Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $39$ | |
| Group : | $C_2 \wr S_5$ | |
| CHM label : | $[2^{5}]S(5)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (5,10), (2,10)(5,7), (1,3,5,7,9)(2,4,6,8,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 120: $S_5$ 240: $S_5\times C_2$ 1920: $(C_2^4:A_5) : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $S_5$
Low degree siblings
10T39, 20T275, 20T279 x 2, 20T285 x 2, 20T288 x 2, 20T289 x 2, 30T517 x 2, 30T524 x 2, 32T206825 x 2, 40T2728 x 2, 40T2731 x 2, 40T2748, 40T2749, 40T2757 x 2, 40T2771 x 2, 40T2772 x 2, 40T2773 x 2, 40T2774 x 2, 40T2779 x 2, 40T2780 x 2, 40T2781 x 2, 40T2782 x 2, 40T2798, 40T2839 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5,10)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 2, 7)( 5,10)$ |
| $ 2, 2, 2, 1, 1, 1, 1 $ | $10$ | $2$ | $( 2, 7)( 4, 9)( 5,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 1, 6)( 2, 7)( 4, 9)( 5,10)$ |
| $ 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $( 4,10)( 5, 9)$ |
| $ 4, 1, 1, 1, 1, 1, 1 $ | $20$ | $4$ | $( 4, 5, 9,10)$ |
| $ 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $2$ | $( 2, 7)( 4,10)( 5, 9)$ |
| $ 4, 2, 1, 1, 1, 1 $ | $60$ | $4$ | $( 2, 7)( 4, 5, 9,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $60$ | $2$ | $( 1, 6)( 2, 7)( 4,10)( 5, 9)$ |
| $ 4, 2, 2, 1, 1 $ | $60$ | $4$ | $( 1, 6)( 2, 7)( 4, 5, 9,10)$ |
| $ 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4,10)( 5, 9)$ |
| $ 4, 2, 2, 2 $ | $20$ | $4$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 5, 9,10)$ |
| $ 3, 3, 1, 1, 1, 1 $ | $80$ | $3$ | $( 3, 9, 5)( 4,10, 8)$ |
| $ 6, 1, 1, 1, 1 $ | $80$ | $6$ | $( 3, 9,10, 8, 4, 5)$ |
| $ 3, 3, 2, 1, 1 $ | $160$ | $6$ | $( 2, 7)( 3, 9, 5)( 4,10, 8)$ |
| $ 6, 2, 1, 1 $ | $160$ | $6$ | $( 2, 7)( 3, 9,10, 8, 4, 5)$ |
| $ 3, 3, 2, 2 $ | $80$ | $6$ | $( 1, 6)( 2, 7)( 3, 9, 5)( 4,10, 8)$ |
| $ 6, 2, 2 $ | $80$ | $6$ | $( 1, 6)( 2, 7)( 3, 9,10, 8, 4, 5)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $60$ | $2$ | $( 2, 8)( 3, 7)( 4,10)( 5, 9)$ |
| $ 4, 2, 2, 1, 1 $ | $120$ | $4$ | $( 2, 8)( 3, 7)( 4, 5, 9,10)$ |
| $ 4, 4, 1, 1 $ | $60$ | $4$ | $( 2, 8, 7, 3)( 4, 5, 9,10)$ |
| $ 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 6)( 2, 8)( 3, 7)( 4,10)( 5, 9)$ |
| $ 4, 2, 2, 2 $ | $120$ | $4$ | $( 1, 6)( 2, 8)( 3, 7)( 4, 5, 9,10)$ |
| $ 4, 4, 2 $ | $60$ | $4$ | $( 1, 6)( 2, 8, 7, 3)( 4, 5, 9,10)$ |
| $ 4, 4, 1, 1 $ | $240$ | $4$ | $( 2, 8, 4,10)( 3, 9, 5, 7)$ |
| $ 8, 1, 1 $ | $240$ | $8$ | $( 2, 8, 4, 5, 7, 3, 9,10)$ |
| $ 4, 4, 2 $ | $240$ | $4$ | $( 1, 6)( 2, 8, 4,10)( 3, 9, 5, 7)$ |
| $ 8, 2 $ | $240$ | $8$ | $( 1, 6)( 2, 8, 4, 5, 7, 3, 9,10)$ |
| $ 3, 3, 2, 2 $ | $160$ | $6$ | $( 1, 7)( 2, 6)( 3, 9, 5)( 4,10, 8)$ |
| $ 6, 2, 2 $ | $160$ | $6$ | $( 1, 7)( 2, 6)( 3, 9,10, 8, 4, 5)$ |
| $ 4, 3, 3 $ | $160$ | $12$ | $( 1, 2, 6, 7)( 3, 9, 5)( 4,10, 8)$ |
| $ 6, 4 $ | $160$ | $12$ | $( 1, 2, 6, 7)( 3, 9,10, 8, 4, 5)$ |
| $ 5, 5 $ | $384$ | $5$ | $( 1, 7, 3, 9, 5)( 2, 8, 4,10, 6)$ |
| $ 10 $ | $384$ | $10$ | $( 1, 7, 3, 9,10, 6, 2, 8, 4, 5)$ |
Group invariants
| Order: | $3840=2^{8} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |