Properties

Label 990.2.z.a.161.7
Level $990$
Weight $2$
Character 990.161
Analytic conductor $7.905$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(161,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.z (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.7
Character \(\chi\) \(=\) 990.161
Dual form 990.2.z.a.701.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{4} +(0.587785 + 0.809017i) q^{5} +(-0.756962 + 0.245952i) q^{7} +(0.309017 - 0.951057i) q^{8} -1.00000i q^{10} +(-2.85682 - 1.68481i) q^{11} +(-1.56843 + 2.15876i) q^{13} +(0.756962 + 0.245952i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(4.29120 - 3.11774i) q^{17} +(7.97920 + 2.59260i) q^{19} +(-0.587785 + 0.809017i) q^{20} +(1.32091 + 3.04224i) q^{22} -1.65090i q^{23} +(-0.309017 + 0.951057i) q^{25} +(2.53777 - 0.824571i) q^{26} +(-0.467828 - 0.643910i) q^{28} +(0.0872476 + 0.268521i) q^{29} +(5.39925 + 3.92279i) q^{31} +1.00000 q^{32} -5.30422 q^{34} +(-0.643910 - 0.467828i) q^{35} +(2.08813 + 6.42660i) q^{37} +(-4.93142 - 6.78751i) q^{38} +(0.951057 - 0.309017i) q^{40} +(-1.88718 + 5.80815i) q^{41} +1.23422i q^{43} +(0.719545 - 3.23763i) q^{44} +(-0.970374 + 1.33560i) q^{46} +(2.13242 + 0.692866i) q^{47} +(-5.15062 + 3.74214i) q^{49} +(0.809017 - 0.587785i) q^{50} +(-2.53777 - 0.824571i) q^{52} +(-4.30050 + 5.91913i) q^{53} +(-0.316156 - 3.30152i) q^{55} +0.795917i q^{56} +(0.0872476 - 0.268521i) q^{58} +(9.85184 - 3.20106i) q^{59} +(8.32796 + 11.4625i) q^{61} +(-2.06233 - 6.34720i) q^{62} +(-0.809017 - 0.587785i) q^{64} -2.66837 q^{65} -9.51970 q^{67} +(4.29120 + 3.11774i) q^{68} +(0.245952 + 0.756962i) q^{70} +(5.83827 + 8.03570i) q^{71} +(11.7675 - 3.82350i) q^{73} +(2.08813 - 6.42660i) q^{74} +8.38982i q^{76} +(2.57688 + 0.572697i) q^{77} +(5.46381 - 7.52029i) q^{79} +(-0.951057 - 0.309017i) q^{80} +(4.94071 - 3.58963i) q^{82} +(2.80102 - 2.03506i) q^{83} +(5.04461 + 1.63909i) q^{85} +(0.725455 - 0.998503i) q^{86} +(-2.48516 + 2.19636i) q^{88} +0.594975i q^{89} +(0.656290 - 2.01985i) q^{91} +(1.57010 - 0.510156i) q^{92} +(-1.31791 - 1.81395i) q^{94} +(2.59260 + 7.97920i) q^{95} +(-2.68136 - 1.94812i) q^{97} +6.36652 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{2} - 8 q^{4} - 8 q^{8} - 8 q^{16} + 4 q^{17} + 8 q^{25} - 8 q^{29} + 32 q^{31} + 32 q^{32} + 24 q^{34} + 16 q^{37} + 32 q^{41} - 20 q^{46} - 20 q^{47} + 16 q^{49} + 8 q^{50} - 40 q^{53} + 8 q^{55}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) 0 0
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.587785 + 0.809017i 0.262866 + 0.361803i
\(6\) 0 0
\(7\) −0.756962 + 0.245952i −0.286105 + 0.0929610i −0.448554 0.893756i \(-0.648061\pi\)
0.162449 + 0.986717i \(0.448061\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −2.85682 1.68481i −0.861363 0.507990i
\(12\) 0 0
\(13\) −1.56843 + 2.15876i −0.435003 + 0.598731i −0.969093 0.246697i \(-0.920655\pi\)
0.534089 + 0.845428i \(0.320655\pi\)
\(14\) 0.756962 + 0.245952i 0.202307 + 0.0657334i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 4.29120 3.11774i 1.04077 0.756163i 0.0703337 0.997524i \(-0.477594\pi\)
0.970436 + 0.241360i \(0.0775936\pi\)
\(18\) 0 0
\(19\) 7.97920 + 2.59260i 1.83055 + 0.594783i 0.999240 + 0.0389789i \(0.0124105\pi\)
0.831313 + 0.555804i \(0.187589\pi\)
\(20\) −0.587785 + 0.809017i −0.131433 + 0.180902i
\(21\) 0 0
\(22\) 1.32091 + 3.04224i 0.281619 + 0.648607i
\(23\) 1.65090i 0.344236i −0.985076 0.172118i \(-0.944939\pi\)
0.985076 0.172118i \(-0.0550611\pi\)
\(24\) 0 0
\(25\) −0.309017 + 0.951057i −0.0618034 + 0.190211i
\(26\) 2.53777 0.824571i 0.497697 0.161712i
\(27\) 0 0
\(28\) −0.467828 0.643910i −0.0884112 0.121688i
\(29\) 0.0872476 + 0.268521i 0.0162015 + 0.0498630i 0.958830 0.283979i \(-0.0916547\pi\)
−0.942629 + 0.333842i \(0.891655\pi\)
\(30\) 0 0
\(31\) 5.39925 + 3.92279i 0.969735 + 0.704554i 0.955391 0.295344i \(-0.0954341\pi\)
0.0143437 + 0.999897i \(0.495434\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −5.30422 −0.909666
\(35\) −0.643910 0.467828i −0.108841 0.0790774i
\(36\) 0 0
\(37\) 2.08813 + 6.42660i 0.343286 + 1.05653i 0.962495 + 0.271300i \(0.0874535\pi\)
−0.619209 + 0.785226i \(0.712547\pi\)
\(38\) −4.93142 6.78751i −0.799981 1.10108i
\(39\) 0 0
\(40\) 0.951057 0.309017i 0.150375 0.0488599i
\(41\) −1.88718 + 5.80815i −0.294728 + 0.907080i 0.688584 + 0.725156i \(0.258233\pi\)
−0.983313 + 0.181924i \(0.941767\pi\)
\(42\) 0 0
\(43\) 1.23422i 0.188216i 0.995562 + 0.0941082i \(0.0300000\pi\)
−0.995562 + 0.0941082i \(0.970000\pi\)
\(44\) 0.719545 3.23763i 0.108475 0.488091i
\(45\) 0 0
\(46\) −0.970374 + 1.33560i −0.143074 + 0.196924i
\(47\) 2.13242 + 0.692866i 0.311046 + 0.101065i 0.460380 0.887722i \(-0.347713\pi\)
−0.149335 + 0.988787i \(0.547713\pi\)
\(48\) 0 0
\(49\) −5.15062 + 3.74214i −0.735803 + 0.534592i
\(50\) 0.809017 0.587785i 0.114412 0.0831254i
\(51\) 0 0
\(52\) −2.53777 0.824571i −0.351925 0.114347i
\(53\) −4.30050 + 5.91913i −0.590719 + 0.813055i −0.994819 0.101660i \(-0.967585\pi\)
0.404100 + 0.914715i \(0.367585\pi\)
\(54\) 0 0
\(55\) −0.316156 3.30152i −0.0426304 0.445177i
\(56\) 0.795917i 0.106359i
\(57\) 0 0
\(58\) 0.0872476 0.268521i 0.0114562 0.0352585i
\(59\) 9.85184 3.20106i 1.28260 0.416742i 0.413105 0.910683i \(-0.364444\pi\)
0.869495 + 0.493942i \(0.164444\pi\)
\(60\) 0 0
\(61\) 8.32796 + 11.4625i 1.06629 + 1.46762i 0.873780 + 0.486321i \(0.161662\pi\)
0.192506 + 0.981296i \(0.438338\pi\)
\(62\) −2.06233 6.34720i −0.261916 0.806096i
\(63\) 0 0
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) −2.66837 −0.330970
\(66\) 0 0
\(67\) −9.51970 −1.16302 −0.581509 0.813540i \(-0.697537\pi\)
−0.581509 + 0.813540i \(0.697537\pi\)
\(68\) 4.29120 + 3.11774i 0.520385 + 0.378082i
\(69\) 0 0
\(70\) 0.245952 + 0.756962i 0.0293969 + 0.0904742i
\(71\) 5.83827 + 8.03570i 0.692876 + 0.953662i 0.999998 + 0.00199153i \(0.000633924\pi\)
−0.307122 + 0.951670i \(0.599366\pi\)
\(72\) 0 0
\(73\) 11.7675 3.82350i 1.37728 0.447507i 0.475509 0.879711i \(-0.342264\pi\)
0.901776 + 0.432204i \(0.142264\pi\)
\(74\) 2.08813 6.42660i 0.242740 0.747077i
