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$