Properties

Label 990.2.z.a.161.6
Level $990$
Weight $2$
Character 990.161
Analytic conductor $7.905$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(161,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.z (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.6
Character \(\chi\) \(=\) 990.161
Dual form 990.2.z.a.701.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{4} +(0.587785 + 0.809017i) q^{5} +(-1.61538 + 0.524868i) q^{7} +(0.309017 - 0.951057i) q^{8} -1.00000i q^{10} +(1.21558 + 3.08583i) q^{11} +(3.64570 - 5.01788i) q^{13} +(1.61538 + 0.524868i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(-5.56507 + 4.04326i) q^{17} +(2.46543 + 0.801067i) q^{19} +(-0.587785 + 0.809017i) q^{20} +(0.830387 - 3.21099i) q^{22} -0.389823i q^{23} +(-0.309017 + 0.951057i) q^{25} +(-5.89887 + 1.91666i) q^{26} +(-0.998357 - 1.37412i) q^{28} +(-0.320948 - 0.987777i) q^{29} +(6.40408 + 4.65284i) q^{31} +1.00000 q^{32} +6.87881 q^{34} +(-1.37412 - 0.998357i) q^{35} +(0.965076 + 2.97020i) q^{37} +(-1.52372 - 2.09722i) q^{38} +(0.951057 - 0.309017i) q^{40} +(-3.40165 + 10.4692i) q^{41} +5.33269i q^{43} +(-2.55917 + 2.10966i) q^{44} +(-0.229132 + 0.315373i) q^{46} +(3.49808 + 1.13660i) q^{47} +(-3.32916 + 2.41878i) q^{49} +(0.809017 - 0.587785i) q^{50} +(5.89887 + 1.91666i) q^{52} +(-2.34381 + 3.22598i) q^{53} +(-1.78200 + 2.79723i) q^{55} +1.69851i q^{56} +(-0.320948 + 0.987777i) q^{58} +(1.21751 - 0.395593i) q^{59} +(-5.79653 - 7.97824i) q^{61} +(-2.44614 - 7.52845i) q^{62} +(-0.809017 - 0.587785i) q^{64} +6.20244 q^{65} +3.54231 q^{67} +(-5.56507 - 4.04326i) q^{68} +(0.524868 + 1.61538i) q^{70} +(8.36599 + 11.5148i) q^{71} +(-4.28390 + 1.39192i) q^{73} +(0.965076 - 2.97020i) q^{74} +2.59231i q^{76} +(-3.58327 - 4.34677i) q^{77} +(4.79552 - 6.60047i) q^{79} +(-0.951057 - 0.309017i) q^{80} +(8.90564 - 6.47033i) q^{82} +(2.87351 - 2.08772i) q^{83} +(-6.54214 - 2.12567i) q^{85} +(3.13448 - 4.31424i) q^{86} +(3.31044 - 0.202506i) q^{88} +13.5907i q^{89} +(-3.25546 + 10.0193i) q^{91} +(0.370743 - 0.120462i) q^{92} +(-2.16193 - 2.97565i) q^{94} +(0.801067 + 2.46543i) q^{95} +(14.8654 + 10.8004i) q^{97} +4.11507 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{2} - 8 q^{4} - 8 q^{8} - 8 q^{16} + 4 q^{17} + 8 q^{25} - 8 q^{29} + 32 q^{31} + 32 q^{32} + 24 q^{34} + 16 q^{37} + 32 q^{41} - 20 q^{46} - 20 q^{47} + 16 q^{49} + 8 q^{50} - 40 q^{53} + 8 q^{55}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) 0 0
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.587785 + 0.809017i 0.262866 + 0.361803i
\(6\) 0 0
\(7\) −1.61538 + 0.524868i −0.610555 + 0.198381i −0.597942 0.801539i \(-0.704015\pi\)
−0.0126126 + 0.999920i \(0.504015\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) 1.21558 + 3.08583i 0.366510 + 0.930414i
\(12\) 0 0
\(13\) 3.64570 5.01788i 1.01114 1.39171i 0.0928990 0.995676i \(-0.470387\pi\)
0.918236 0.396033i \(-0.129613\pi\)
\(14\) 1.61538 + 0.524868i 0.431727 + 0.140277i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −5.56507 + 4.04326i −1.34973 + 0.980635i −0.350704 + 0.936486i \(0.614058\pi\)
−0.999025 + 0.0441490i \(0.985942\pi\)
\(18\) 0 0
\(19\) 2.46543 + 0.801067i 0.565609 + 0.183777i 0.577843 0.816148i \(-0.303894\pi\)
−0.0122346 + 0.999925i \(0.503894\pi\)
\(20\) −0.587785 + 0.809017i −0.131433 + 0.180902i
\(21\) 0 0
\(22\) 0.830387 3.21099i 0.177039 0.684585i
\(23\) 0.389823i 0.0812837i −0.999174 0.0406418i \(-0.987060\pi\)
0.999174 0.0406418i \(-0.0129403\pi\)
\(24\) 0 0
\(25\) −0.309017 + 0.951057i −0.0618034 + 0.190211i
\(26\) −5.89887 + 1.91666i −1.15686 + 0.375888i
\(27\) 0 0
\(28\) −0.998357 1.37412i −0.188672 0.259684i
\(29\) −0.320948 0.987777i −0.0595986 0.183426i 0.916825 0.399290i \(-0.130743\pi\)
−0.976423 + 0.215864i \(0.930743\pi\)
\(30\) 0 0
\(31\) 6.40408 + 4.65284i 1.15021 + 0.835675i 0.988508 0.151166i \(-0.0483026\pi\)