\(75\) 0 0
\(76\) 8.38982i 0.962379i
\(77\) 2.57688 + 0.572697i 0.293663 + 0.0652649i
\(78\) 0 0
\(79\) 5.46381 7.52029i 0.614726 0.846098i −0.382229 0.924067i \(-0.624844\pi\)
0.996956 + 0.0779693i \(0.0248436\pi\)
\(80\) −0.951057 0.309017i −0.106331 0.0345492i
\(81\) 0 0
\(82\) 4.94071 3.58963i 0.545610 0.396409i
\(83\) 2.80102 2.03506i 0.307452 0.223377i −0.423350 0.905966i \(-0.639146\pi\)
0.730803 + 0.682589i \(0.239146\pi\)
\(84\) 0 0
\(85\) 5.04461 + 1.63909i 0.547165 + 0.177785i
\(86\) 0.725455 0.998503i 0.0782278 0.107671i
\(87\) 0 0
\(88\) −2.48516 + 2.19636i −0.264918 + 0.234133i
\(89\) 0.594975i 0.0630672i 0.999503 + 0.0315336i \(0.0100391\pi\)
−0.999503 + 0.0315336i \(0.989961\pi\)
\(90\) 0 0
\(91\) 0.656290 2.01985i 0.0687979 0.211738i
\(92\) 1.57010 0.510156i 0.163694 0.0531874i
\(93\) 0 0
\(94\) −1.31791 1.81395i −0.135932 0.187094i
\(95\) 2.59260 + 7.97920i 0.265995 + 0.818648i
\(96\) 0 0
\(97\) −2.68136 1.94812i −0.272251 0.197802i 0.443280 0.896383i \(-0.353815\pi\)
−0.715530 + 0.698582i \(0.753815\pi\)
\(98\) 6.36652 0.643115
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 11.0262 + 8.01103i 1.09715 + 0.797127i 0.980593 0.196057i \(-0.0628137\pi\)
0.116559 + 0.993184i \(0.462814\pi\)
\(102\) 0 0
\(103\) −6.10046 18.7753i −0.601096 1.84998i −0.521677 0.853143i \(-0.674693\pi\)
−0.0794194 0.996841i \(-0.525307\pi\)
\(104\) 1.56843 + 2.15876i 0.153797 + 0.211683i
\(105\) 0 0
\(106\) 6.95835 2.26091i 0.675855 0.219599i
\(107\) 1.71040 5.26408i 0.165351 0.508898i −0.833711 0.552201i \(-0.813788\pi\)
0.999062 + 0.0433030i \(0.0137881\pi\)
\(108\) 0 0
\(109\) 10.6696i 1.02196i −0.859592 0.510981i \(-0.829282\pi\)
0.859592 0.510981i \(-0.170718\pi\)
\(110\) −1.68481 + 2.85682i −0.160640 + 0.272387i
\(111\) 0 0
\(112\) 0.467828 0.643910i 0.0442056 0.0608438i
\(113\) −16.0761 5.22345i −1.51231 0.491381i −0.568733 0.822522i \(-0.692566\pi\)
−0.943581 + 0.331142i \(0.892566\pi\)
\(114\) 0 0
\(115\) 1.33560 0.970374i 0.124546 0.0904878i
\(116\) −0.228417 + 0.165955i −0.0212080 + 0.0154085i
\(117\) 0 0
\(118\) −9.85184 3.20106i −0.906935 0.294681i
\(119\) −2.48146 + 3.41544i −0.227475 + 0.313093i
\(120\) 0 0
\(121\) 5.32283 + 9.62640i 0.483893 + 0.875127i
\(122\) 14.1684i 1.28274i
\(123\) 0 0
\(124\) −2.06233 + 6.34720i −0.185203 + 0.569996i
\(125\) −0.951057 + 0.309017i −0.0850651 + 0.0276393i
\(126\) 0 0
\(127\) 0.650566 + 0.895428i 0.0577284 + 0.0794564i 0.836905 0.547348i \(-0.184363\pi\)
−0.779177 + 0.626804i \(0.784363\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 0 0
\(130\) 2.15876 + 1.56843i 0.189335 + 0.137560i
\(131\) −1.21327 −0.106004 −0.0530019 0.998594i \(-0.516879\pi\)
−0.0530019 + 0.998594i \(0.516879\pi\)
\(132\) 0 0
\(133\) −6.67760 −0.579021
\(134\) 7.70160 + 5.59554i 0.665317 + 0.483381i
\(135\) 0 0
\(136\) −1.63909 5.04461i −0.140551 0.432572i
\(137\) −5.47420 7.53459i −0.467693 0.643724i 0.508389 0.861127i \(-0.330241\pi\)
−0.976082 + 0.217404i \(0.930241\pi\)
\(138\) 0 0
\(139\) 2.63783 0.857082i 0.223738 0.0726968i −0.195003 0.980803i \(-0.562472\pi\)
0.418741 + 0.908106i \(0.362472\pi\)
\(140\) 0.245952 0.756962i 0.0207867 0.0639749i
\(141\) 0 0
\(142\) 9.93267i 0.833531i
\(143\) 8.11781 3.52467i 0.678845 0.294748i
\(144\) 0 0
\(145\) −0.165955 + 0.228417i −0.0137818 + 0.0189690i
\(146\) −11.7675 3.82350i −0.973887 0.316435i
\(147\) 0 0
\(148\) −5.46679 + 3.97186i −0.449367 + 0.326485i
\(149\) −4.68800 + 3.40603i −0.384056 + 0.279033i −0.763015 0.646380i \(-0.776282\pi\)
0.378960 + 0.925413i \(0.376282\pi\)
\(150\) 0 0
\(151\) 3.89611 + 1.26592i 0.317061 + 0.103019i 0.463224 0.886241i \(-0.346692\pi\)
−0.146163 + 0.989261i \(0.546692\pi\)
\(152\) 4.93142 6.78751i 0.399991 0.550540i
\(153\) 0 0
\(154\) −1.74812 1.97798i −0.140868 0.159390i
\(155\) 6.67385i 0.536056i
\(156\) 0 0
\(157\) 0.0964332 0.296791i 0.00769621 0.0236865i −0.947135 0.320836i \(-0.896036\pi\)
0.954831 + 0.297150i \(0.0960361\pi\)
\(158\) −8.84063 + 2.87249i −0.703322 + 0.228523i
\(159\) 0 0
\(160\) 0.587785 + 0.809017i 0.0464685 + 0.0639584i
\(161\) 0.406041 + 1.24967i 0.0320005 + 0.0984875i
\(162\) 0 0
\(163\) 6.80226 + 4.94213i 0.532794 + 0.387097i 0.821402 0.570350i \(-0.193192\pi\)
−0.288608 + 0.957447i \(0.593192\pi\)
\(164\) −6.10705 −0.476880
\(165\) 0 0
\(166\) −3.46225 −0.268723
\(167\) 20.0318 + 14.5539i 1.55010 + 1.12622i 0.943577 + 0.331154i \(0.107438\pi\)
0.606527 + 0.795063i \(0.292562\pi\)
\(168\) 0 0
\(169\) 1.81696 + 5.59203i 0.139766 + 0.430156i
\(170\) −3.11774 4.29120i −0.239120 0.329120i
\(171\) 0 0
\(172\) −1.17381 + 0.381394i −0.0895022 + 0.0290810i
\(173\) −4.46070 + 13.7286i −0.339141 + 1.04377i 0.625505 + 0.780220i \(0.284893\pi\)
−0.964646 + 0.263549i \(0.915107\pi\)
\(174\) 0 0
\(175\) 0.795917i 0.0601656i
\(176\) 3.30152 0.316156i 0.248862 0.0238311i
\(177\) 0 0
\(178\) 0.349717 0.481345i 0.0262124 0.0360783i
\(179\) −1.95739 0.635994i −0.146302 0.0475364i 0.234951 0.972007i \(-0.424507\pi\)
−0.381253 + 0.924471i \(0.624507\pi\)
\(180\) 0 0
\(181\) 9.49391 6.89773i 0.705677 0.512704i −0.176099 0.984372i \(-0.556348\pi\)
0.881776 + 0.471668i \(0.156348\pi\)
\(182\) −1.71819 + 1.24834i −0.127361 + 0.0925329i
\(183\) 0 0
\(184\) −1.57010 0.510156i −0.115749 0.0376092i
\(185\) −3.97186 + 5.46679i −0.292017 + 0.401926i
\(186\) 0 0
\(187\) −17.5120 + 1.67696i −1.28060 + 0.122631i
\(188\) 2.24216i 0.163526i
\(189\) 0 0
\(190\) 2.59260 7.97920i 0.188087 0.578872i
\(191\) −17.3703 + 5.64395i −1.25687 + 0.408382i −0.860378 0.509657i \(-0.829772\pi\)
−0.396492 + 0.918038i \(0.629772\pi\)
\(192\) 0 0
\(193\) −7.52512 10.3574i −0.541670 0.745545i 0.447183 0.894443i \(-0.352427\pi\)
−0.988853 + 0.148898i \(0.952427\pi\)
\(194\) 1.02419 + 3.15212i 0.0735324 + 0.226309i
\(195\) 0 0
\(196\) −5.15062 3.74214i −0.367901 0.267296i
\(197\) −8.42064 −0.599946 −0.299973 0.953948i \(-0.596978\pi\)
−0.299973 + 0.953948i \(0.596978\pi\)
\(198\) 0 0
\(199\) −17.9161 −1.27004 −0.635019 0.772496i \(-0.719008\pi\)
−0.635019 + 0.772496i \(0.719008\pi\)
