Newspace parameters
Level: | \( N \) | \(=\) | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 990.z (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.90518980011\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
161.1 | −0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | −0.587785 | − | 0.809017i | 0 | −3.20471 | + | 1.04127i | 0.309017 | − | 0.951057i | 0 | 1.00000i | ||||||||
161.2 | −0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | −0.587785 | − | 0.809017i | 0 | −1.65927 | + | 0.539131i | 0.309017 | − | 0.951057i | 0 | 1.00000i | ||||||||
161.3 | −0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | −0.587785 | − | 0.809017i | 0 | 1.89200 | − | 0.614747i | 0.309017 | − | 0.951057i | 0 | 1.00000i | ||||||||
161.4 | −0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | −0.587785 | − | 0.809017i | 0 | 2.97198 | − | 0.965656i | 0.309017 | − | 0.951057i | 0 | 1.00000i | ||||||||
161.5 | −0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | 0.587785 | + | 0.809017i | 0 | −2.25567 | + | 0.732912i | 0.309017 | − | 0.951057i | 0 | − | 1.00000i | |||||||
161.6 | −0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | 0.587785 | + | 0.809017i | 0 | −1.61538 | + | 0.524868i | 0.309017 | − | 0.951057i | 0 | − | 1.00000i | |||||||
161.7 | −0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | 0.587785 | + | 0.809017i | 0 | −0.756962 | + | 0.245952i | 0.309017 | − | 0.951057i | 0 | − | 1.00000i | |||||||
161.8 | −0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | 0.587785 | + | 0.809017i | 0 | 4.62801 | − | 1.50373i | 0.309017 | − | 0.951057i | 0 | − | 1.00000i | |||||||
431.1 | 0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | −0.951057 | + | 0.309017i | 0 | −1.27614 | + | 1.75646i | −0.809017 | + | 0.587785i | 0 | 1.00000i | ||||||||
431.2 | 0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | −0.951057 | + | 0.309017i | 0 | −0.770514 | + | 1.06052i | −0.809017 | + | 0.587785i | 0 | 1.00000i | ||||||||
431.3 | 0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | −0.951057 | + | 0.309017i | 0 | 0.0728709 | − | 0.100298i | −0.809017 | + | 0.587785i | 0 | 1.00000i | ||||||||
431.4 | 0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | −0.951057 | + | 0.309017i | 0 | 1.97378 | − | 2.71668i | −0.809017 | + | 0.587785i | 0 | 1.00000i | ||||||||
431.5 | 0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | 0.951057 | − | 0.309017i | 0 | −1.76442 | + | 2.42852i | −0.809017 | + | 0.587785i | 0 | − | 1.00000i | |||||||
431.6 | 0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | 0.951057 | − | 0.309017i | 0 | −0.616585 | + | 0.848657i | −0.809017 | + | 0.587785i | 0 | − | 1.00000i | |||||||
431.7 | 0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | 0.951057 | − | 0.309017i | 0 | 0.0895822 | − | 0.123299i | −0.809017 | + | 0.587785i | 0 | − | 1.00000i | |||||||
431.8 | 0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | 0.951057 | − | 0.309017i | 0 | 2.29143 | − | 3.15388i | −0.809017 | + | 0.587785i | 0 | − | 1.00000i | |||||||
611.1 | 0.309017 | + | 0.951057i | 0 | −0.809017 | + | 0.587785i | −0.951057 | − | 0.309017i | 0 | −1.27614 | − | 1.75646i | −0.809017 | − | 0.587785i | 0 | − | 1.00000i | |||||||
611.2 | 0.309017 | + | 0.951057i | 0 | −0.809017 | + | 0.587785i | −0.951057 | − | 0.309017i | 0 | −0.770514 | − | 1.06052i | −0.809017 | − | 0.587785i | 0 | − | 1.00000i | |||||||
611.3 | 0.309017 | + | 0.951057i | 0 | −0.809017 | + | 0.587785i | −0.951057 | − | 0.309017i | 0 | 0.0728709 | + | 0.100298i | −0.809017 | − | 0.587785i | 0 | − | 1.00000i | |||||||
611.4 | 0.309017 | + | 0.951057i | 0 | −0.809017 | + | 0.587785i | −0.951057 | − | 0.309017i | 0 | 1.97378 | + | 2.71668i | −0.809017 | − | 0.587785i | 0 | − | 1.00000i | |||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
33.f | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 990.2.z.a | ✓ | 32 |
3.b | odd | 2 | 1 | 990.2.z.b | yes | 32 | |
11.d | odd | 10 | 1 | 990.2.z.b | yes | 32 | |
33.f | even | 10 | 1 | inner | 990.2.z.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
990.2.z.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
990.2.z.a | ✓ | 32 | 33.f | even | 10 | 1 | inner |
990.2.z.b | yes | 32 | 3.b | odd | 2 | 1 | |
990.2.z.b | yes | 32 | 11.d | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{17}^{32} - 4 T_{17}^{31} + 66 T_{17}^{30} - 140 T_{17}^{29} + 3945 T_{17}^{28} - 14212 T_{17}^{27} + \cdots + 15352201216 \)
acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\).