0.161699 + 0.986840i \(0.448303\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 6.87881 1.17971
\(35\) −1.37412 0.998357i −0.232269 0.168753i
\(36\) 0 0
\(37\) 0.965076 + 2.97020i 0.158657 + 0.488297i 0.998513 0.0545124i \(-0.0173604\pi\)
−0.839856 + 0.542810i \(0.817360\pi\)
\(38\) −1.52372 2.09722i −0.247180 0.340214i
\(39\) 0 0
\(40\) 0.951057 0.309017i 0.150375 0.0488599i
\(41\) −3.40165 + 10.4692i −0.531249 + 1.63502i 0.220369 + 0.975417i \(0.429274\pi\)
−0.751618 + 0.659599i \(0.770726\pi\)
\(42\) 0 0
\(43\) 5.33269i 0.813228i 0.913600 + 0.406614i \(0.133291\pi\)
−0.913600 + 0.406614i \(0.866709\pi\)
\(44\) −2.55917 + 2.10966i −0.385809 + 0.318043i
\(45\) 0 0
\(46\) −0.229132 + 0.315373i −0.0337837 + 0.0464992i
\(47\) 3.49808 + 1.13660i 0.510248 + 0.165789i 0.552815 0.833304i \(-0.313554\pi\)
−0.0425673 + 0.999094i \(0.513554\pi\)
\(48\) 0 0
\(49\) −3.32916 + 2.41878i −0.475595 + 0.345540i
\(50\) 0.809017 0.587785i 0.114412 0.0831254i
\(51\) 0 0
\(52\) 5.89887 + 1.91666i 0.818026 + 0.265793i
\(53\) −2.34381 + 3.22598i −0.321947 + 0.443122i −0.939060 0.343752i \(-0.888302\pi\)
0.617113 + 0.786874i \(0.288302\pi\)
\(54\) 0 0
\(55\) −1.78200 + 2.79723i −0.240284 + 0.377178i
\(56\) 1.69851i 0.226973i
\(57\) 0 0
\(58\) −0.320948 + 0.987777i −0.0421426 + 0.129701i
\(59\) 1.21751 0.395593i 0.158506 0.0515018i −0.228689 0.973500i \(-0.573444\pi\)
0.387195 + 0.921998i \(0.373444\pi\)
\(60\) 0 0
\(61\) −5.79653 7.97824i −0.742170 1.02151i −0.998491 0.0549171i \(-0.982511\pi\)
0.256321 0.966592i \(-0.417489\pi\)
\(62\) −2.44614 7.52845i −0.310660 0.956114i
\(63\) 0 0
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 6.20244 0.769317
\(66\) 0 0
\(67\) 3.54231 0.432762 0.216381 0.976309i \(-0.430575\pi\)
0.216381 + 0.976309i \(0.430575\pi\)
\(68\) −5.56507 4.04326i −0.674864 0.490318i
\(69\) 0 0
\(70\) 0.524868 + 1.61538i 0.0627337 + 0.193074i
\(71\) 8.36599 + 11.5148i 0.992861 + 1.36656i 0.929605 + 0.368558i \(0.120148\pi\)
0.0632560 + 0.997997i \(0.479852\pi\)
\(72\) 0 0
\(73\) −4.28390 + 1.39192i −0.501393 + 0.162912i −0.548784 0.835964i \(-0.684909\pi\)
0.0473915 + 0.998876i \(0.484909\pi\)
\(74\) 0.965076 2.97020i 0.112188 0.345278i
\(75\) 0 0
\(76\) 2.59231i 0.297358i
\(77\) −3.58327 4.34677i −0.408351 0.495360i
\(78\) 0 0
\(79\) 4.79552 6.60047i 0.539538 0.742611i −0.449008 0.893528i \(-0.648223\pi\)
0.988546 + 0.150917i \(0.0482226\pi\)
\(80\) −0.951057 0.309017i −0.106331 0.0345492i
\(81\) 0 0
\(82\) 8.90564 6.47033i 0.983464 0.714528i
\(83\) 2.87351 2.08772i 0.315408 0.229158i −0.418805 0.908076i \(-0.637551\pi\)
0.734214 + 0.678918i \(0.237551\pi\)
\(84\) 0 0
\(85\) −6.54214 2.12567i −0.709594 0.230561i
\(86\) 3.13448 4.31424i 0.338000 0.465217i
\(87\) 0 0
\(88\) 3.31044 0.202506i 0.352894 0.0215872i
\(89\) 13.5907i 1.44061i 0.693658 + 0.720305i \(0.255998\pi\)
−0.693658 + 0.720305i \(0.744002\pi\)
\(90\) 0 0
\(91\) −3.25546 + 10.0193i −0.341265 + 1.05030i
\(92\) 0.370743 0.120462i 0.0386527 0.0125590i
\(93\) 0 0
\(94\) −2.16193 2.97565i −0.222986 0.306914i
\(95\) 0.801067 + 2.46543i 0.0821878 + 0.252948i
\(96\) 0 0
\(97\) 14.8654 + 10.8004i 1.50936 + 1.09661i 0.966461 + 0.256812i \(0.0826721\pi\)
0.542896 + 0.839800i \(0.317328\pi\)
\(98\) 4.11507 0.415685
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 6.03094 + 4.38173i 0.600101 + 0.435999i 0.845915 0.533318i \(-0.179055\pi\)
−0.245814 + 0.969317i \(0.579055\pi\)
\(102\) 0 0
\(103\) −3.95198 12.1630i −0.389401 1.19845i −0.933237 0.359261i \(-0.883029\pi\)
0.543837 0.839191i \(-0.316971\pi\)
\(104\) −3.64570 5.01788i −0.357490 0.492043i
\(105\) 0 0
\(106\) 3.79237 1.23221i 0.368347 0.119683i
\(107\) 5.45349 16.7841i 0.527209 1.62258i −0.232698 0.972549i \(-0.574755\pi\)
0.759907 0.650032i \(-0.225245\pi\)
\(108\) 0 0
\(109\) 14.2681i 1.36664i 0.730119 + 0.683320i \(0.239465\pi\)
−0.730119 + 0.683320i \(0.760535\pi\)
\(110\) 3.08583 1.21558i 0.294223 0.115901i
\(111\) 0 0
\(112\) 0.998357 1.37412i 0.0943359 0.129842i
\(113\) −2.41268 0.783929i −0.226966 0.0737458i 0.193326 0.981135i \(-0.438072\pi\)
−0.420292 + 0.907389i \(0.638072\pi\)
\(114\) 0 0
\(115\) 0.315373 0.229132i 0.0294087 0.0213667i
\(116\) 0.840253 0.610480i 0.0780155 0.0566816i
\(117\) 0 0
\(118\) −1.21751 0.395593i −0.112081 0.0364173i
\(119\) 6.86751 9.45232i 0.629544 0.866493i
\(120\) 0 0
\(121\) −8.04475 + 7.50213i −0.731341 + 0.682012i
\(122\) 9.86165i 0.892831i
\(123\) 0 0
\(124\) −2.44614 + 7.52845i −0.219670 + 0.676075i
\(125\) −0.951057 + 0.309017i −0.0850651 + 0.0276393i
\(126\) 0 0
\(127\) 8.07117 + 11.1090i 0.716201 + 0.985766i 0.999641 + 0.0267758i \(0.00852403\pi\)
−0.283441 + 0.958990i \(0.591476\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 0 0
\(130\) −5.01788 3.64570i −0.440097 0.319749i
\(131\) −12.0625 −1.05390 −0.526952 0.849895i \(-0.676665\pi\)
−0.526952 + 0.849895i \(0.676665\pi\)
\(132\) 0 0
\(133\) −4.40305 −0.381793
\(134\) −2.86579 2.08212i −0.247567 0.179868i
\(135\) 0 0
\(136\) 2.12567 + 6.54214i 0.182275 + 0.560984i
\(137\) 1.92393 + 2.64806i 0.164373 + 0.226239i 0.883256 0.468891i \(-0.155346\pi\)
−0.718883 + 0.695131i \(0.755346\pi\)
\(138\) 0 0
\(139\) 14.9675 4.86324i 1.26953 0.412495i 0.404648 0.914473i \(-0.367394\pi\)
0.864880 + 0.501978i \(0.167394\pi\)
\(140\) 0.524868 1.61538i 0.0443594 0.136524i
\(141\) 0 0
\(142\) 14.2331i 1.19441i
\(143\) 19.9160 + 5.15042i 1.66546 + 0.430700i
\(144\) 0 0
\(145\) 0.610480 0.840253i 0.0506976 0.0697792i
\(146\) 4.28390 + 1.39192i 0.354538 + 0.115196i
\(147\) 0 0
\(148\) −2.52660 + 1.83568i −0.207685 + 0.150892i
\(149\) 12.2411 8.89368i 1.00283 0.728598i 0.0401366 0.999194i \(-0.487221\pi\)
0.962693 + 0.270596i \(0.0872207\pi\)
\(150\) 0 0
\(151\) −2.96425 0.963144i −0.241227 0.0783795i 0.185908 0.982567i \(-0.440477\pi\)
−0.427136 + 0.904188i \(0.640477\pi\)
\(152\) 1.52372 2.09722i 0.123590 0.170107i
\(153\) 0 0
\(154\) 0.343958 + 5.62280i 0.0277169 + 0.453098i
\(155\) 7.91588i 0.635819i
\(156\) 0 0
\(157\) −0.169013 + 0.520169i −0.0134887 + 0.0415140i −0.957574 0.288186i \(-0.906948\pi\)
0.944086 + 0.329700i \(0.106948\pi\)
\(158\) −7.75932 + 2.52115i −0.617298 + 0.200572i
\(159\) 0 0
\(160\) 0.587785 + 0.809017i 0.0464685 + 0.0639584i
\(161\) 0.204605 + 0.629710i 0.0161252 + 0.0496281i
\(162\) 0 0
\(163\) −16.5943 12.0565i −1.29977 0.944335i −0.299813 0.953998i \(-0.596924\pi\)
−0.999953 + 0.00966293i \(0.996924\pi\)
\(164\) −11.0080 −0.859579
\(165\) 0 0
\(166\) −3.55185 −0.275677
\(167\) −14.3586 10.4321i −1.11110 0.807261i −0.128263 0.991740i \(-0.540940\pi\)
−0.982836 + 0.184479i \(0.940940\pi\)
\(168\) 0 0
\(169\) −7.87073 24.2236i −0.605441 1.86335i
\(170\) 4.04326 + 5.56507i 0.310104 + 0.426822i
\(171\) 0 0
\(172\) −5.07169 + 1.64789i −0.386713 + 0.125651i
\(173\) 7.35405 22.6334i 0.559118 1.72079i −0.125695 0.992069i \(-0.540116\pi\)
0.684813 0.728719i \(-0.259884\pi\)
\(174\) 0 0
\(175\) 1.69851i 0.128395i
\(176\) −2.79723 1.78200i −0.210849 0.134323i
\(177\) 0 0
\(178\) 7.98840 10.9951i 0.598756 0.824117i
\(179\) −5.41896 1.76073i −0.405032 0.131603i 0.0994139 0.995046i \(-0.468303\pi\)
−0.504446 + 0.863443i \(0.668303\pi\)
\(180\) 0 0
\(181\) −5.97112 + 4.33827i −0.443830 + 0.322461i −0.787155 0.616755i \(-0.788447\pi\)
0.343325 + 0.939217i \(0.388447\pi\)
\(182\) 8.52290 6.19225i 0.631759 0.459000i
\(183\) 0 0
\(184\) −0.370743 0.120462i −0.0273316 0.00888057i
\(185\) −1.83568 + 2.52660i −0.134962 + 0.185759i
\(186\) 0 0
\(187\) −19.2416 12.2580i −1.40709 0.896394i
\(188\) 3.67810i 0.268253i
\(189\) 0 0
\(190\) 0.801067 2.46543i 0.0581155 0.178861i
\(191\) 6.81335 2.21379i 0.492997 0.160184i −0.0519588 0.998649i \(-0.516546\pi\)