\(200\) 0.809017 + 0.587785i 0.0572061 + 0.0415627i
\(201\) 0 0
\(202\) −4.21165 12.9621i −0.296330 0.912011i
\(203\) −0.132086 0.181801i −0.00927064 0.0127599i
\(204\) 0 0
\(205\) −5.80815 + 1.88718i −0.405659 + 0.131807i
\(206\) −6.10046 + 18.7753i −0.425039 + 1.30814i
\(207\) 0 0
\(208\) 2.66837i 0.185018i
\(209\) −18.4271 20.8500i −1.27463 1.44223i
\(210\) 0 0
\(211\) 9.82460 13.5224i 0.676353 0.930920i −0.323530 0.946218i \(-0.604870\pi\)
0.999883 + 0.0152979i \(0.00486965\pi\)
\(212\) −6.95835 2.26091i −0.477902 0.155280i
\(213\) 0 0
\(214\) −4.47790 + 3.25338i −0.306103 + 0.222397i
\(215\) −0.998503 + 0.725455i −0.0680973 + 0.0494756i
\(216\) 0 0
\(217\) −5.05185 1.64144i −0.342942 0.111428i
\(218\) −6.27143 + 8.63188i −0.424755 + 0.584625i
\(219\) 0 0
\(220\) 3.04224 1.32091i 0.205108 0.0890556i
\(221\) 14.1536i 0.952074i
\(222\) 0 0
\(223\) 3.67652 11.3152i 0.246198 0.757719i −0.749239 0.662300i \(-0.769581\pi\)
0.995437 0.0954199i \(-0.0304194\pi\)
\(224\) −0.756962 + 0.245952i −0.0505766 + 0.0164333i
\(225\) 0 0
\(226\) 9.93559 + 13.6752i 0.660905 + 0.909658i
\(227\) −5.53094 17.0225i −0.367101 1.12982i −0.948655 0.316313i \(-0.897555\pi\)
0.581554 0.813508i \(-0.302445\pi\)
\(228\) 0 0
\(229\) −10.1538 7.37718i −0.670983 0.487498i 0.199371 0.979924i \(-0.436110\pi\)
−0.870354 + 0.492426i \(0.836110\pi\)
\(230\) −1.65090 −0.108857
\(231\) 0 0
\(232\) 0.282339 0.0185365
\(233\) −1.32229 0.960702i −0.0866263 0.0629377i 0.543629 0.839326i \(-0.317050\pi\)
−0.630255 + 0.776388i \(0.717050\pi\)
\(234\) 0 0
\(235\) 0.692866 + 2.13242i 0.0451976 + 0.139104i
\(236\) 6.08877 + 8.38047i 0.396345 + 0.545522i
\(237\) 0 0
\(238\) 4.01509 1.30458i 0.260260 0.0845635i
\(239\) 7.89453 24.2969i 0.510655 1.57163i −0.280396 0.959884i \(-0.590466\pi\)
0.791051 0.611750i \(-0.209534\pi\)
\(240\) 0 0
\(241\) 2.71641i 0.174979i −0.996165 0.0874897i \(-0.972116\pi\)
0.996165 0.0874897i \(-0.0278845\pi\)
\(242\) 1.35200 10.9166i 0.0869097 0.701745i
\(243\) 0 0
\(244\) −8.32796 + 11.4625i −0.533143 + 0.733809i
\(245\) −6.05492 1.96736i −0.386834 0.125690i
\(246\) 0 0
\(247\) −18.1116 + 13.1588i −1.15241 + 0.837276i
\(248\) 5.39925 3.92279i 0.342853 0.249097i
\(249\) 0 0
\(250\) 0.951057 + 0.309017i 0.0601501 + 0.0195440i
\(251\) −13.1287 + 18.0701i −0.828676 + 1.14058i 0.159492 + 0.987199i \(0.449015\pi\)
−0.988168 + 0.153376i \(0.950985\pi\)
\(252\) 0 0
\(253\) −2.78145 + 4.71632i −0.174868 + 0.296512i
\(254\) 1.10681i 0.0694474i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 25.4719 8.27631i 1.58889 0.516262i 0.624564 0.780974i \(-0.285277\pi\)
0.964328 + 0.264711i \(0.0852767\pi\)
\(258\) 0 0
\(259\) −3.16127 4.35111i −0.196432 0.270365i
\(260\) −0.824571 2.53777i −0.0511377 0.157386i
\(261\) 0 0
\(262\) 0.981556 + 0.713142i 0.0606407 + 0.0440581i
\(263\) −21.1316 −1.30303 −0.651515 0.758636i \(-0.725866\pi\)
−0.651515 + 0.758636i \(0.725866\pi\)
\(264\) 0 0
\(265\) −7.31645 −0.449446
\(266\) 5.40229 + 3.92500i 0.331236 + 0.240657i
\(267\) 0 0
\(268\) −2.94175 9.05378i −0.179696 0.553047i
\(269\) −5.64037 7.76331i −0.343900 0.473337i 0.601676 0.798740i \(-0.294500\pi\)
−0.945575 + 0.325403i \(0.894500\pi\)
\(270\) 0 0
\(271\) −8.85526 + 2.87725i −0.537919 + 0.174780i −0.565362 0.824843i \(-0.691263\pi\)
0.0274431 + 0.999623i \(0.491263\pi\)
\(272\) −1.63909 + 5.04461i −0.0993846 + 0.305874i
\(273\) 0 0
\(274\) 9.31327i 0.562635i
\(275\) 2.48516 2.19636i 0.149861 0.132446i
\(276\) 0 0
\(277\) −2.67156 + 3.67709i −0.160519 + 0.220935i −0.881699 0.471812i \(-0.843600\pi\)
0.721180 + 0.692747i \(0.243600\pi\)
\(278\) −2.63783 0.857082i −0.158206 0.0514044i
\(279\) 0 0
\(280\) −0.643910 + 0.467828i −0.0384810 + 0.0279581i
\(281\) −24.3965 + 17.7251i −1.45537 + 1.05739i −0.470834 + 0.882222i \(0.656047\pi\)
−0.984538 + 0.175169i \(0.943953\pi\)
\(282\) 0 0
\(283\) 14.9973 + 4.87291i 0.891496 + 0.289665i 0.718723 0.695297i \(-0.244727\pi\)
0.172773 + 0.984962i \(0.444727\pi\)
\(284\) −5.83827 + 8.03570i −0.346438 + 0.476831i
\(285\) 0 0
\(286\) −8.63919 1.92001i −0.510846 0.113533i
\(287\) 4.86070i 0.286918i
\(288\) 0 0
\(289\) 3.44082 10.5897i 0.202401 0.622926i
\(290\) 0.268521 0.0872476i 0.0157681 0.00512336i
\(291\) 0 0
\(292\) 7.27273 + 10.0101i 0.425604 + 0.585794i
\(293\) 1.72886 + 5.32089i 0.101001 + 0.310849i 0.988771 0.149438i \(-0.0477464\pi\)
−0.887770 + 0.460287i \(0.847746\pi\)
\(294\) 0 0
\(295\) 8.38047 + 6.08877i 0.487930 + 0.354502i
\(296\) 6.75732 0.392762
\(297\) 0 0
\(298\) 5.79469 0.335677
\(299\) 3.56388 + 2.58931i 0.206105 + 0.149744i
\(300\) 0 0
\(301\) −0.303558 0.934256i −0.0174968 0.0538496i
\(302\) −2.40793 3.31423i −0.138561 0.190713i
\(303\) 0 0
\(304\) −7.97920 + 2.59260i −0.457638 + 0.148696i
\(305\) −4.37827 + 13.4749i −0.250699 + 0.771572i
\(306\) 0 0
\(307\) 28.4225i 1.62216i −0.584938 0.811078i \(-0.698881\pi\)
0.584938 0.811078i \(-0.301119\pi\)
\(308\) 0.251633 + 2.62774i 0.0143381 + 0.149729i
\(309\) 0 0
\(310\) 3.92279 5.39925i 0.222799 0.306657i
\(311\) 14.5344 + 4.72252i 0.824171 + 0.267790i 0.690588 0.723248i \(-0.257352\pi\)
0.133583 + 0.991038i \(0.457352\pi\)
\(312\) 0 0
\(313\) −15.8787 + 11.5366i −0.897519 + 0.652086i −0.937828 0.347102i \(-0.887166\pi\)
0.0403086 + 0.999187i \(0.487166\pi\)
\(314\) −0.252465 + 0.183427i −0.0142475 + 0.0103514i
\(315\) 0 0
\(316\) 8.84063 + 2.87249i 0.497324 + 0.161590i
\(317\) −14.8957 + 20.5022i −0.836628 + 1.15152i 0.150025 + 0.988682i \(0.452065\pi\)
−0.986653 + 0.162838i \(0.947935\pi\)
\(318\) 0 0
\(319\) 0.203156 0.914111i 0.0113745 0.0511804i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) 0.406041 1.24967i 0.0226278 0.0696412i
\(323\) 42.3234 13.7517i 2.35494 0.765165i
\(324\) 0 0
\(325\) −1.56843 2.15876i −0.0870007 0.119746i
\(326\) −2.59823 7.99653i −0.143903 0.442887i
\(327\) 0 0
\(328\) 4.94071 + 3.58963i 0.272805 + 0.198204i
\(329\) −1.78457 −0.0983867
\(330\) 0 0
\(331\) −22.2481 −1.22286 −0.611432 0.791297i \(-0.709406\pi\)
−0.611432 + 0.791297i \(0.709406\pi\)
\(332\) 2.80102 + 2.03506i 0.153726 + 0.111689i
