Show commands: Magma
Group invariants
| Abstract group: | $C_2 \wr S_5$ |
| |
| Order: | $3840=2^{8} \cdot 3 \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $10$ |
| |
| Transitive number $t$: | $39$ |
| |
| CHM label: | $[2^{5}]S(5)$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(5,10)$, $(2,10)(5,7)$, $(1,3,5,7,9)(2,4,6,8,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $120$: $S_5$ $240$: $S_5\times C_2$ $1920$: $(C_2^4:A_5) : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $S_5$
Low degree siblings
10T39, 20T275, 20T279 x 2, 20T285 x 2, 20T288 x 2, 20T289 x 2, 30T517 x 2, 30T524 x 2, 32T206825 x 2, 40T2728 x 2, 40T2731 x 2, 40T2748, 40T2749, 40T2757 x 2, 40T2771 x 2, 40T2772 x 2, 40T2773 x 2, 40T2774 x 2, 40T2779 x 2, 40T2780 x 2, 40T2781 x 2, 40T2782 x 2, 40T2798, 40T2839 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{5}$ | $1$ | $2$ | $5$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| 2B | $2^{4},1^{2}$ | $5$ | $2$ | $4$ | $(1,6)(2,7)(3,8)(4,9)$ |
| 2C | $2,1^{8}$ | $5$ | $2$ | $1$ | $(1,6)$ |
| 2D | $2^{2},1^{6}$ | $10$ | $2$ | $2$ | $(3,8)(4,9)$ |
| 2E | $2^{3},1^{4}$ | $10$ | $2$ | $3$ | $( 1, 6)( 4, 9)( 5,10)$ |
| 2F | $2^{5}$ | $20$ | $2$ | $5$ | $( 1, 3)( 2, 7)( 4, 9)( 5,10)( 6, 8)$ |
| 2G | $2^{2},1^{6}$ | $20$ | $2$ | $2$ | $( 2,10)( 5, 7)$ |
| 2H | $2^{3},1^{4}$ | $60$ | $2$ | $3$ | $( 3, 4)( 5,10)( 8, 9)$ |
| 2I | $2^{4},1^{2}$ | $60$ | $2$ | $4$ | $( 2, 3)( 4, 9)( 5,10)( 7, 8)$ |
| 2J | $2^{5}$ | $60$ | $2$ | $5$ | $( 1, 2)( 3, 4)( 5,10)( 6, 7)( 8, 9)$ |
| 2K | $2^{4},1^{2}$ | $60$ | $2$ | $4$ | $( 1,10)( 3, 4)( 5, 6)( 8, 9)$ |
| 3A | $3^{2},1^{4}$ | $80$ | $3$ | $4$ | $(2,9,3)(4,8,7)$ |
| 4A | $4,1^{6}$ | $20$ | $4$ | $3$ | $( 1,10, 6, 5)$ |
| 4B | $4,2^{3}$ | $20$ | $4$ | $6$ | $( 1, 7, 6, 2)( 3, 8)( 4, 9)( 5,10)$ |
| 4C | $4,2,1^{4}$ | $60$ | $4$ | $4$ | $( 3, 4, 8, 9)( 5,10)$ |
| 4D | $4,2^{2},1^{2}$ | $60$ | $4$ | $5$ | $( 2, 3, 7, 8)( 4, 9)( 5,10)$ |
| 4E | $4^{2},2$ | $60$ | $4$ | $7$ | $( 1, 2, 6, 7)( 3, 4, 8, 9)( 5,10)$ |
| 4F | $4^{2},1^{2}$ | $60$ | $4$ | $6$ | $( 1, 8, 6, 3)( 2, 5, 7,10)$ |
| 4G | $4,2^{3}$ | $120$ | $4$ | $6$ | $( 1, 6)( 2, 5, 7,10)( 3, 9)( 4, 8)$ |
| 4H | $4,2^{2},1^{2}$ | $120$ | $4$ | $5$ | $( 1, 2, 6, 7)( 3, 5)( 8,10)$ |
| 4I | $4^{2},2$ | $240$ | $4$ | $7$ | $( 1, 8,10, 9)( 2, 7)( 3, 5, 4, 6)$ |
| 4J | $4^{2},1^{2}$ | $240$ | $4$ | $6$ | $( 1, 9, 5, 2)( 4,10, 7, 6)$ |
| 5A | $5^{2}$ | $384$ | $5$ | $8$ | $( 1,10, 9, 8, 2)( 3, 7, 6, 5, 4)$ |
| 6A | $3^{2},2^{2}$ | $80$ | $6$ | $6$ | $( 1, 6)( 2, 3, 9)( 4, 7, 8)( 5,10)$ |
| 6B | $6,2^{2}$ | $80$ | $6$ | $7$ | $( 1, 7, 9, 6, 2, 4)( 3, 8)( 5,10)$ |
| 6C | $6,1^{4}$ | $80$ | $6$ | $5$ | $( 1, 5, 9, 6,10, 4)$ |
| 6D | $6,2,1^{2}$ | $160$ | $6$ | $6$ | $( 1, 6)( 3,10, 4, 8, 5, 9)$ |
| 6E | $3^{2},2,1^{2}$ | $160$ | $6$ | $5$ | $(1,6)(2,8,9)(3,4,7)$ |
| 6F | $6,2^{2}$ | $160$ | $6$ | $7$ | $( 1, 3)( 2, 4,10, 7, 9, 5)( 6, 8)$ |
| 6G | $3^{2},2^{2}$ | $160$ | $6$ | $6$ | $( 1, 9, 8)( 2,10)( 3, 6, 4)( 5, 7)$ |
| 8A | $8,1^{2}$ | $240$ | $8$ | $7$ | $( 1, 5, 8, 7, 6,10, 3, 2)$ |
| 8B | $8,2$ | $240$ | $8$ | $8$ | $( 1, 4, 2,10, 6, 9, 7, 5)( 3, 8)$ |
| 10A | $10$ | $384$ | $10$ | $9$ | $( 1, 3,10, 7, 9, 6, 8, 5, 2, 4)$ |
| 12A | $4,3^{2}$ | $160$ | $12$ | $7$ | $( 1, 5, 6,10)( 2, 9, 3)( 4, 8, 7)$ |
| 12B | $6,4$ | $160$ | $12$ | $8$ | $( 1, 2, 6, 7)( 3, 4, 5, 8, 9,10)$ |
Character table
36 x 36 character table
Regular extensions
| $f_{ 1 } =$ |
$x^{10} + x^{2} + t$
|