0.544956 + 0.838465i \(0.316546\pi\)
\(192\) 0 0
\(193\) −3.47734 4.78614i −0.250304 0.344514i 0.665314 0.746564i \(-0.268298\pi\)
−0.915618 + 0.402050i \(0.868298\pi\)
\(194\) −5.67809 17.4754i −0.407663 1.25466i
\(195\) 0 0
\(196\) −3.32916 2.41878i −0.237797 0.172770i
\(197\) −15.3348 −1.09256 −0.546278 0.837604i \(-0.683956\pi\)
−0.546278 + 0.837604i \(0.683956\pi\)
\(198\) 0 0
\(199\) −4.15221 −0.294343 −0.147171 0.989111i \(-0.547017\pi\)
−0.147171 + 0.989111i \(0.547017\pi\)
\(200\) 0.809017 + 0.587785i 0.0572061 + 0.0415627i
\(201\) 0 0
\(202\) −2.30361 7.08979i −0.162082 0.498836i
\(203\) 1.03690 + 1.42718i 0.0727764 + 0.100168i
\(204\) 0 0
\(205\) −10.4692 + 3.40165i −0.731201 + 0.237582i
\(206\) −3.95198 + 12.1630i −0.275348 + 0.847433i
\(207\) 0 0
\(208\) 6.20244i 0.430062i
\(209\) 0.524957 + 8.58167i 0.0363121 + 0.593607i
\(210\) 0 0
\(211\) −4.45306 + 6.12911i −0.306561 + 0.421945i −0.934305 0.356475i \(-0.883979\pi\)
0.627744 + 0.778420i \(0.283979\pi\)
\(212\) −3.79237 1.23221i −0.260461 0.0846288i
\(213\) 0 0
\(214\) −14.2774 + 10.3732i −0.975984 + 0.709094i
\(215\) −4.31424 + 3.13448i −0.294229 + 0.213770i
\(216\) 0 0
\(217\) −12.7871 4.15479i −0.868047 0.282046i
\(218\) 8.38660 11.5432i 0.568012 0.781802i
\(219\) 0 0
\(220\) −3.21099 0.830387i −0.216485 0.0559847i
\(221\) 42.6654i 2.86998i
\(222\) 0 0
\(223\) −5.98584 + 18.4225i −0.400842 + 1.23366i 0.523476 + 0.852040i \(0.324635\pi\)
−0.924318 + 0.381623i \(0.875365\pi\)
\(224\) −1.61538 + 0.524868i −0.107932 + 0.0350692i
\(225\) 0 0
\(226\) 1.49112 + 2.05235i 0.0991879 + 0.136520i
\(227\) −5.95408 18.3248i −0.395186 1.21626i −0.928816 0.370541i \(-0.879172\pi\)
0.533630 0.845718i \(-0.320828\pi\)
\(228\) 0 0
\(229\) 8.65927 + 6.29133i 0.572221 + 0.415743i 0.835911 0.548865i \(-0.184940\pi\)
−0.263690 + 0.964607i \(0.584940\pi\)
\(230\) −0.389823 −0.0257042
\(231\) 0 0
\(232\) −1.03861 −0.0681881
\(233\) −7.82880 5.68796i −0.512882 0.372631i 0.301034 0.953613i \(-0.402668\pi\)
−0.813916 + 0.580983i \(0.802668\pi\)
\(234\) 0 0
\(235\) 1.13660 + 3.49808i 0.0741433 + 0.228190i
\(236\) 0.752462 + 1.03568i 0.0489811 + 0.0674167i
\(237\) 0 0
\(238\) −11.1119 + 3.61046i −0.720275 + 0.234032i
\(239\) 3.46127 10.6527i 0.223891 0.689066i −0.774511 0.632560i \(-0.782004\pi\)
0.998402 0.0565060i \(-0.0179960\pi\)
\(240\) 0 0
\(241\) 11.8973i 0.766372i −0.923671 0.383186i \(-0.874827\pi\)
0.923671 0.383186i \(-0.125173\pi\)
\(242\) 10.9180 1.34077i 0.701835 0.0861877i
\(243\) 0 0
\(244\) 5.79653 7.97824i 0.371085 0.510754i
\(245\) −3.91367 1.27163i −0.250035 0.0812413i
\(246\) 0 0
\(247\) 13.0079 9.45078i 0.827672 0.601339i
\(248\) 6.40408 4.65284i 0.406660 0.295456i
\(249\) 0 0
\(250\) 0.951057 + 0.309017i 0.0601501 + 0.0195440i
\(251\) 11.4895 15.8140i 0.725212 0.998169i −0.274122 0.961695i \(-0.588387\pi\)
0.999335 0.0364742i \(-0.0116127\pi\)
\(252\) 0 0
\(253\) 1.20293 0.473859i 0.0756275 0.0297913i
\(254\) 13.7315i 0.861591i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −22.4112 + 7.28184i −1.39797 + 0.454229i −0.908535 0.417810i \(-0.862798\pi\)
−0.489438 + 0.872038i \(0.662798\pi\)
\(258\) 0 0
\(259\) −3.11792 4.29145i −0.193738 0.266658i
\(260\) 1.91666 + 5.89887i 0.118866 + 0.365832i
\(261\) 0 0
\(262\) 9.75875 + 7.09014i 0.602897 + 0.438031i
\(263\) −1.83788 −0.113329 −0.0566643 0.998393i \(-0.518046\pi\)
−0.0566643 + 0.998393i \(0.518046\pi\)
\(264\) 0 0
\(265\) −3.98753 −0.244952
\(266\) 3.56215 + 2.58805i 0.218409 + 0.158684i
\(267\) 0 0
\(268\) 1.09463 + 3.36894i 0.0668654 + 0.205791i
\(269\) −10.2392 14.0930i −0.624294 0.859268i 0.373362 0.927686i \(-0.378205\pi\)
−0.997657 + 0.0684181i \(0.978205\pi\)
\(270\) 0 0
\(271\) −24.4590 + 7.94721i −1.48578 + 0.482759i −0.935834 0.352442i \(-0.885351\pi\)
−0.549945 + 0.835201i \(0.685351\pi\)
\(272\) 2.12567 6.54214i 0.128888 0.396675i
\(273\) 0 0
\(274\) 3.27319i 0.197740i
\(275\) −3.31044 + 0.202506i −0.199627 + 0.0122116i
\(276\) 0 0
\(277\) 6.36164 8.75605i 0.382234 0.526100i −0.573941 0.818897i \(-0.694586\pi\)
0.956175 + 0.292797i \(0.0945859\pi\)
\(278\) −14.9675 4.86324i −0.897692 0.291678i
\(279\) 0 0
\(280\) −1.37412 + 0.998357i −0.0821194 + 0.0596633i
\(281\) 8.83847 6.42152i 0.527259 0.383076i −0.292073 0.956396i \(-0.594345\pi\)
0.819331 + 0.573320i \(0.194345\pi\)
\(282\) 0 0
\(283\) 16.3072 + 5.29853i 0.969361 + 0.314965i 0.750558 0.660804i \(-0.229785\pi\)
0.218803 + 0.975769i \(0.429785\pi\)
\(284\) −8.36599 + 11.5148i −0.496430 + 0.683278i
\(285\) 0 0
\(286\) −13.0850 15.8731i −0.773733 0.938595i
\(287\) 18.6971i 1.10366i
\(288\) 0 0
\(289\) 9.36879 28.8342i 0.551105 1.69613i
\(290\) −0.987777 + 0.320948i −0.0580042 + 0.0188467i
\(291\) 0 0
\(292\) −2.64760 3.64410i −0.154939 0.213255i
\(293\) 3.77542 + 11.6196i 0.220563 + 0.678822i 0.998712 + 0.0507424i \(0.0161588\pi\)
−0.778149 + 0.628080i \(0.783841\pi\)
\(294\) 0 0
\(295\) 1.03568 + 0.752462i 0.0602993 + 0.0438100i
\(296\) 3.12305 0.181524
\(297\) 0 0
\(298\) −15.1308 −0.876505
\(299\) −1.95608 1.42118i −0.113123 0.0821888i
\(300\) 0 0
\(301\) −2.79896 8.61431i −0.161329 0.496521i
\(302\) 1.83201 + 2.52154i 0.105420 + 0.145098i
\(303\) 0 0
\(304\) −2.46543 + 0.801067i −0.141402 + 0.0459444i
\(305\) 3.04742 9.37898i 0.174495 0.537039i
\(306\) 0 0
\(307\) 18.6138i 1.06235i 0.847263 + 0.531173i \(0.178249\pi\)
−0.847263 + 0.531173i \(0.821751\pi\)
\(308\) 3.02673 4.75111i 0.172464 0.270720i
\(309\) 0 0
\(310\) 4.65284 6.40408i 0.264264 0.363728i
\(311\) 14.1410 + 4.59468i 0.801862 + 0.260541i 0.681147 0.732147i \(-0.261481\pi\)
0.120715 + 0.992687i \(0.461481\pi\)
\(312\) 0 0
\(313\) −1.26108 + 0.916230i −0.0712806 + 0.0517884i −0.622855 0.782337i \(-0.714027\pi\)
0.551574 + 0.834126i \(0.314027\pi\)
\(314\) 0.442482 0.321482i 0.0249707 0.0181423i
\(315\) 0 0
\(316\) 7.75932 + 2.52115i 0.436496 + 0.141826i
\(317\) 12.9866 17.8745i 0.729401 1.00393i −0.269758 0.962928i \(-0.586944\pi\)
0.999159 0.0410064i \(-0.0130564\pi\)
\(318\) 0 0
\(319\) 2.65798 2.19111i 0.148818 0.122679i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) 0.204605 0.629710i 0.0114022 0.0350924i
\(323\) −16.9592 + 5.51039i −0.943637 + 0.306606i
\(324\) 0 0
\(325\) 3.64570 + 5.01788i 0.202227 + 0.278342i
\(326\) 6.33846 + 19.5078i 0.351055 + 1.08044i
\(327\) 0 0
\(328\) 8.90564 + 6.47033i 0.491732 + 0.357264i
\(329\) −6.24728 −0.344424
\(330\) 0 0
\(331\) 18.6696 1.02618 0.513088 0.858336i \(-0.328501\pi\)
0.513088 + 0.858336i \(0.328501\pi\)
\(332\) 2.87351 + 2.08772i 0.157704 + 0.114579i
\(333\) 0 0
\(334\) 5.48448 + 16.8795i 0.300098 + 0.923606i
\(335\) 2.08212 + 2.86579i 0.113758 + 0.156575i
\(336\) 0 0
\(337\) 1.82329 0.592422i 0.0993207 0.0322713i −0.258935 0.965895i \(-0.583372\pi\)
0.358256 + 0.933623i \(0.383372\pi\)
\(338\) −7.87073 + 24.2236i −0.428111 + 1.31759i
\(339\) 0 0
\(340\) 6.87881i 0.373056i
\(341\) −6.57324 + 25.4178i −0.355961 + 1.37645i
\(342\) 0 0
\(343\) 11.0968 15.2735i 0.599172 0.824689i
\(344\) 5.07169 + 1.64789i 0.273447 + 0.0888485i
\(345\) 0 0
\(346\) −19.2531 + 13.9882i −1.03506 + 0.752012i
\(347\) 12.1464 8.82489i 0.652054 0.473745i −0.211916 0.977288i \(-0.567970\pi\)
0.863970 + 0.503543i \(0.167970\pi\)
\(348\) 0 0
\(349\) −28.3676 9.21718i −1.51848 0.493384i −0.573137 0.819460i \(-0.694274\pi\)
−0.945344 + 0.326075i \(0.894274\pi\)
\(350\) −0.998357 + 1.37412i −0.0533645 + 0.0734499i
\(351\) 0 0
\(352\) 1.21558 + 3.08583i 0.0647904 + 0.164476i
\(353\) 3.83534i 0.204135i −0.994777 0.102067i \(-0.967454\pi\)
0.994777 0.102067i \(-0.0325457\pi\)
\(354\) 0 0
\(355\) −4.39826 + 13.5365i −0.233436 + 0.718441i
\(356\) −12.9255 + 4.19975i −0.685051 + 0.222586i
\(357\) 0 0
\(358\) 3.34910 + 4.60964i 0.177006 + 0.243627i
\(359\) 5.12869 + 15.7845i 0.270682 + 0.833073i 0.990330 + 0.138734i \(0.0443032\pi\)
−0.719648 + 0.694339i \(0.755697\pi\)
\(360\) 0 0
\(361\) −9.93468 7.21797i −0.522878 0.379893i
\(362\) 7.38071 0.387922
\(363\) 0 0
\(364\) −10.5349 −0.552178
\(365\) −3.64410 2.64760i −0.190741 0.138582i
\(366\) 0 0
\(367\) 7.55388 + 23.2485i 0.394310 + 1.21356i 0.929498 + 0.368827i \(0.120241\pi\)
−0.535188 + 0.844733i \(0.679759\pi\)
\(368\) 0.229132 + 0.315373i 0.0119443 + 0.0164400i
\(369\) 0 0
\(370\) 2.97020 0.965076i 0.154413 0.0501719i
\(371\) 2.09292 6.44136i 0.108659 0.334419i
\(372\) 0 0
\(373\) 4.42523i 0.229130i 0.993416 + 0.114565i \(0.0365474\pi\)
−0.993416 + 0.114565i \(0.963453\pi\)
\(374\) 8.36171 + 21.2269i 0.432374 + 1.09762i
\(375\) 0 0
\(376\) 2.16193 2.97565i 0.111493 0.153457i
\(377\) −6.12662 1.99066i −0.315537 0.102524i
\(378\) 0 0
\(379\) 13.8438 10.0581i 0.711108 0.516650i −0.172423 0.985023i \(-0.555160\pi\)
0.883531 + 0.468373i \(0.155160\pi\)
\(380\) −2.09722 + 1.52372i −0.107585 + 0.0781652i
\(381\) 0 0
\(382\) −6.81335 2.21379i −0.348601 0.113267i
\(383\) 8.02094 11.0399i 0.409851 0.564111i −0.553331 0.832961i \(-0.686644\pi\)
0.963182 + 0.268850i \(0.0866437\pi\)
\(384\) 0 0
\(385\) 1.41042 5.45389i 0.0718815 0.277956i
\(386\) 5.91600i 0.301116i
\(387\) 0 0
\(388\) −5.67809 + 17.4754i −0.288262 + 0.887178i
\(389\) −20.3193 + 6.60215i −1.03023 + 0.334742i −0.774881 0.632107i \(-0.782190\pi\)
−0.255349 + 0.966849i \(0.582190\pi\)
\(390\) 0 0
\(391\) 1.57616 + 2.16939i 0.0797096 + 0.109711i
\(392\) 1.27163 + 3.91367i 0.0642269 + 0.197670i
\(393\) 0 0
\(394\) 12.4061 + 9.01354i 0.625009 + 0.454096i
\(395\) 8.15863 0.410505
\(396\) 0 0
\(397\) −2.86796 −0.143939 −0.0719694 0.997407i \(-0.522928\pi\)
−0.0719694 + 0.997407i \(0.522928\pi\)
\(398\) 3.35921 + 2.44061i 0.168382 + 0.122337i
\(399\) 0 0
\(400\) −0.309017 0.951057i −0.0154508 0.0475528i
\(401\) −10.5898 14.5756i −0.528830 0.727872i 0.458121 0.888890i \(-0.348523\pi\)
−0.986952 + 0.161017i \(0.948523\pi\)
\(402\) 0 0
\(403\) 46.6947 15.1720i 2.32603 0.755773i
\(404\) −2.30361 + 7.08979i −0.114609 + 0.352730i
\(405\) 0 0
\(406\) 1.76409i 0.0875501i
\(407\) −7.99242 + 6.58856i −0.396169 + 0.326583i
\(408\) 0 0
\(409\) 18.4282 25.3642i 0.911216 1.25418i −0.0555335 0.998457i \(-0.517686\pi\)
0.966750 0.255725i \(-0.0823140\pi\)
\(410\) 10.4692 + 3.40165i 0.517037 + 0.167996i
\(411\) 0 0
\(412\) 10.3464 7.51712i 0.509732 0.370342i
\(413\) −1.75910 + 1.27806i −0.0865597 + 0.0628893i
\(414\) 0 0
\(415\) 3.37801 + 1.09758i 0.165820 + 0.0538782i
\(416\) 3.64570 5.01788i 0.178745 0.246022i
\(417\) 0 0
\(418\) 4.61948 7.25128i 0.225946 0.354672i
\(419\) 5.04085i 0.246262i −0.992390 0.123131i \(-0.960706\pi\)
0.992390 0.123131i \(-0.0392935\pi\)
\(420\) 0 0
\(421\) −5.70729 + 17.5652i −0.278156 + 0.856078i 0.710210 + 0.703989i \(0.248600\pi\)
−0.988367 + 0.152088i \(0.951400\pi\)
\(422\) 7.20520 2.34111i 0.350743 0.113963i
\(423\) 0 0
\(424\) 2.34381 + 3.22598i 0.113826 + 0.156667i
\(425\) −2.12567 6.54214i −0.103110 0.317340i
\(426\) 0 0
\(427\) 13.5511 + 9.84545i 0.655783 + 0.476455i
\(428\) 17.6479 0.853042
\(429\) 0 0
\(430\) 5.33269 0.257165
\(431\) −29.2507 21.2519i −1.40896 1.02367i −0.993473 0.114068i \(-0.963612\pi\)
−0.415485 0.909600i \(-0.636388\pi\)
\(432\) 0 0
\(433\) −6.86971 21.1428i −0.330137 1.01606i −0.969068 0.246794i \(-0.920623\pi\)
0.638931 0.769264i \(-0.279377\pi\)
\(434\) 7.90288 + 10.8774i 0.379350 + 0.522131i
\(435\) 0 0
\(436\) −13.5698 + 4.40910i −0.649876 + 0.211157i
\(437\) 0.312274 0.961081i 0.0149381 0.0459748i
\(438\) 0 0
\(439\) 21.8795i 1.04425i 0.852869 + 0.522125i \(0.174861\pi\)
−0.852869 + 0.522125i \(0.825139\pi\)
\(440\) 2.10966 + 2.55917i 0.100574 + 0.122004i