\(333\) 0 0
\(334\) −7.65145 23.5487i −0.418669 1.28853i
\(335\) −5.59554 7.70160i −0.305717 0.420784i
\(336\) 0 0
\(337\) −19.9218 + 6.47299i −1.08521 + 0.352606i −0.796394 0.604778i \(-0.793262\pi\)
−0.288817 + 0.957384i \(0.593262\pi\)
\(338\) 1.81696 5.59203i 0.0988297 0.304167i
\(339\) 0 0
\(340\) 5.30422i 0.287662i
\(341\) −8.81554 20.3034i −0.477388 1.09949i
\(342\) 0 0
\(343\) 6.25323 8.60683i 0.337643 0.464725i
\(344\) 1.17381 + 0.381394i 0.0632876 + 0.0205634i
\(345\) 0 0
\(346\) 11.6783 8.48476i 0.627828 0.456144i
\(347\) 2.15904 1.56863i 0.115903 0.0842086i −0.528324 0.849043i \(-0.677179\pi\)
0.644227 + 0.764834i \(0.277179\pi\)
\(348\) 0 0
\(349\) 29.7938 + 9.68058i 1.59482 + 0.518190i 0.965820 0.259213i \(-0.0834632\pi\)
0.629003 + 0.777403i \(0.283463\pi\)
\(350\) −0.467828 + 0.643910i −0.0250065 + 0.0344184i
\(351\) 0 0
\(352\) −2.85682 1.68481i −0.152269 0.0898007i
\(353\) 18.8861i 1.00520i −0.864518 0.502602i \(-0.832376\pi\)
0.864518 0.502602i \(-0.167624\pi\)
\(354\) 0 0
\(355\) −3.06936 + 9.44653i −0.162905 + 0.501370i
\(356\) −0.565855 + 0.183857i −0.0299902 + 0.00974442i
\(357\) 0 0
\(358\) 1.20973 + 1.66505i 0.0639364 + 0.0880008i
\(359\) −2.91047 8.95750i −0.153609 0.472759i 0.844409 0.535700i \(-0.179952\pi\)
−0.998017 + 0.0629410i \(0.979952\pi\)
\(360\) 0 0
\(361\) 41.5747 + 30.2058i 2.18814 + 1.58978i
\(362\) −11.7351 −0.616784
\(363\) 0 0
\(364\) 2.12380 0.111317
\(365\) 10.0101 + 7.27273i 0.523950 + 0.380672i
\(366\) 0 0
\(367\) −1.31882 4.05891i −0.0688418 0.211873i 0.910717 0.413031i \(-0.135530\pi\)
−0.979559 + 0.201157i \(0.935530\pi\)
\(368\) 0.970374 + 1.33560i 0.0505842 + 0.0696232i
\(369\) 0 0
\(370\) 6.42660 2.08813i 0.334103 0.108557i
\(371\) 1.79949 5.53827i 0.0934250 0.287533i
\(372\) 0 0
\(373\) 16.9282i 0.876509i −0.898851 0.438254i \(-0.855597\pi\)
0.898851 0.438254i \(-0.144403\pi\)
\(374\) 15.1532 + 8.93660i 0.783553 + 0.462101i
\(375\) 0 0
\(376\) 1.31791 1.81395i 0.0679660 0.0935471i
\(377\) −0.716512 0.232809i −0.0369022 0.0119903i
\(378\) 0 0
\(379\) 9.11473 6.62224i 0.468192 0.340162i −0.328544 0.944489i \(-0.606558\pi\)
0.796736 + 0.604327i \(0.206558\pi\)
\(380\) −6.78751 + 4.93142i −0.348192 + 0.252976i
\(381\) 0 0
\(382\) 17.3703 + 5.64395i 0.888741 + 0.288769i
\(383\) 9.61756 13.2374i 0.491434 0.676401i −0.489217 0.872162i \(-0.662718\pi\)
0.980652 + 0.195761i \(0.0627175\pi\)
\(384\) 0 0
\(385\) 1.05133 + 2.42137i 0.0535809 + 0.123404i
\(386\) 12.8025i 0.651630i
\(387\) 0 0
\(388\) 1.02419 3.15212i 0.0519952 0.160025i
\(389\) 1.49827 0.486817i 0.0759653 0.0246826i −0.270788 0.962639i \(-0.587284\pi\)
0.346753 + 0.937956i \(0.387284\pi\)
\(390\) 0 0
\(391\) −5.14707 7.08434i −0.260299 0.358270i
\(392\) 1.96736 + 6.05492i 0.0993668 + 0.305820i
\(393\) 0 0
\(394\) 6.81244 + 4.94953i 0.343206 + 0.249354i
\(395\) 9.29558 0.467712
\(396\) 0 0
\(397\) −21.1992 −1.06396 −0.531979 0.846758i \(-0.678551\pi\)
−0.531979 + 0.846758i \(0.678551\pi\)
\(398\) 14.4944 + 10.5308i 0.726540 + 0.527862i
\(399\) 0 0
\(400\) −0.309017 0.951057i −0.0154508 0.0475528i
\(401\) −11.7573 16.1825i −0.587131 0.808117i 0.407323 0.913284i \(-0.366462\pi\)
−0.994455 + 0.105167i \(0.966462\pi\)
\(402\) 0 0
\(403\) −16.9367 + 5.50306i −0.843676 + 0.274127i
\(404\) −4.21165 + 12.9621i −0.209537 + 0.644889i
\(405\) 0 0
\(406\) 0.224719i 0.0111526i
\(407\) 4.86220 21.8777i 0.241010 1.08444i
\(408\) 0 0
\(409\) −2.14096 + 2.94678i −0.105864 + 0.145709i −0.858662 0.512543i \(-0.828704\pi\)
0.752798 + 0.658252i \(0.228704\pi\)
\(410\) 5.80815 + 1.88718i 0.286844 + 0.0932013i
\(411\) 0 0
\(412\) 15.9712 11.6038i 0.786845 0.571677i
\(413\) −6.67016 + 4.84615i −0.328217 + 0.238464i
\(414\) 0 0
\(415\) 3.29280 + 1.06990i 0.161637 + 0.0525191i
\(416\) −1.56843 + 2.15876i −0.0768985 + 0.105842i
\(417\) 0 0
\(418\) 2.65249 + 27.6992i 0.129737 + 1.35481i
\(419\) 10.5299i 0.514420i −0.966356 0.257210i \(-0.917197\pi\)
0.966356 0.257210i \(-0.0828032\pi\)
\(420\) 0 0
\(421\) 0.659475 2.02965i 0.0321408 0.0989193i −0.933699 0.358059i \(-0.883439\pi\)
0.965840 + 0.259139i \(0.0834388\pi\)
\(422\) −15.8965 + 5.16510i −0.773831 + 0.251433i
\(423\) 0 0
\(424\) 4.30050 + 5.91913i 0.208851 + 0.287458i
\(425\) 1.63909 + 5.04461i 0.0795077 + 0.244700i
\(426\) 0 0
\(427\) −9.12316 6.62836i −0.441501 0.320769i
\(428\) 5.53498 0.267544
\(429\) 0 0
\(430\) 1.23422 0.0595193
\(431\) 10.6178 + 7.71425i 0.511440 + 0.371583i 0.813369 0.581748i \(-0.197631\pi\)
−0.301930 + 0.953330i \(0.597631\pi\)
\(432\) 0 0
\(433\) 7.84190 + 24.1349i 0.376857 + 1.15985i 0.942217 + 0.335003i \(0.108737\pi\)
−0.565359 + 0.824845i \(0.691263\pi\)
\(434\) 3.12221 + 4.29736i 0.149871 + 0.206280i
\(435\) 0 0
\(436\) 10.1474 3.29709i 0.485972 0.157902i
\(437\) 4.28012 13.1728i 0.204746 0.630143i
\(438\) 0 0
\(439\) 4.32343i 0.206346i 0.994663 + 0.103173i \(0.0328995\pi\)
−0.994663 + 0.103173i \(0.967100\pi\)
\(440\) −3.23763 0.719545i −0.154348 0.0343029i
\(441\) 0 0
\(442\) 8.31928 11.4505i 0.395708 0.544645i
\(443\) −2.10108 0.682681i −0.0998251 0.0324352i 0.258679 0.965963i \(-0.416713\pi\)
−0.358504 + 0.933528i \(0.616713\pi\)
\(444\) 0 0
\(445\) −0.481345 + 0.349717i −0.0228179 + 0.0165782i
\(446\) −9.62525 + 6.99316i −0.455769 + 0.331136i
\(447\) 0 0
\(448\) 0.756962 + 0.245952i 0.0357631 + 0.0116201i
\(449\) 5.27979 7.26701i 0.249169 0.342951i −0.666051 0.745906i \(-0.732017\pi\)
0.915220 + 0.402955i \(0.132017\pi\)
\(450\) 0 0
\(451\) 15.1770 13.4133i 0.714655 0.631607i
\(452\) 16.9034i 0.795070i
\(453\) 0 0
\(454\) −5.53094 + 17.0225i −0.259580 + 0.798904i
\(455\) 2.01985 0.656290i 0.0946921 0.0307673i
\(456\) 0 0
\(457\) 13.9828 + 19.2457i 0.654087 + 0.900274i 0.999268 0.0382622i \(-0.0121822\pi\)
−0.345180 + 0.938536i \(0.612182\pi\)
\(458\) 3.87841 + 11.9365i 0.181226 + 0.557758i
\(459\) 0 0
\(460\) 1.33560 + 0.970374i 0.0622729 + 0.0452439i
\(461\) 15.6097 0.727018 0.363509 0.931591i \(-0.381579\pi\)
0.363509 + 0.931591i \(0.381579\pi\)
\(462\) 0 0
\(463\) 2.15079 0.0999556 0.0499778 0.998750i \(-0.484085\pi\)
