Normalized defining polynomial
\( x^{10} + 2x^{8} - 2x^{6} + 114x^{4} + 480x^{2} + 150 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-13060694016000000\)
\(\medspace = -\,2^{19}\cdot 3^{13}\cdot 5^{6}\)
|
| |
| Root discriminant: | \(40.89\) |
| |
| Galois root discriminant: | $2^{53/20}3^{11/6}5^{5/6}\approx 179.8567711074602$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-6}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{28375}a^{8}-\frac{13833}{28375}a^{6}-\frac{9822}{28375}a^{4}-\frac{391}{28375}a^{2}-\frac{1932}{5675}$, $\frac{1}{141875}a^{9}+\frac{42917}{141875}a^{7}-\frac{38197}{141875}a^{5}-\frac{391}{141875}a^{3}-\frac{7607}{28375}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2}{28375}a^{8}+\frac{709}{28375}a^{6}+\frac{8731}{28375}a^{4}+\frac{27593}{28375}a^{2}+\frac{1811}{5675}$, $\frac{1286}{28375}a^{9}-\frac{523}{28375}a^{8}+\frac{1887}{28375}a^{7}-\frac{966}{28375}a^{6}-\frac{4217}{28375}a^{5}+\frac{1031}{28375}a^{4}+\frac{149799}{28375}a^{3}-\frac{50882}{28375}a^{2}+\frac{114598}{5675}a-\frac{39439}{5675}$, $\frac{1286}{28375}a^{9}+\frac{523}{28375}a^{8}+\frac{1887}{28375}a^{7}+\frac{966}{28375}a^{6}-\frac{4217}{28375}a^{5}-\frac{1031}{28375}a^{4}+\frac{149799}{28375}a^{3}+\frac{50882}{28375}a^{2}+\frac{114598}{5675}a+\frac{39439}{5675}$, $\frac{683763}{141875}a^{9}-\frac{44236}{5675}a^{8}+\frac{2185421}{141875}a^{7}-\frac{12987}{5675}a^{6}-\frac{10992811}{141875}a^{5}+\frac{1750217}{5675}a^{4}-\frac{44465708}{141875}a^{3}+\frac{5651176}{5675}a^{2}-\frac{2574391}{28375}a+\frac{337817}{1135}$
|
| |
| Regulator: | \( 22246.9742065 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 22246.9742065 \cdot 2}{2\cdot\sqrt{13060694016000000}}\cr\approx \mathstrut & 1.90628208119 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr S_5$ (as 10T39):
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for $C_2 \wr S_5$ |
| Character table for $C_2 \wr S_5$ |
Intermediate fields
| 5.1.1458000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.5.0.1}{5} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.10.19a1.32 | $x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 10$ | $10$ | $1$ | $19$ | $((C_2^4 : C_5):C_4)\times C_2$ | $$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$$ |
|
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 3.1.6.11a2.2 | $x^{6} + 9 x^{2} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[\frac{5}{2}]_{2}^{2}$$ | |
|
\(5\)
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |