Properties

Label 7.6.0.1
Base \(\Q_{7}\)
Degree \(6\)
e \(1\)
f \(6\)
c \(0\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $6$
Ramification exponent $e$: $1$
Residue field degree $f$: $6$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 7 }) }$: $6$
This field is Galois and abelian over $\Q_{7}.$
Visible slopes:None

Intermediate fields

$\Q_{7}(\sqrt{3})$, 7.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:7.6.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group: $C_6$ (as 6T1)
Inertia group: trivial
Wild inertia group: $C_1$
Unramified degree: $6$
Tame degree: $1$
Wild slopes: None
Galois mean slope: $0$
Galois splitting model:$x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1$