0.0499778 + 0.998750i \(0.484085\pi\)
\(464\) −0.228417 0.165955i −0.0106040 0.00770426i
\(465\) 0 0
\(466\) 0.505071 + 1.55445i 0.0233970 + 0.0720085i
\(467\) 7.46324 + 10.2723i 0.345358 + 0.475344i 0.945997 0.324176i \(-0.105087\pi\)
−0.600639 + 0.799520i \(0.705087\pi\)
\(468\) 0 0
\(469\) 7.20605 2.34139i 0.332745 0.108115i
\(470\) 0.692866 2.13242i 0.0319595 0.0983612i
\(471\) 0 0
\(472\) 10.3588i 0.476804i
\(473\) 2.07942 3.52594i 0.0956120 0.162123i
\(474\) 0 0
\(475\) −4.93142 + 6.78751i −0.226269 + 0.311432i
\(476\) −4.01509 1.30458i −0.184031 0.0597954i
\(477\) 0 0
\(478\) −20.6682 + 15.0163i −0.945339 + 0.686829i
\(479\) −5.61819 + 4.08185i −0.256702 + 0.186505i −0.708692 0.705518i \(-0.750714\pi\)
0.451990 + 0.892023i \(0.350714\pi\)
\(480\) 0 0
\(481\) −17.1485 5.57189i −0.781906 0.254057i
\(482\) −1.59667 + 2.19762i −0.0727262 + 0.100099i
\(483\) 0 0
\(484\) −7.51040 + 8.03703i −0.341382 + 0.365320i
\(485\) 3.31434i 0.150496i
\(486\) 0 0
\(487\) −6.54467 + 20.1424i −0.296567 + 0.912740i 0.686123 + 0.727485i \(0.259311\pi\)
−0.982690 + 0.185255i \(0.940689\pi\)
\(488\) 13.4749 4.37827i 0.609981 0.198195i
\(489\) 0 0
\(490\) 3.74214 + 5.15062i 0.169053 + 0.232681i
\(491\) 5.13344 + 15.7991i 0.231669 + 0.713003i 0.997546 + 0.0700161i \(0.0223051\pi\)
−0.765877 + 0.642987i \(0.777695\pi\)
\(492\) 0 0
\(493\) 1.21157 + 0.880261i 0.0545666 + 0.0396449i
\(494\) 22.3871 1.00725
\(495\) 0 0
\(496\) −6.67385 −0.299665
\(497\) −6.39574 4.64678i −0.286888 0.208437i
\(498\) 0 0
\(499\) −12.9860 39.9667i −0.581332 1.78916i −0.613526 0.789674i \(-0.710250\pi\)
0.0321945 0.999482i \(-0.489750\pi\)
\(500\) −0.587785 0.809017i −0.0262866 0.0361803i
\(501\) 0 0
\(502\) 21.2427 6.90217i 0.948108 0.308059i
\(503\) 3.62478 11.1559i 0.161621 0.497418i −0.837151 0.546973i \(-0.815780\pi\)
0.998771 + 0.0495547i \(0.0157802\pi\)
\(504\) 0 0
\(505\) 13.6292i 0.606490i
\(506\) 5.02242 2.18068i 0.223274 0.0969433i
\(507\) 0 0
\(508\) −0.650566 + 0.895428i −0.0288642 + 0.0397282i
\(509\) −5.74740 1.86745i −0.254749 0.0827730i 0.178858 0.983875i \(-0.442760\pi\)
−0.433608 + 0.901102i \(0.642760\pi\)
\(510\) 0 0
\(511\) −7.96717 + 5.78849i −0.352447 + 0.256068i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) 0 0
\(514\) −25.4719 8.27631i −1.12352 0.365052i
\(515\) 11.6038 15.9712i 0.511323 0.703776i
\(516\) 0 0
\(517\) −4.92459 5.57212i −0.216583 0.245061i
\(518\) 5.37827i 0.236307i
\(519\) 0 0
\(520\) −0.824571 + 2.53777i −0.0361598 + 0.111289i
\(521\) 28.2903 9.19208i 1.23942 0.402712i 0.385302 0.922791i \(-0.374097\pi\)
0.854119 + 0.520078i \(0.174097\pi\)
\(522\) 0 0
\(523\) 18.6570 + 25.6791i 0.815813 + 1.12287i 0.990400 + 0.138229i \(0.0441410\pi\)
−0.174587 + 0.984642i \(0.555859\pi\)
\(524\) −0.374921 1.15389i −0.0163785 0.0504078i
\(525\) 0 0
\(526\) 17.0958 + 12.4208i 0.745413 + 0.541574i
\(527\) 35.3995 1.54203
\(528\) 0 0
\(529\) 20.2745 0.881502
\(530\) 5.91913 + 4.30050i 0.257111 + 0.186802i
\(531\) 0 0
\(532\) −2.06349 6.35078i −0.0894637 0.275341i
\(533\) −9.57846 13.1836i −0.414889 0.571046i
\(534\) 0 0
\(535\) 5.26408 1.71040i 0.227586 0.0739472i
\(536\) −2.94175 + 9.05378i −0.127064 + 0.391064i
\(537\) 0 0
\(538\) 9.59598i 0.413712i
\(539\) 21.0192 2.01281i 0.905361 0.0866978i
\(540\) 0 0
\(541\) 4.15677 5.72131i 0.178714 0.245978i −0.710257 0.703943i \(-0.751421\pi\)
0.888971 + 0.457964i \(0.151421\pi\)
\(542\) 8.85526 + 2.87725i 0.380366 + 0.123588i
\(543\) 0 0
\(544\) 4.29120 3.11774i 0.183984 0.133672i
\(545\) 8.63188 6.27143i 0.369749 0.268639i
\(546\) 0 0
\(547\) 13.8905 + 4.51329i 0.593914 + 0.192974i 0.590524 0.807020i \(-0.298921\pi\)
0.00338990 + 0.999994i \(0.498921\pi\)
\(548\) 5.47420 7.53459i 0.233846 0.321862i
\(549\) 0 0
\(550\) −3.30152 + 0.316156i −0.140777 + 0.0134809i
\(551\) 2.36878i 0.100913i
\(552\) 0 0
\(553\) −2.28627 + 7.03640i −0.0972219 + 0.299218i
\(554\) 4.32268 1.40452i 0.183653 0.0596725i
\(555\) 0 0
\(556\) 1.63027 + 2.24387i 0.0691387 + 0.0951613i
\(557\) 4.06437 + 12.5088i 0.172213 + 0.530016i 0.999495 0.0317698i \(-0.0101144\pi\)
−0.827282 + 0.561786i \(0.810114\pi\)
\(558\) 0 0
\(559\) −2.66437 1.93578i −0.112691 0.0818748i
\(560\) 0.795917 0.0336336
\(561\) 0 0
\(562\) 30.1557 1.27204
\(563\) 24.6828 + 17.9331i 1.04025 + 0.755789i 0.970335 0.241764i \(-0.0777259\pi\)
0.0699190 + 0.997553i \(0.477726\pi\)
\(564\) 0 0
\(565\) −5.22345 16.0761i −0.219752 0.676327i
\(566\) −9.26883 12.7575i −0.389598 0.536236i
\(567\) 0 0
\(568\) 9.44653 3.06936i 0.396367 0.128788i
\(569\) −3.61169 + 11.1156i −0.151410 + 0.465992i −0.997779 0.0666041i \(-0.978784\pi\)
0.846369 + 0.532596i \(0.178784\pi\)
\(570\) 0 0
\(571\) 12.8664i 0.538441i −0.963079 0.269221i \(-0.913234\pi\)
0.963079 0.269221i \(-0.0867661\pi\)
\(572\) 5.86070 + 6.63131i 0.245048 + 0.277269i
\(573\) 0 0
\(574\) −2.85705 + 3.93239i −0.119251 + 0.164135i
\(575\) 1.57010 + 0.510156i 0.0654776 + 0.0212750i
\(576\) 0 0
\(577\) −29.8443 + 21.6832i −1.24244 + 0.902683i −0.997758 0.0669218i \(-0.978682\pi\)
−0.244678 + 0.969604i \(0.578682\pi\)
\(578\) −9.00818 + 6.54482i −0.374691 + 0.272229i
\(579\) 0 0
\(580\) −0.268521 0.0872476i −0.0111497 0.00362276i
\(581\) −1.61974 + 2.22938i −0.0671981 + 0.0924903i
\(582\) 0 0
\(583\) 22.2584 9.66435i 0.921847 0.400257i
\(584\) 12.3731i 0.512003i
\(585\) 0 0
\(586\) 1.72886 5.32089i 0.0714186 0.219804i
\(587\) 6.13283 1.99268i 0.253129 0.0822466i −0.179704 0.983721i \(-0.557514\pi\)
0.432833 + 0.901474i \(0.357514\pi\)
\(588\) 0 0
\(589\) 32.9115 + 45.2988i 1.35609 + 1.86650i
\(590\) −3.20106 9.85184i −0.131785 0.405594i
\(591\) 0 0
\(592\) −5.46679 3.97186i −0.224684 0.163242i
\(593\) −35.3094 −1.44998 −0.724992 0.688757i \(-0.758157\pi\)
−0.724992 + 0.688757i \(0.758157\pi\)
\(594\) 0 0
\(595\) −4.22171 −0.173073
\(596\) −4.68800 3.40603i −0.192028 0.139516i
\(597\) 0 0
\(598\) −1.36128 4.18960i −0.0556670 0.171325i
\(599\) −14.3414 19.7393i −0.585975 0.806526i 0.408359 0.912821i \(-0.366101\pi\)
−0.994335 + 0.106295i \(0.966101\pi\)
\(600\) 0 0
