Show commands:
Magma
magma: G := TransitiveGroup(10, 39);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $39$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2 \wr S_5$ | ||
CHM label: | $[2^{5}]S(5)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (5,10), (2,10)(5,7), (1,3,5,7,9)(2,4,6,8,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $120$: $S_5$ $240$: $S_5\times C_2$ $1920$: $(C_2^4:A_5) : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $S_5$
Low degree siblings
10T39, 20T275, 20T279 x 2, 20T285 x 2, 20T288 x 2, 20T289 x 2, 30T517 x 2, 30T524 x 2, 32T206825 x 2, 40T2728 x 2, 40T2731 x 2, 40T2748, 40T2749, 40T2757 x 2, 40T2771 x 2, 40T2772 x 2, 40T2773 x 2, 40T2774 x 2, 40T2779 x 2, 40T2780 x 2, 40T2781 x 2, 40T2782 x 2, 40T2798, 40T2839 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5,10)$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 2, 7)( 5,10)$ |
$ 2, 2, 2, 1, 1, 1, 1 $ | $10$ | $2$ | $( 2, 7)( 4, 9)( 5,10)$ |
$ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 1, 6)( 2, 7)( 4, 9)( 5,10)$ |
$ 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $( 4,10)( 5, 9)$ |
$ 4, 1, 1, 1, 1, 1, 1 $ | $20$ | $4$ | $( 4, 5, 9,10)$ |
$ 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $2$ | $( 2, 7)( 4,10)( 5, 9)$ |
$ 4, 2, 1, 1, 1, 1 $ | $60$ | $4$ | $( 2, 7)( 4, 5, 9,10)$ |
$ 2, 2, 2, 2, 1, 1 $ | $60$ | $2$ | $( 1, 6)( 2, 7)( 4,10)( 5, 9)$ |
$ 4, 2, 2, 1, 1 $ | $60$ | $4$ | $( 1, 6)( 2, 7)( 4, 5, 9,10)$ |
$ 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4,10)( 5, 9)$ |
$ 4, 2, 2, 2 $ | $20$ | $4$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 5, 9,10)$ |
$ 3, 3, 1, 1, 1, 1 $ | $80$ | $3$ | $( 3, 9, 5)( 4,10, 8)$ |
$ 6, 1, 1, 1, 1 $ | $80$ | $6$ | $( 3, 9,10, 8, 4, 5)$ |
$ 3, 3, 2, 1, 1 $ | $160$ | $6$ | $( 2, 7)( 3, 9, 5)( 4,10, 8)$ |
$ 6, 2, 1, 1 $ | $160$ | $6$ | $( 2, 7)( 3, 9,10, 8, 4, 5)$ |
$ 3, 3, 2, 2 $ | $80$ | $6$ | $( 1, 6)( 2, 7)( 3, 9, 5)( 4,10, 8)$ |
$ 6, 2, 2 $ | $80$ | $6$ | $( 1, 6)( 2, 7)( 3, 9,10, 8, 4, 5)$ |
$ 2, 2, 2, 2, 1, 1 $ | $60$ | $2$ | $( 2, 8)( 3, 7)( 4,10)( 5, 9)$ |
$ 4, 2, 2, 1, 1 $ | $120$ | $4$ | $( 2, 8)( 3, 7)( 4, 5, 9,10)$ |
$ 4, 4, 1, 1 $ | $60$ | $4$ | $( 2, 8, 7, 3)( 4, 5, 9,10)$ |
$ 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 6)( 2, 8)( 3, 7)( 4,10)( 5, 9)$ |
$ 4, 2, 2, 2 $ | $120$ | $4$ | $( 1, 6)( 2, 8)( 3, 7)( 4, 5, 9,10)$ |
$ 4, 4, 2 $ | $60$ | $4$ | $( 1, 6)( 2, 8, 7, 3)( 4, 5, 9,10)$ |
$ 4, 4, 1, 1 $ | $240$ | $4$ | $( 2, 8, 4,10)( 3, 9, 5, 7)$ |
$ 8, 1, 1 $ | $240$ | $8$ | $( 2, 8, 4, 5, 7, 3, 9,10)$ |
$ 4, 4, 2 $ | $240$ | $4$ | $( 1, 6)( 2, 8, 4,10)( 3, 9, 5, 7)$ |
$ 8, 2 $ | $240$ | $8$ | $( 1, 6)( 2, 8, 4, 5, 7, 3, 9,10)$ |
$ 3, 3, 2, 2 $ | $160$ | $6$ | $( 1, 7)( 2, 6)( 3, 9, 5)( 4,10, 8)$ |
$ 6, 2, 2 $ | $160$ | $6$ | $( 1, 7)( 2, 6)( 3, 9,10, 8, 4, 5)$ |
$ 4, 3, 3 $ | $160$ | $12$ | $( 1, 2, 6, 7)( 3, 9, 5)( 4,10, 8)$ |
$ 6, 4 $ | $160$ | $12$ | $( 1, 2, 6, 7)( 3, 9,10, 8, 4, 5)$ |
$ 5, 5 $ | $384$ | $5$ | $( 1, 7, 3, 9, 5)( 2, 8, 4,10, 6)$ |
$ 10 $ | $384$ | $10$ | $( 1, 7, 3, 9,10, 6, 2, 8, 4, 5)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $3840=2^{8} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 3840.ch | magma: IdentifyGroup(G);
|
Character table: not available. |
magma: CharacterTable(G);