Normalized defining polynomial
\( x^{10} - 10x^{8} + 25x^{6} - 63x^{5} + 315x^{3} + 1296 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[0, 5]$ |
| |
Discriminant: |
\(-194619506835937500\)
\(\medspace = -\,2^{2}\cdot 3^{13}\cdot 5^{15}\)
|
| |
Root discriminant: | \(53.57\) |
| |
Galois root discriminant: | $2^{2/3}3^{13/6}5^{163/100}\approx 236.46697157101258$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-15}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-15}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{5}+\frac{4}{9}a^{3}$, $\frac{1}{9}a^{6}+\frac{1}{9}a^{4}-\frac{1}{3}a^{2}$, $\frac{1}{18}a^{7}-\frac{1}{18}a^{6}-\frac{1}{18}a^{5}-\frac{1}{18}a^{4}-\frac{1}{9}a^{3}+\frac{1}{6}a^{2}-\frac{1}{2}a$, $\frac{1}{54}a^{8}+\frac{1}{27}a^{6}+\frac{1}{54}a^{4}+\frac{1}{6}a^{3}-\frac{1}{3}a^{2}+\frac{1}{6}a$, $\frac{1}{2484}a^{9}+\frac{4}{621}a^{8}+\frac{31}{1242}a^{7}-\frac{28}{621}a^{6}+\frac{73}{2484}a^{5}+\frac{277}{2484}a^{4}-\frac{14}{207}a^{3}+\frac{43}{276}a^{2}+\frac{34}{69}a+\frac{5}{23}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{103}{2484}a^{9}+\frac{44}{621}a^{8}-\frac{163}{621}a^{7}-\frac{409}{1242}a^{6}+\frac{1861}{2484}a^{5}-\frac{2335}{2484}a^{4}-\frac{637}{207}a^{3}+\frac{265}{92}a^{2}-\frac{287}{138}a-\frac{405}{23}$, $\frac{37}{2484}a^{9}+\frac{56}{621}a^{8}+\frac{181}{1242}a^{7}-\frac{116}{621}a^{6}-\frac{1991}{2484}a^{5}-\frac{2263}{2484}a^{4}-\frac{403}{207}a^{3}-\frac{1813}{276}a^{2}-\frac{697}{69}a-\frac{137}{23}$, $\frac{37}{621}a^{9}-\frac{443}{621}a^{8}-\frac{1294}{621}a^{7}+\frac{4067}{621}a^{6}+\frac{12292}{621}a^{5}-\frac{4724}{621}a^{4}-\frac{4510}{207}a^{3}+\frac{32}{23}a^{2}-\frac{13115}{69}a-\frac{8115}{23}$, $\frac{3}{4}a^{9}-\frac{5}{2}a^{8}-\frac{14}{9}a^{7}+\frac{83}{6}a^{6}-\frac{895}{36}a^{5}-\frac{107}{12}a^{4}+\frac{2195}{18}a^{3}-\frac{673}{4}a^{2}+174a+69$
|
| |
Regulator: | \( 55847.9737358 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 55847.9737358 \cdot 2}{2\cdot\sqrt{194619506835937500}}\cr\approx \mathstrut & 1.23969137221 \end{aligned}\] (assuming GRH)
Galois group
$\SOPlus(4,4)$ (as 10T40):
A non-solvable group of order 7200 |
The 20 conjugacy class representatives for $A_5 \wr C_2$ |
Character table for $A_5 \wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-15}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 20 sibling: | data not computed |
Degree 24 sibling: | data not computed |
Degree 25 sibling: | data not computed |
Degree 30 sibling: | data not computed |
Degree 36 sibling: | data not computed |
Degree 40 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.10.0.1}{10} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{5}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
2.5.1.0a1.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
3.1.6.11a2.4 | $x^{6} + 9 x + 6$ | $6$ | $1$ | $11$ | $S_3^2$ | $$[2, \frac{5}{2}]_{2}^{2}$$ | |
\(5\)
| 5.1.10.15a2.9 | $x^{10} + 10 x^{7} + 5 x^{6} + 10$ | $10$ | $1$ | $15$ | $C_5^2 : C_4$ | $$[\frac{5}{4}, \frac{7}{4}]_{4}$$ |