\(601\) −18.1414 + 5.89450i −0.740004 + 0.240442i −0.654674 0.755911i \(-0.727194\pi\)
−0.0853293 + 0.996353i \(0.527194\pi\)
\(602\) −0.303558 + 0.934256i −0.0123721 + 0.0380774i
\(603\) 0 0
\(604\) 4.09662i 0.166689i
\(605\) −4.65924 + 9.96451i −0.189425 + 0.405115i
\(606\) 0 0
\(607\) 1.92389 2.64801i 0.0780884 0.107479i −0.768186 0.640227i \(-0.778840\pi\)
0.846274 + 0.532747i \(0.178840\pi\)
\(608\) 7.97920 + 2.59260i 0.323599 + 0.105144i
\(609\) 0 0
\(610\) 11.4625 8.32796i 0.464101 0.337189i
\(611\) −4.84027 + 3.51667i −0.195817 + 0.142269i
\(612\) 0 0
\(613\) 34.3620 + 11.1649i 1.38787 + 0.450946i 0.905248 0.424884i \(-0.139685\pi\)
0.482620 + 0.875830i \(0.339685\pi\)
\(614\) −16.7063 + 22.9943i −0.674212 + 0.927973i
\(615\) 0 0
\(616\) 1.34097 2.27379i 0.0540292 0.0916136i
\(617\) 18.8061i 0.757103i −0.925580 0.378552i \(-0.876422\pi\)
0.925580 0.378552i \(-0.123578\pi\)
\(618\) 0 0
\(619\) −8.95166 + 27.5504i −0.359798 + 1.10734i 0.593378 + 0.804924i \(0.297794\pi\)
−0.953175 + 0.302419i \(0.902206\pi\)
\(620\) −6.34720 + 2.06233i −0.254910 + 0.0828252i
\(621\) 0 0
\(622\) −8.98277 12.3637i −0.360176 0.495740i
\(623\) −0.146335 0.450373i −0.00586279 0.0180438i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 19.6272 0.784460
\(627\) 0 0
\(628\) 0.312064 0.0124527
\(629\) 28.9970 + 21.0676i 1.15619 + 0.840020i
\(630\) 0 0
\(631\) −0.900444 2.77128i −0.0358461 0.110323i 0.931532 0.363658i \(-0.118472\pi\)
−0.967379 + 0.253335i \(0.918472\pi\)
\(632\) −5.46381 7.52029i −0.217339 0.299141i
\(633\) 0 0
\(634\) 24.1018 7.83115i 0.957205 0.311015i
\(635\) −0.342023 + 1.05264i −0.0135728 + 0.0417727i
\(636\) 0 0
\(637\) 16.9882i 0.673097i
\(638\) −0.701657 + 0.620119i −0.0277789 + 0.0245507i
\(639\) 0 0
\(640\) −0.587785 + 0.809017i −0.0232343 + 0.0319792i
\(641\) −43.7396 14.2119i −1.72761 0.561335i −0.734510 0.678598i \(-0.762588\pi\)
−0.993101 + 0.117263i \(0.962588\pi\)
\(642\) 0 0
\(643\) −16.1488 + 11.7328i −0.636845 + 0.462695i −0.858765 0.512370i \(-0.828768\pi\)
0.221920 + 0.975065i \(0.428768\pi\)
\(644\) −1.06303 + 0.772337i −0.0418893 + 0.0304343i
\(645\) 0 0
\(646\) −42.3234 13.7517i −1.66519 0.541054i
\(647\) −17.6010 + 24.2257i −0.691966 + 0.952410i 0.308033 + 0.951376i \(0.400329\pi\)
−0.999999 + 0.00103445i \(0.999671\pi\)
\(648\) 0 0
\(649\) −33.5381 7.45364i −1.31648 0.292581i
\(650\) 2.66837i 0.104662i
\(651\) 0 0
\(652\) −2.59823 + 7.99653i −0.101755 + 0.313168i
\(653\) 25.8777 8.40816i 1.01267 0.329037i 0.244753 0.969585i \(-0.421293\pi\)
0.767918 + 0.640549i \(0.221293\pi\)
\(654\) 0 0
\(655\) −0.713142 0.981556i −0.0278648 0.0383526i
\(656\) −1.88718 5.80815i −0.0736821 0.226770i
\(657\) 0 0
\(658\) 1.44375 + 1.04895i 0.0562832 + 0.0408922i
\(659\) −13.6818 −0.532968 −0.266484 0.963839i \(-0.585862\pi\)
−0.266484 + 0.963839i \(0.585862\pi\)
\(660\) 0 0
\(661\) −20.0009 −0.777947 −0.388973 0.921249i \(-0.627170\pi\)
−0.388973 + 0.921249i \(0.627170\pi\)
\(662\) 17.9991 + 13.0771i 0.699554 + 0.508256i
\(663\) 0 0
\(664\) −1.06990 3.29280i −0.0415200 0.127785i
\(665\) −3.92500 5.40229i −0.152205 0.209492i
\(666\) 0 0
\(667\) 0.443300 0.144037i 0.0171647 0.00557713i
\(668\) −7.65145 + 23.5487i −0.296044 + 0.911128i
\(669\) 0 0
\(670\) 9.51970i 0.367778i
\(671\) −4.47941 46.7772i −0.172926 1.80581i
\(672\) 0 0
\(673\) 28.1261 38.7123i 1.08418 1.49225i 0.229350 0.973344i \(-0.426340\pi\)
0.854832 0.518904i \(-0.173660\pi\)
\(674\) 19.9218 + 6.47299i 0.767360 + 0.249330i
\(675\) 0 0
\(676\) −4.75687 + 3.45607i −0.182956 + 0.132926i
\(677\) −28.5118 + 20.7150i −1.09580 + 0.796143i −0.980369 0.197172i \(-0.936824\pi\)
−0.115429 + 0.993316i \(0.536824\pi\)
\(678\) 0 0
\(679\) 2.50883 + 0.815168i 0.0962800 + 0.0312833i
\(680\) 3.11774 4.29120i 0.119560 0.164560i
\(681\) 0 0
\(682\) −4.80213 + 21.6075i −0.183883 + 0.827392i
\(683\) 11.3841i 0.435601i −0.975993 0.217800i \(-0.930112\pi\)
0.975993 0.217800i \(-0.0698882\pi\)
\(684\) 0 0
\(685\) 2.87796 8.85745i 0.109961 0.338426i
\(686\) −10.1179 + 3.28752i −0.386305 + 0.125518i
\(687\) 0 0
\(688\) −0.725455 0.998503i −0.0276577 0.0380676i
\(689\) −6.03293 18.5675i −0.229836 0.707364i
\(690\) 0 0
\(691\) −5.57808 4.05271i −0.212200 0.154172i 0.476608 0.879116i \(-0.341866\pi\)
−0.688809 + 0.724943i \(0.741866\pi\)
\(692\) −14.4351 −0.548742
\(693\) 0 0
\(694\) −2.66872 −0.101303
\(695\) 2.24387 + 1.63027i 0.0851149 + 0.0618396i
\(696\) 0 0
\(697\) 10.0100 + 30.8077i 0.379157 + 1.16692i
\(698\) −18.4136 25.3441i −0.696963 0.959288i
\(699\) 0 0
\(700\) 0.756962 0.245952i 0.0286105 0.00929610i
\(701\) 4.24417 13.0622i 0.160300 0.493353i −0.838359 0.545118i \(-0.816485\pi\)
0.998659 + 0.0517650i \(0.0164847\pi\)
\(702\) 0 0
\(703\) 56.6928i 2.13821i
\(704\) 1.32091 + 3.04224i 0.0497836 + 0.114659i
\(705\) 0 0
\(706\) −11.1009 + 15.2791i −0.417790 + 0.575038i
\(707\) −10.3168 3.35212i −0.388002 0.126069i
\(708\) 0 0
\(709\) 8.35306 6.06886i 0.313706 0.227921i −0.419779 0.907626i \(-0.637892\pi\)
0.733485 + 0.679706i \(0.237892\pi\)
\(710\) 8.03570 5.83827i 0.301574 0.219107i
\(711\) 0 0
\(712\) 0.565855 + 0.183857i 0.0212063 + 0.00689034i
\(713\) 6.47612 8.91362i 0.242533 0.333818i
\(714\) 0 0
\(715\) 7.62304 + 4.49569i 0.285086 + 0.168129i
\(716\) 2.05812i 0.0769156i
\(717\) 0 0
\(718\) −2.91047 + 8.95750i −0.108618 + 0.334291i
\(719\) 9.01798 2.93012i 0.336314 0.109275i −0.135991 0.990710i \(-0.543422\pi\)
0.472305 + 0.881435i \(0.343422\pi\)
\(720\) 0 0
\(721\) 9.23563 + 12.7118i 0.343953 + 0.473411i
\(722\) −15.8801 48.8740i −0.590997 1.81890i
\(723\) 0 0
\(724\) 9.49391 + 6.89773i 0.352838 + 0.256352i
\(725\) −0.282339 −0.0104858
\(726\) 0 0
\(727\) 30.1669 1.11883 0.559413 0.828889i \(-0.311026\pi\)
0.559413 + 0.828889i \(0.311026\pi\)
\(728\) −1.71819 1.24834i −0.0636803 0.0462665i
\(729\) 0 0
\(730\) −3.82350 11.7675i −0.141514 0.435536i
\(731\) 3.84797 + 5.29628i 0.142322 + 0.195890i
\(732\) 0 0
\(733\) −35.1232 + 11.4122i −1.29730 + 0.421520i −0.874643 0.484768i \(-0.838904\pi\)
−0.422662 + 0.906287i \(0.638904\pi\)