\(441\) 0 0
\(442\) 25.0781 34.5170i 1.19284 1.64181i
\(443\) 9.35911 + 3.04096i 0.444665 + 0.144480i 0.522787 0.852463i \(-0.324892\pi\)
−0.0781220 + 0.996944i \(0.524892\pi\)
\(444\) 0 0
\(445\) −10.9951 + 7.98840i −0.521217 + 0.378687i
\(446\) 15.6711 11.3857i 0.742050 0.539131i
\(447\) 0 0
\(448\) 1.61538 + 0.524868i 0.0763194 + 0.0247977i
\(449\) 8.35788 11.5036i 0.394433 0.542890i −0.564903 0.825157i \(-0.691086\pi\)
0.959336 + 0.282267i \(0.0910864\pi\)
\(450\) 0 0
\(451\) −36.4412 + 2.22918i −1.71595 + 0.104968i
\(452\) 2.53685i 0.119323i
\(453\) 0 0
\(454\) −5.95408 + 18.3248i −0.279439 + 0.860025i
\(455\) −10.0193 + 3.25546i −0.469711 + 0.152618i
\(456\) 0 0
\(457\) 5.77438 + 7.94776i 0.270114 + 0.371780i 0.922428 0.386168i \(-0.126202\pi\)
−0.652314 + 0.757949i \(0.726202\pi\)
\(458\) −3.30755 10.1796i −0.154552 0.475661i
\(459\) 0 0
\(460\) 0.315373 + 0.229132i 0.0147044 + 0.0106833i
\(461\) 16.2650 0.757535 0.378768 0.925492i \(-0.376348\pi\)
0.378768 + 0.925492i \(0.376348\pi\)
\(462\) 0 0
\(463\) 37.4758 1.74165 0.870824 0.491594i \(-0.163586\pi\)
0.870824 + 0.491594i \(0.163586\pi\)
\(464\) 0.840253 + 0.610480i 0.0390078 + 0.0283408i
\(465\) 0 0
\(466\) 2.99034 + 9.20331i 0.138525 + 0.426335i
\(467\) 15.2076 + 20.9315i 0.703724 + 0.968592i 0.999909 + 0.0134620i \(0.00428522\pi\)
−0.296186 + 0.955130i \(0.595715\pi\)
\(468\) 0 0
\(469\) −5.72217 + 1.85924i −0.264225 + 0.0858519i
\(470\) 1.13660 3.49808i 0.0524272 0.161354i
\(471\) 0 0
\(472\) 1.28017i 0.0589244i
\(473\) −16.4558 + 6.48229i −0.756639 + 0.298056i
\(474\) 0 0
\(475\) −1.52372 + 2.09722i −0.0699131 + 0.0962271i
\(476\) 11.1119 + 3.61046i 0.509312 + 0.165485i
\(477\) 0 0
\(478\) −9.06173 + 6.58374i −0.414474 + 0.301133i
\(479\) 21.6255 15.7119i 0.988095 0.717893i 0.0285918 0.999591i \(-0.490898\pi\)
0.959503 + 0.281698i \(0.0908977\pi\)
\(480\) 0 0
\(481\) 18.4225 + 5.98582i 0.839992 + 0.272930i
\(482\) −6.99305 + 9.62511i −0.318525 + 0.438412i
\(483\) 0 0
\(484\) −9.62092 5.33273i −0.437314 0.242397i
\(485\) 18.3747i 0.834352i
\(486\) 0 0
\(487\) 5.17641 15.9314i 0.234566 0.721918i −0.762613 0.646855i \(-0.776084\pi\)
0.997179 0.0750637i \(-0.0239160\pi\)
\(488\) −9.37898 + 3.04742i −0.424567 + 0.137950i
\(489\) 0 0
\(490\) 2.41878 + 3.32916i 0.109269 + 0.150396i
\(491\) 7.25089 + 22.3159i 0.327228 + 1.00710i 0.970425 + 0.241404i \(0.0776077\pi\)
−0.643197 + 0.765701i \(0.722392\pi\)
\(492\) 0 0
\(493\) 5.77994 + 4.19937i 0.260315 + 0.189130i
\(494\) −16.0786 −0.723411
\(495\) 0 0
\(496\) −7.91588 −0.355434
\(497\) −19.5580 14.2097i −0.877295 0.637392i
\(498\) 0 0
\(499\) 2.16842 + 6.67370i 0.0970717 + 0.298756i 0.987788 0.155804i \(-0.0497967\pi\)
−0.890716 + 0.454559i \(0.849797\pi\)
\(500\) −0.587785 0.809017i −0.0262866 0.0361803i
\(501\) 0 0
\(502\) −18.5904 + 6.04040i −0.829732 + 0.269596i
\(503\) 2.32216 7.14689i 0.103540 0.318664i −0.885845 0.463982i \(-0.846420\pi\)
0.989385 + 0.145318i \(0.0464204\pi\)
\(504\) 0 0
\(505\) 7.45465i 0.331727i
\(506\) −1.25172 0.323704i −0.0556456 0.0143904i
\(507\) 0 0
\(508\) −8.07117 + 11.1090i −0.358100 + 0.492883i
\(509\) 16.7333 + 5.43697i 0.741689 + 0.240989i 0.655401 0.755281i \(-0.272500\pi\)
0.0862879 + 0.996270i \(0.472500\pi\)
\(510\) 0 0
\(511\) 6.18954 4.49696i 0.273809 0.198934i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) 0 0
\(514\) 22.4112 + 7.28184i 0.988516 + 0.321188i
\(515\) 7.51712 10.3464i 0.331244 0.455918i
\(516\) 0 0
\(517\) 0.744837 + 12.1761i 0.0327579 + 0.535505i
\(518\) 5.30452i 0.233067i
\(519\) 0 0
\(520\) 1.91666 5.89887i 0.0840510 0.258682i
\(521\) −1.98950 + 0.646427i −0.0871615 + 0.0283205i −0.352273 0.935897i \(-0.614591\pi\)
0.265112 + 0.964218i \(0.414591\pi\)
\(522\) 0 0
\(523\) 21.8755 + 30.1090i 0.956548 + 1.31657i 0.948557 + 0.316607i \(0.102544\pi\)
