Properties

Label 10.0.194619506835937500.5
Degree $10$
Signature $[0, 5]$
Discriminant $-1.946\times 10^{17}$
Root discriminant \(53.57\)
Ramified primes $2,3,5$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $A_5 \wr C_2$ (as 10T40)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^10 - 10*x^8 + 25*x^6 - 63*x^5 + 315*x^3 + 1296)
 
Copy content gp:K = bnfinit(y^10 - 10*y^8 + 25*y^6 - 63*y^5 + 315*y^3 + 1296, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 10*x^8 + 25*x^6 - 63*x^5 + 315*x^3 + 1296);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^10 - 10*x^8 + 25*x^6 - 63*x^5 + 315*x^3 + 1296)
 

\( x^{10} - 10x^{8} + 25x^{6} - 63x^{5} + 315x^{3} + 1296 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $10$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 5]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-194619506835937500\) \(\medspace = -\,2^{2}\cdot 3^{13}\cdot 5^{15}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(53.57\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{13/6}5^{163/100}\approx 236.46697157101258$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-15}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-15}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{5}+\frac{4}{9}a^{3}$, $\frac{1}{9}a^{6}+\frac{1}{9}a^{4}-\frac{1}{3}a^{2}$, $\frac{1}{18}a^{7}-\frac{1}{18}a^{6}-\frac{1}{18}a^{5}-\frac{1}{18}a^{4}-\frac{1}{9}a^{3}+\frac{1}{6}a^{2}-\frac{1}{2}a$, $\frac{1}{54}a^{8}+\frac{1}{27}a^{6}+\frac{1}{54}a^{4}+\frac{1}{6}a^{3}-\frac{1}{3}a^{2}+\frac{1}{6}a$, $\frac{1}{2484}a^{9}+\frac{4}{621}a^{8}+\frac{31}{1242}a^{7}-\frac{28}{621}a^{6}+\frac{73}{2484}a^{5}+\frac{277}{2484}a^{4}-\frac{14}{207}a^{3}+\frac{43}{276}a^{2}+\frac{34}{69}a+\frac{5}{23}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $4$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{103}{2484}a^{9}+\frac{44}{621}a^{8}-\frac{163}{621}a^{7}-\frac{409}{1242}a^{6}+\frac{1861}{2484}a^{5}-\frac{2335}{2484}a^{4}-\frac{637}{207}a^{3}+\frac{265}{92}a^{2}-\frac{287}{138}a-\frac{405}{23}$, $\frac{37}{2484}a^{9}+\frac{56}{621}a^{8}+\frac{181}{1242}a^{7}-\frac{116}{621}a^{6}-\frac{1991}{2484}a^{5}-\frac{2263}{2484}a^{4}-\frac{403}{207}a^{3}-\frac{1813}{276}a^{2}-\frac{697}{69}a-\frac{137}{23}$, $\frac{37}{621}a^{9}-\frac{443}{621}a^{8}-\frac{1294}{621}a^{7}+\frac{4067}{621}a^{6}+\frac{12292}{621}a^{5}-\frac{4724}{621}a^{4}-\frac{4510}{207}a^{3}+\frac{32}{23}a^{2}-\frac{13115}{69}a-\frac{8115}{23}$, $\frac{3}{4}a^{9}-\frac{5}{2}a^{8}-\frac{14}{9}a^{7}+\frac{83}{6}a^{6}-\frac{895}{36}a^{5}-\frac{107}{12}a^{4}+\frac{2195}{18}a^{3}-\frac{673}{4}a^{2}+174a+69$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 55847.9737358 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 55847.9737358 \cdot 2}{2\cdot\sqrt{194619506835937500}}\cr\approx \mathstrut & 1.23969137221 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^10 - 10*x^8 + 25*x^6 - 63*x^5 + 315*x^3 + 1296) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^10 - 10*x^8 + 25*x^6 - 63*x^5 + 315*x^3 + 1296, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 10*x^8 + 25*x^6 - 63*x^5 + 315*x^3 + 1296); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 10*x^8 + 25*x^6 - 63*x^5 + 315*x^3 + 1296); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\SOPlus(4,4)$ (as 10T40):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 7200
The 20 conjugacy class representatives for $A_5 \wr C_2$
Character table for $A_5 \wr C_2$

Intermediate fields

\(\Q(\sqrt{-15}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 20 sibling: data not computed
Degree 24 sibling: data not computed
Degree 25 sibling: data not computed
Degree 30 sibling: data not computed
Degree 36 sibling: data not computed
Degree 40 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.10.0.1}{10} }$ ${\href{/padicField/13.10.0.1}{10} }$ ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.5.0.1}{5} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{5}$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ ${\href{/padicField/43.10.0.1}{10} }$ ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.1.0a1.1$x^{2} + x + 1$$1$$2$$0$$C_2$$$[\ ]^{2}$$
2.1.3.2a1.1$x^{3} + 2$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
2.5.1.0a1.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$$[\ ]^{5}$$
\(3\) Copy content Toggle raw display 3.2.2.2a1.2$x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
3.1.6.11a2.4$x^{6} + 9 x + 6$$6$$1$$11$$S_3^2$$$[2, \frac{5}{2}]_{2}^{2}$$
\(5\) Copy content Toggle raw display 5.1.10.15a2.9$x^{10} + 10 x^{7} + 5 x^{6} + 10$$10$$1$$15$$C_5^2 : C_4$$$[\frac{5}{4}, \frac{7}{4}]_{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)