\(734\) −1.31882 + 4.05891i −0.0486785 + 0.149817i
\(735\) 0 0
\(736\) 1.65090i 0.0608529i
\(737\) 27.1961 + 16.0389i 1.00178 + 0.590800i
\(738\) 0 0
\(739\) 14.2581 19.6246i 0.524493 0.721903i −0.461785 0.886992i \(-0.652791\pi\)
0.986279 + 0.165088i \(0.0527910\pi\)
\(740\) −6.42660 2.08813i −0.236246 0.0767611i
\(741\) 0 0
\(742\) −4.71113 + 3.42284i −0.172951 + 0.125656i
\(743\) −1.20779 + 0.877512i −0.0443096 + 0.0321928i −0.609720 0.792617i \(-0.708718\pi\)
0.565410 + 0.824810i \(0.308718\pi\)
\(744\) 0 0
\(745\) −5.51107 1.79066i −0.201910 0.0656046i
\(746\) −9.95014 + 13.6952i −0.364301 + 0.501417i
\(747\) 0 0
\(748\) −7.00638 16.1367i −0.256179 0.590016i
\(749\) 4.40539i 0.160969i
\(750\) 0 0
\(751\) 8.73522 26.8842i 0.318753 0.981020i −0.655429 0.755256i \(-0.727512\pi\)
0.974182 0.225763i \(-0.0724876\pi\)
\(752\) −2.13242 + 0.692866i −0.0777614 + 0.0252662i
\(753\) 0 0
\(754\) 0.442829 + 0.609501i 0.0161269 + 0.0221967i
\(755\) 1.26592 + 3.89611i 0.0460717 + 0.141794i
\(756\) 0 0
\(757\) 23.1578 + 16.8251i 0.841685 + 0.611520i 0.922841 0.385181i \(-0.125861\pi\)
−0.0811557 + 0.996701i \(0.525861\pi\)
\(758\) −11.2664 −0.409215
\(759\) 0 0
\(760\) 8.38982 0.304331
\(761\) −42.5349 30.9034i −1.54189 1.12025i −0.949137 0.314865i \(-0.898041\pi\)
−0.592753 0.805384i \(-0.701959\pi\)
\(762\) 0 0
\(763\) 2.62421 + 8.07648i 0.0950026 + 0.292388i
\(764\) −10.7354 14.7760i −0.388394 0.534579i
\(765\) 0 0
\(766\) −15.5615 + 5.05625i −0.562261 + 0.182690i
\(767\) −8.54160 + 26.2883i −0.308419 + 0.949216i
\(768\) 0 0
\(769\) 35.7351i 1.28864i −0.764756 0.644320i \(-0.777141\pi\)
0.764756 0.644320i \(-0.222859\pi\)
\(770\) 0.572697 2.57688i 0.0206386 0.0928645i
\(771\) 0 0
\(772\) 7.52512 10.3574i 0.270835 0.372772i
\(773\) 12.1513 + 3.94821i 0.437054 + 0.142007i 0.519276 0.854607i \(-0.326202\pi\)
−0.0822222 + 0.996614i \(0.526202\pi\)
\(774\) 0 0
\(775\) −5.39925 + 3.92279i −0.193947 + 0.140911i
\(776\) −2.68136 + 1.94812i −0.0962551 + 0.0699334i
\(777\) 0 0
\(778\) −1.49827 0.486817i −0.0537156 0.0174532i
\(779\) −30.1164 + 41.4517i −1.07903 + 1.48516i
\(780\) 0 0
\(781\) −3.14027 32.7929i −0.112368 1.17342i
\(782\) 8.75672i 0.313140i
\(783\) 0 0
\(784\) 1.96736 6.05492i 0.0702629 0.216247i
\(785\) 0.296791 0.0964332i 0.0105929 0.00344185i
\(786\) 0 0
\(787\) −24.4315 33.6270i −0.870888 1.19867i −0.978862 0.204521i \(-0.934436\pi\)
0.107974 0.994154i \(-0.465564\pi\)
\(788\) −2.60212 8.00851i −0.0926968 0.285291i
\(789\) 0 0
\(790\) −7.52029 5.46381i −0.267560 0.194394i
\(791\) 13.4537 0.478359
\(792\) 0 0
\(793\) −37.8064 −1.34255
\(794\) 17.1505 + 12.4606i 0.608649 + 0.442209i
\(795\) 0 0
\(796\) −5.53638 17.0392i −0.196232 0.603939i
\(797\) 18.3221 + 25.2182i 0.649002 + 0.893275i 0.999055 0.0434548i \(-0.0138364\pi\)
−0.350053 + 0.936730i \(0.613836\pi\)
\(798\) 0 0
\(799\) 11.3108 3.67511i 0.400148 0.130016i
\(800\) −0.309017 + 0.951057i −0.0109254 + 0.0336249i
\(801\) 0 0
\(802\) 20.0027i 0.706320i
\(803\) −40.0596 8.90300i −1.41367 0.314180i
\(804\) 0 0
\(805\) −0.772337 + 1.06303i −0.0272213 + 0.0374669i
\(806\) 16.9367 + 5.50306i 0.596569 + 0.193837i
\(807\) 0 0
\(808\) 11.0262 8.01103i 0.387902 0.281827i
\(809\) −14.0877 + 10.2353i −0.495298 + 0.359855i −0.807218 0.590253i \(-0.799028\pi\)
0.311920 + 0.950108i \(0.399028\pi\)
\(810\) 0 0
\(811\) −27.8930 9.06300i −0.979457 0.318245i −0.224829 0.974398i \(-0.572182\pi\)
−0.754628 + 0.656153i \(0.772182\pi\)
\(812\) 0.132086 0.181801i 0.00463532 0.00637997i
\(813\) 0 0
\(814\) −16.7930 + 14.8415i −0.588594 + 0.520195i
\(815\) 8.40805i 0.294521i
\(816\) 0 0
\(817\) −3.19983 + 9.84807i −0.111948 + 0.344540i
\(818\) 3.46415 1.12557i 0.121121 0.0393546i
\(819\) 0 0
\(820\) −3.58963 4.94071i −0.125355 0.172537i
\(821\) 5.82290 + 17.9210i 0.203221 + 0.625449i 0.999782 + 0.0208909i \(0.00665026\pi\)
−0.796561 + 0.604558i \(0.793350\pi\)
\(822\) 0 0
\(823\) 5.43261 + 3.94702i 0.189369 + 0.137585i 0.678430 0.734665i \(-0.262661\pi\)
−0.489061 + 0.872249i \(0.662661\pi\)
\(824\) −19.7415 −0.687728
\(825\) 0 0
\(826\) 8.24477 0.286872
\(827\) −35.5333 25.8165i −1.23561 0.897726i −0.238316 0.971188i \(-0.576595\pi\)
−0.997298 + 0.0734612i \(0.976595\pi\)
\(828\) 0 0
\(829\) −2.61430 8.04598i −0.0907983 0.279449i 0.895338 0.445388i \(-0.146934\pi\)
−0.986136 + 0.165940i \(0.946934\pi\)
\(830\) −2.03506 2.80102i −0.0706380 0.0972249i
\(831\) 0 0
\(832\) 2.53777 0.824571i 0.0879813 0.0285869i
\(833\) −10.4353 + 32.1166i −0.361562 + 1.11277i
\(834\) 0 0
\(835\) 24.7606i 0.856876i
\(836\) 14.1353 23.9682i 0.488878 0.828958i
\(837\) 0 0
\(838\) −6.18933 + 8.51888i −0.213807 + 0.294280i
\(839\) 26.1770 + 8.50542i 0.903730 + 0.293640i 0.723776 0.690035i \(-0.242405\pi\)
0.179954 + 0.983675i \(0.442405\pi\)
\(840\) 0 0
\(841\) 23.3970 16.9989i 0.806793 0.586170i
\(842\) −1.72653 + 1.25440i −0.0595001 + 0.0432293i
\(843\) 0 0
\(844\) 15.8965 + 5.16510i 0.547181 + 0.177790i
\(845\) −3.45607 + 4.75687i −0.118892 + 0.163641i
\(846\) 0 0
\(847\) −6.39681 5.97766i −0.219797 0.205395i
\(848\) 7.31645i 0.251248i
\(849\) 0 0
\(850\) 1.63909 5.04461i 0.0562204 0.173029i
\(851\) 10.6097 3.44729i 0.363694 0.118171i
\(852\) 0 0
\(853\) −28.1351 38.7246i −0.963327 1.32591i −0.945347 0.326067i \(-0.894276\pi\)
−0.0179801 0.999838i \(-0.505724\pi\)
\(854\) 3.48474 + 10.7249i 0.119245 + 0.366999i
\(855\) 0 0
\(856\) −4.47790 3.25338i −0.153051 0.111198i
\(857\) −45.7485 −1.56274 −0.781370 0.624069i \(-0.785479\pi\)
−0.781370 + 0.624069i \(0.785479\pi\)
\(858\) 0 0
\(859\) 30.8386 1.05220 0.526100 0.850422i \(-0.323654\pi\)
0.526100 + 0.850422i \(0.323654\pi\)
\(860\) −0.998503 0.725455i −0.0340487 0.0247378i
\(861\) 0 0
\(862\) −4.05562 12.4819i −0.138135 0.425136i
\(863\) −2.30109 3.16718i −0.0783299 0.107812i 0.768054 0.640385i \(-0.221225\pi\)
−0.846384 + 0.532573i \(0.821225\pi\)
\(864\) 0 0
\(865\) −13.7286 + 4.46070i −0.466788 + 0.151669i
\(866\) 7.84190 24.1349i 0.266478 0.820136i
\(867\) 0 0
\(868\) 5.31182i 0.180295i
\(869\) −28.2794 + 12.2786i −0.959312 + 0.416523i
