Normalized defining polynomial
\( x^{10} - x^{9} + 2x^{8} + 16x^{7} - 9x^{6} + 11x^{5} + 43x^{4} - 6x^{3} + 63x^{2} - 20x + 25 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-26439622160671\)
\(\medspace = -\,31^{9}\)
|
| |
| Root discriminant: | \(21.99\) |
| |
| Galois root discriminant: | $31^{9/10}\approx 21.990014941549536$ | ||
| Ramified primes: |
\(31\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-31}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{10}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{31}(1,·)$, $\chi_{31}(2,·)$, $\chi_{31}(4,·)$, $\chi_{31}(8,·)$, $\chi_{31}(15,·)$, $\chi_{31}(16,·)$, $\chi_{31}(23,·)$, $\chi_{31}(27,·)$, $\chi_{31}(29,·)$, $\chi_{31}(30,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-31}) \), 10.0.26439622160671.1$^{15}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5}a^{5}-\frac{1}{5}a$, $\frac{1}{5}a^{6}-\frac{1}{5}a^{2}$, $\frac{1}{5}a^{7}-\frac{1}{5}a^{3}$, $\frac{1}{5}a^{8}-\frac{1}{5}a^{4}$, $\frac{1}{8375}a^{9}+\frac{628}{8375}a^{8}-\frac{286}{8375}a^{7}-\frac{653}{8375}a^{6}-\frac{371}{8375}a^{5}-\frac{3873}{8375}a^{4}+\frac{2726}{8375}a^{3}+\frac{2798}{8375}a^{2}+\frac{251}{1675}a-\frac{49}{335}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $5$ |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ |
| |
| Narrow class group: | $C_{3}$, which has order $3$ |
| |
| Relative class number: | $3$ |
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{93}{8375}a^{9}-\frac{221}{8375}a^{8}+\frac{202}{8375}a^{7}+\frac{1246}{8375}a^{6}-\frac{2678}{8375}a^{5}-\frac{64}{8375}a^{4}+\frac{593}{8375}a^{3}-\frac{2761}{8375}a^{2}+\frac{228}{1675}a-\frac{202}{335}$, $\frac{133}{8375}a^{9}-\frac{226}{8375}a^{8}+\frac{487}{8375}a^{7}+\frac{1926}{8375}a^{6}-\frac{2443}{8375}a^{5}+\frac{4141}{8375}a^{4}+\frac{5783}{8375}a^{3}-\frac{1391}{8375}a^{2}+\frac{553}{1675}a+\frac{518}{335}$, $\frac{617}{8375}a^{9}-\frac{1124}{8375}a^{8}+\frac{1088}{8375}a^{7}+\frac{9149}{8375}a^{6}-\frac{14507}{8375}a^{5}+\frac{584}{8375}a^{4}+\frac{22017}{8375}a^{3}-\frac{25684}{8375}a^{2}+\frac{3112}{1675}a-\frac{2093}{335}$, $\frac{681}{8375}a^{9}-\frac{1132}{8375}a^{8}+\frac{1209}{8375}a^{7}+\frac{10907}{8375}a^{6}-\frac{14801}{8375}a^{5}+\frac{2287}{8375}a^{4}+\frac{35681}{8375}a^{3}-\frac{32537}{8375}a^{2}+\frac{4436}{1675}a-\frac{204}{335}$
|
| |
| Regulator: | \( 485.913224212 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 485.913224212 \cdot 3}{2\cdot\sqrt{26439622160671}}\cr\approx \mathstrut & 1.38810301402 \end{aligned}\]
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.5.0.1}{5} }^{2}$ | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.1.0.1}{1} }^{10}$ | ${\href{/padicField/7.5.0.1}{5} }^{2}$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.10.0.1}{10} }$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.5.0.1}{5} }^{2}$ | ${\href{/padicField/23.10.0.1}{10} }$ | ${\href{/padicField/29.10.0.1}{10} }$ | R | ${\href{/padicField/37.2.0.1}{2} }^{5}$ | ${\href{/padicField/41.5.0.1}{5} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }$ | ${\href{/padicField/47.5.0.1}{5} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(31\)
| 31.1.10.9a1.1 | $x^{10} + 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $$[\ ]_{10}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *10 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *10 | 1.31.2t1.a.a | $1$ | $ 31 $ | \(\Q(\sqrt{-31}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| *10 | 1.31.5t1.a.a | $1$ | $ 31 $ | 5.5.923521.1 | $C_5$ (as 5T1) | $0$ | $1$ |
| *10 | 1.31.10t1.a.a | $1$ | $ 31 $ | 10.0.26439622160671.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
| *10 | 1.31.5t1.a.b | $1$ | $ 31 $ | 5.5.923521.1 | $C_5$ (as 5T1) | $0$ | $1$ |
| *10 | 1.31.10t1.a.b | $1$ | $ 31 $ | 10.0.26439622160671.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
| *10 | 1.31.5t1.a.c | $1$ | $ 31 $ | 5.5.923521.1 | $C_5$ (as 5T1) | $0$ | $1$ |
| *10 | 1.31.10t1.a.c | $1$ | $ 31 $ | 10.0.26439622160671.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
| *10 | 1.31.5t1.a.d | $1$ | $ 31 $ | 5.5.923521.1 | $C_5$ (as 5T1) | $0$ | $1$ |
| *10 | 1.31.10t1.a.d | $1$ | $ 31 $ | 10.0.26439622160671.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |