L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (0.587 + 0.809i)5-s + (−0.756 + 0.245i)7-s + (0.309 − 0.951i)8-s − i·10-s + (−2.85 − 1.68i)11-s + (−1.56 + 2.15i)13-s + (0.756 + 0.245i)14-s + (−0.809 + 0.587i)16-s + (4.29 − 3.11i)17-s + (7.97 + 2.59i)19-s + (−0.587 + 0.809i)20-s + (1.32 + 3.04i)22-s − 1.65i·23-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.154 + 0.475i)4-s + (0.262 + 0.361i)5-s + (−0.286 + 0.0929i)7-s + (0.109 − 0.336i)8-s − 0.316i·10-s + (−0.861 − 0.507i)11-s + (−0.435 + 0.598i)13-s + (0.202 + 0.0657i)14-s + (−0.202 + 0.146i)16-s + (1.04 − 0.756i)17-s + (1.83 + 0.594i)19-s + (−0.131 + 0.180i)20-s + (0.281 + 0.648i)22-s − 0.344i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.938 - 0.345i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.938 - 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11984 + 0.199693i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11984 + 0.199693i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.587 - 0.809i)T \) |
| 11 | \( 1 + (2.85 + 1.68i)T \) |
good | 7 | \( 1 + (0.756 - 0.245i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.56 - 2.15i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.29 + 3.11i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-7.97 - 2.59i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.65iT - 23T^{2} \) |
| 29 | \( 1 + (-0.0872 - 0.268i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.39 - 3.92i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.08 - 6.42i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.88 - 5.80i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 1.23iT - 43T^{2} \) |
| 47 | \( 1 + (-2.13 - 0.692i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (4.30 - 5.91i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-9.85 + 3.20i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.32 - 11.4i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 9.51T + 67T^{2} \) |
| 71 | \( 1 + (-5.83 - 8.03i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-11.7 + 3.82i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-5.46 + 7.52i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-2.80 + 2.03i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 0.594iT - 89T^{2} \) |
| 97 | \( 1 + (2.68 + 1.94i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.830431826365484185260745054878, −9.588882916058258160961568900746, −8.346237139309870895227701909974, −7.65682370426740893267397676867, −6.82647243436138938194382742907, −5.75013669437012584962031881288, −4.82372010410021074542865627555, −3.27595961911094380116287899347, −2.72616038027224387841134446960, −1.14154710554238558221320481736,
0.76670384606912207738282320011, 2.30065440338782123706019085522, 3.55046028175335560588746479347, 5.12076674128508489014537357260, 5.49074442912764959471336377780, 6.67574843173514007700298453152, 7.67591649644585392187152986392, 8.029933214192641103797013146384, 9.269750925596511756566229588775, 9.858999318423648959186608436335