Show commands: Magma
Group invariants
Abstract group: | $A_5 \wr C_2$ |
| |
Order: | $7200=2^{5} \cdot 3^{2} \cdot 5^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $10$ |
| |
Transitive number $t$: | $40$ |
| |
CHM label: | $[A(5)^{2}]2$ | ||
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(2,4,6,8,10)$, $(1,6)(2,7)(3,8)(4,9)(5,10)$, $(2,4,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
12T269, 20T363, 24T9631, 25T88, 30T652, 36T7075, 40T5410Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{6}$ | $30$ | $2$ | $2$ | $(2,8)(4,6)$ |
2B | $2^{5}$ | $60$ | $2$ | $5$ | $( 1, 8)( 2, 5)( 3, 6)( 4, 9)( 7,10)$ |
2C | $2^{4},1^{2}$ | $225$ | $2$ | $4$ | $( 1, 9)( 2,10)( 3, 5)( 6, 8)$ |
3A | $3,1^{7}$ | $40$ | $3$ | $2$ | $(3,9,7)$ |
3B | $3^{2},1^{4}$ | $400$ | $3$ | $4$ | $( 1, 9, 7)( 2, 4,10)$ |
4A | $4^{2},2$ | $900$ | $4$ | $7$ | $( 1, 2, 9,10)( 3, 6, 5, 8)( 4, 7)$ |
5A1 | $5,1^{5}$ | $24$ | $5$ | $4$ | $( 2, 4, 6,10, 8)$ |
5A2 | $5,1^{5}$ | $24$ | $5$ | $4$ | $( 2, 6, 8, 4,10)$ |
5B1 | $5^{2}$ | $144$ | $5$ | $8$ | $( 1, 7, 3, 9, 5)( 2, 8,10, 6, 4)$ |
5B2 | $5^{2}$ | $144$ | $5$ | $8$ | $( 1, 3, 5, 7, 9)( 2,10, 4, 8, 6)$ |
5C | $5^{2}$ | $288$ | $5$ | $8$ | $( 1, 3, 5, 7, 9)( 2, 6, 8,10, 4)$ |
6A | $3,2^{2},1^{3}$ | $600$ | $6$ | $4$ | $( 1, 7, 9)( 4,10)( 6, 8)$ |
6B | $6,2^{2}$ | $1200$ | $6$ | $7$ | $( 1, 4, 9,10, 7, 2)( 3, 8)( 5, 6)$ |
10A1 | $5,2^{2},1$ | $360$ | $10$ | $6$ | $(1,7,3,5,9)(2,8)(4,6)$ |
10A3 | $5,2^{2},1$ | $360$ | $10$ | $6$ | $(1,5,7,9,3)(2,8)(4,6)$ |
10B1 | $10$ | $720$ | $10$ | $9$ | $( 1, 4, 7, 2, 3, 8, 9,10, 5, 6)$ |
10B3 | $10$ | $720$ | $10$ | $9$ | $( 1, 2, 9, 6, 7, 8, 5, 4, 3,10)$ |
15A1 | $5,3,1^{2}$ | $480$ | $15$ | $6$ | $( 2, 6, 8, 4,10)( 3, 7, 9)$ |
15A2 | $5,3,1^{2}$ | $480$ | $15$ | $6$ | $( 2, 8,10, 6, 4)( 3, 9, 7)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 2B | 2C | 3A | 3B | 4A | 5A1 | 5A2 | 5B1 | 5B2 | 5C | 6A | 6B | 10A1 | 10A3 | 10B1 | 10B3 | 15A1 | 15A2 | ||
Size | 1 | 30 | 60 | 225 | 40 | 400 | 900 | 24 | 24 | 144 | 144 | 288 | 600 | 1200 | 360 | 360 | 720 | 720 | 480 | 480 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2C | 5A2 | 5A1 | 5B2 | 5B1 | 5C | 3A | 3B | 5A1 | 5A2 | 5B1 | 5B2 | 15A2 | 15A1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 5A2 | 5A1 | 5B2 | 5B1 | 5C | 2A | 2B | 10A3 | 10A1 | 10B3 | 10B1 | 5A1 | 5A2 | |
5 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 1A | 1A | 1A | 1A | 1A | 6A | 6B | 2A | 2A | 2B | 2B | 3A | 3A | |
Type | |||||||||||||||||||||
7200.a.1a | R | ||||||||||||||||||||
7200.a.1b | R | ||||||||||||||||||||
7200.a.6a1 | R | ||||||||||||||||||||
7200.a.6a2 | R | ||||||||||||||||||||
7200.a.8a | R | ||||||||||||||||||||
7200.a.9a1 | R | ||||||||||||||||||||
7200.a.9a2 | R | ||||||||||||||||||||
7200.a.9b1 | R | ||||||||||||||||||||
7200.a.9b2 | R | ||||||||||||||||||||
7200.a.10a | R | ||||||||||||||||||||
7200.a.16a | R | ||||||||||||||||||||
7200.a.16b | R | ||||||||||||||||||||
7200.a.18a | R | ||||||||||||||||||||
7200.a.24a1 | R | ||||||||||||||||||||
7200.a.24a2 | R | ||||||||||||||||||||
7200.a.25a | R | ||||||||||||||||||||
7200.a.25b | R | ||||||||||||||||||||
7200.a.30a1 | R | ||||||||||||||||||||
7200.a.30a2 | R | ||||||||||||||||||||
7200.a.40a | R |
Regular extensions
$f_{ 1 } =$ |
$x^{10} + 150 x^{8} + t x^{7} + 5625 x^{6} + 78 t x^{5} + x^{4} + 225 t x^{3} + 6 x^{2} + 9$
|