\(870\) 0 0
\(871\) 14.9310 20.5507i 0.505916 0.696334i
\(872\) −10.1474 3.29709i −0.343634 0.111653i
\(873\) 0 0
\(874\) −11.2055 + 8.14126i −0.379031 + 0.275382i
\(875\) 0.643910 0.467828i 0.0217681 0.0158155i
\(876\) 0 0
\(877\) 22.9963 + 7.47196i 0.776531 + 0.252310i 0.670358 0.742038i \(-0.266140\pi\)
0.106173 + 0.994348i \(0.466140\pi\)
\(878\) 2.54125 3.49773i 0.0857630 0.118043i
\(879\) 0 0
\(880\) 2.19636 + 2.48516i 0.0740393 + 0.0837746i
\(881\) 12.2977i 0.414320i −0.978307 0.207160i \(-0.933578\pi\)
0.978307 0.207160i \(-0.0664221\pi\)
\(882\) 0 0
\(883\) 2.63652 8.11437i 0.0887259 0.273070i −0.896842 0.442351i \(-0.854144\pi\)
0.985568 + 0.169281i \(0.0541445\pi\)
\(884\) −13.4609 + 4.37370i −0.452738 + 0.147104i
\(885\) 0 0
\(886\) 1.29854 + 1.78728i 0.0436252 + 0.0600449i
\(887\) 15.3510 + 47.2454i 0.515435 + 1.58635i 0.782489 + 0.622665i \(0.213950\pi\)
−0.267053 + 0.963682i \(0.586050\pi\)
\(888\) 0 0
\(889\) −0.712686 0.517796i −0.0239027 0.0173663i
\(890\) 0.594975 0.0199436
\(891\) 0 0
\(892\) 11.8975 0.398357
\(893\) 15.2187 + 11.0570i 0.509274 + 0.370009i
\(894\) 0 0
\(895\) −0.635994 1.95739i −0.0212589 0.0654283i
\(896\) −0.467828 0.643910i −0.0156290 0.0215115i
\(897\) 0 0
\(898\) −8.54288 + 2.77575i −0.285080 + 0.0926280i
\(899\) −0.582277 + 1.79207i −0.0194200 + 0.0597687i
\(900\) 0 0
\(901\) 38.8080i 1.29288i
\(902\) −20.1626 + 1.93078i −0.671340 + 0.0642878i
\(903\) 0 0
\(904\) −9.93559 + 13.6752i −0.330453 + 0.454829i
\(905\) 11.1608 + 3.62635i 0.370996 + 0.120544i
\(906\) 0 0
\(907\) −30.3543 + 22.0537i −1.00790 + 0.732282i −0.963767 0.266744i \(-0.914052\pi\)
−0.0441320 + 0.999026i \(0.514052\pi\)
\(908\) 14.4802 10.5205i 0.480542 0.349134i
\(909\) 0 0
\(910\) −2.01985 0.656290i −0.0669575 0.0217558i
\(911\) 21.3296 29.3577i 0.706682 0.972664i −0.293180 0.956057i \(-0.594714\pi\)
0.999862 0.0166072i \(-0.00528647\pi\)
\(912\) 0 0
\(913\) −11.4307 + 1.09461i −0.378301 + 0.0362263i
\(914\) 23.7889i 0.786869i
\(915\) 0 0
\(916\) 3.87841 11.9365i 0.128146 0.394394i
\(917\) 0.918399 0.298406i 0.0303282 0.00985423i
\(918\) 0 0
\(919\) −30.1012 41.4307i −0.992947 1.36667i −0.929554 0.368685i \(-0.879808\pi\)
−0.0633921 0.997989i \(-0.520192\pi\)
\(920\) −0.510156 1.57010i −0.0168193 0.0517646i
\(921\) 0 0
\(922\) −12.6285 9.17517i −0.415899 0.302168i
\(923\) −26.5040 −0.872390
\(924\) 0 0
\(925\) −6.75732 −0.222179
\(926\) −1.74002 1.26420i −0.0571807 0.0415442i
\(927\) 0 0
\(928\) 0.0872476 + 0.268521i 0.00286404 + 0.00881462i
\(929\) 6.37078 + 8.76863i 0.209019 + 0.287689i 0.900636 0.434575i \(-0.143101\pi\)
−0.691617 + 0.722264i \(0.743101\pi\)
\(930\) 0 0
\(931\) −50.7997 + 16.5058i −1.66489 + 0.540956i
\(932\) 0.505071 1.55445i 0.0165442 0.0509177i
\(933\) 0 0
\(934\) 12.6972i 0.415466i
\(935\) −11.6500 13.1818i −0.380995 0.431091i
\(936\) 0 0
\(937\) 12.2529 16.8647i 0.400284 0.550944i −0.560531 0.828134i \(-0.689403\pi\)
0.960815 + 0.277189i \(0.0894029\pi\)
\(938\) −7.20605 2.34139i −0.235286 0.0764490i
\(939\) 0 0
\(940\) −1.81395 + 1.31791i −0.0591644 + 0.0429854i
\(941\) 28.2873 20.5519i 0.922140 0.669974i −0.0219157 0.999760i \(-0.506977\pi\)
0.944056 + 0.329786i \(0.106977\pi\)
\(942\) 0 0
\(943\) 9.58866 + 3.11555i 0.312250 + 0.101456i
\(944\) −6.08877 + 8.38047i −0.198173 + 0.272761i
\(945\) 0 0
\(946\) −3.75478 + 1.63029i −0.122078 + 0.0530052i
\(947\) 47.0886i 1.53017i 0.643927 + 0.765087i \(0.277304\pi\)
−0.643927 + 0.765087i \(0.722696\pi\)
\(948\) 0 0
\(949\) −10.2025 + 31.4001i −0.331187 + 1.01929i
\(950\) 7.97920 2.59260i 0.258879 0.0841150i
\(951\) 0 0
\(952\) 2.48146 + 3.41544i 0.0804246 + 0.110695i
\(953\) 6.40188 + 19.7030i 0.207377 + 0.638242i 0.999607 + 0.0280192i \(0.00891995\pi\)
−0.792230 + 0.610222i \(0.791080\pi\)
\(954\) 0 0
\(955\) −14.7760 10.7354i −0.478142 0.347390i
\(956\) 25.5472 0.826257
\(957\) 0 0
\(958\) 6.94446 0.224365
\(959\) 5.99691 + 4.35701i 0.193650 + 0.140695i
\(960\) 0 0
\(961\) 4.18416 + 12.8775i 0.134973 + 0.415404i
\(962\) 10.5984 + 14.5874i 0.341705 + 0.470317i
\(963\) 0 0
\(964\) 2.58346 0.839417i 0.0832077 0.0270358i
\(965\) 3.95619 12.1759i 0.127354 0.391956i
\(966\) 0 0
\(967\) 54.7792i 1.76158i −0.473506 0.880791i \(-0.657012\pi\)
0.473506 0.880791i \(-0.342988\pi\)
\(968\) 10.8001 2.08759i 0.347128 0.0670976i
\(969\) 0 0
\(970\) −1.94812 + 2.68136i −0.0625504 + 0.0860932i
\(971\) −32.9598 10.7093i −1.05773 0.343678i −0.272033 0.962288i \(-0.587696\pi\)
−0.785698 + 0.618610i \(0.787696\pi\)
\(972\) 0 0
\(973\) −1.78593 + 1.29756i −0.0572544 + 0.0415978i
\(974\) 17.1342 12.4487i 0.549014 0.398882i
\(975\) 0 0
\(976\) −13.4749 4.37827i −0.431322 0.140145i
\(977\) −29.1696 + 40.1486i −0.933220 + 1.28447i 0.0253707 + 0.999678i \(0.491923\pi\)
−0.958590 + 0.284789i \(0.908077\pi\)
\(978\) 0 0
\(979\) 1.00242 1.69974i 0.0320375 0.0543238i
\(980\) 6.36652i 0.203371i
\(981\) 0 0
\(982\) 5.13344 15.7991i 0.163815 0.504169i
\(983\) 20.9001 6.79084i 0.666608 0.216594i 0.0438853 0.999037i \(-0.486026\pi\)
0.622723 + 0.782442i \(0.286026\pi\)
\(984\) 0 0
\(985\) −4.94953 6.81244i −0.157705 0.217062i
\(986\) −0.462780 1.42429i −0.0147379 0.0453587i
\(987\) 0 0
\(988\) −18.1116 13.1588i −0.576206 0.418638i
\(989\) 2.03757 0.0647909
\(990\) 0 0
\(991\) −54.4994 −1.73123 −0.865616 0.500709i \(-0.833073\pi\)
−0.865616 + 0.500709i \(0.833073\pi\)
\(992\) 5.39925 + 3.92279i 0.171427 + 0.124549i
\(993\) 0 0
\(994\) 2.44296 + 7.51865i 0.0774859 + 0.238477i
\(995\) −10.5308 14.4944i −0.333849 0.459504i
\(996\) 0 0
\(997\) 58.1173 18.8834i 1.84059 0.598045i 0.842340 0.538946i \(-0.181177\pi\)
0.998252 0.0590988i \(-0.0188227\pi\)
\(998\) −12.9860 + 39.9667i −0.411064 + 1.26512i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.z.a.161.7 32
3.2 odd 2 990.2.z.b.161.3 yes 32
11.8 odd 10 990.2.z.b.701.3 yes 32
33.8 even 10 inner 990.2.z.a.701.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.z.a.161.7 32 1.1 even 1 trivial
990.2.z.a.701.7 yes 32 33.8 even 10 inner
990.2.z.b.161.3 yes 32 3.2 odd 2
990.2.z.b.701.3 yes 32 11.8 odd 10