0.00799081 + 0.999968i \(0.497456\pi\)
\(524\) −3.72751 11.4721i −0.162837 0.501161i
\(525\) 0 0
\(526\) 1.48688 + 1.08028i 0.0648310 + 0.0471025i
\(527\) −54.4519 −2.37196
\(528\) 0 0
\(529\) 22.8480 0.993393
\(530\) 3.22598 + 2.34381i 0.140128 + 0.101809i
\(531\) 0 0
\(532\) −1.36062 4.18755i −0.0589903 0.181553i
\(533\) 40.1318 + 55.2367i 1.73830 + 2.39257i
\(534\) 0 0
\(535\) 16.7841 5.45349i 0.725640 0.235775i
\(536\) 1.09463 3.36894i 0.0472810 0.145516i
\(537\) 0 0
\(538\) 17.4199i 0.751027i
\(539\) −11.5108 7.33304i −0.495805 0.315856i
\(540\) 0 0
\(541\) 5.83746 8.03457i 0.250972 0.345433i −0.664880 0.746951i \(-0.731517\pi\)
0.915851 + 0.401518i \(0.131517\pi\)
\(542\) 24.4590 + 7.94721i 1.05060 + 0.341362i
\(543\) 0 0
\(544\) −5.56507 + 4.04326i −0.238601 + 0.173353i
\(545\) −11.5432 + 8.38660i −0.494455 + 0.359243i
\(546\) 0 0
\(547\) 7.46450 + 2.42536i 0.319159 + 0.103701i 0.464215 0.885722i \(-0.346336\pi\)
−0.145056 + 0.989423i \(0.546336\pi\)
\(548\) −1.92393 + 2.64806i −0.0821863 + 0.113120i
\(549\) 0 0
\(550\) 2.79723 + 1.78200i 0.119274 + 0.0759845i
\(551\) 2.69240i 0.114700i
\(552\) 0 0
\(553\) −4.28220 + 13.1793i −0.182098 + 0.560439i
\(554\) −10.2934 + 3.34451i −0.437323 + 0.142095i
\(555\) 0 0
\(556\) 9.25043 + 12.7321i 0.392306 + 0.539963i
\(557\) 8.84622 + 27.2259i 0.374826 + 1.15360i 0.943596 + 0.331100i \(0.107420\pi\)
−0.568769 + 0.822497i \(0.692580\pi\)
\(558\) 0 0
\(559\) 26.7588 + 19.4414i 1.13178 + 0.822284i
\(560\) 1.69851 0.0717750
\(561\) 0 0
\(562\) −10.9249 −0.460841
\(563\) −25.3031 18.3837i −1.06640 0.774783i −0.0911355 0.995838i \(-0.529050\pi\)
−0.975261 + 0.221056i \(0.929050\pi\)
\(564\) 0 0
\(565\) −0.783929 2.41268i −0.0329801 0.101502i
\(566\) −10.0784 13.8717i −0.423626 0.583072i
\(567\) 0 0
\(568\) 13.5365 4.39826i 0.567977 0.184547i
\(569\) 4.00931 12.3394i 0.168079 0.517295i −0.831171 0.556017i \(-0.812329\pi\)
0.999250 + 0.0387226i \(0.0123289\pi\)
\(570\) 0 0
\(571\) 29.2178i 1.22273i −0.791350 0.611363i \(-0.790621\pi\)
0.791350 0.611363i \(-0.209379\pi\)
\(572\) 1.25603 + 20.5328i 0.0525172 + 0.858518i
\(573\) 0 0
\(574\) −10.9899 + 15.1263i −0.458709 + 0.631359i
\(575\) 0.370743 + 0.120462i 0.0154611 + 0.00502361i
\(576\) 0 0
\(577\) −14.3177 + 10.4024i −0.596054 + 0.433058i −0.844476 0.535593i \(-0.820088\pi\)
0.248422 + 0.968652i \(0.420088\pi\)
\(578\) −24.5278 + 17.8205i −1.02022 + 0.741235i
\(579\) 0 0
\(580\) 0.987777 + 0.320948i 0.0410152 + 0.0133266i
\(581\) −3.54602 + 4.88067i −0.147114 + 0.202484i
\(582\) 0 0
\(583\) −12.8039 3.31119i −0.530284 0.137136i
\(584\) 4.50436i 0.186392i
\(585\) 0 0
\(586\) 3.77542 11.6196i 0.155961 0.480000i
\(587\) 23.1090 7.50856i 0.953809 0.309911i 0.209547 0.977799i \(-0.432801\pi\)
0.744262 + 0.667887i \(0.232801\pi\)
\(588\) 0 0
\(589\) 12.0616 + 16.6014i 0.496989 + 0.684047i
\(590\) −0.395593 1.21751i −0.0162863 0.0501241i
\(591\) 0 0
\(592\) −2.52660 1.83568i −0.103843 0.0754461i
\(593\) −32.0210 −1.31495 −0.657473 0.753478i \(-0.728375\pi\)
−0.657473 + 0.753478i \(0.728375\pi\)
\(594\) 0 0
\(595\) 11.6837 0.478985
\(596\) 12.2411 + 8.89368i 0.501415 + 0.364299i
\(597\) 0 0
\(598\) 0.747157 + 2.29951i 0.0305535 + 0.0940341i
\(599\) 14.0322 + 19.3137i 0.573341 + 0.789136i 0.992946 0.118571i \(-0.0378314\pi\)
−0.419605 + 0.907707i \(0.637831\pi\)
\(600\) 0 0
\(601\) 44.7645 14.5449i 1.82598 0.593297i 0.826438 0.563027i \(-0.190363\pi\)
0.999542 0.0302696i \(-0.00963659\pi\)
\(602\) −2.79896 + 8.61431i −0.114077 + 0.351093i
\(603\) 0 0
\(604\) 3.11680i 0.126821i
\(605\) −10.7979 2.09870i −0.438999 0.0853242i
\(606\) 0 0
\(607\) −16.5913 + 22.8360i −0.673420 + 0.926883i −0.999832 0.0183447i \(-0.994160\pi\)
0.326412 + 0.945228i \(0.394160\pi\)
\(608\) 2.46543 + 0.801067i 0.0999864 + 0.0324876i
\(609\) 0 0
\(610\) −7.97824 + 5.79653i −0.323029 + 0.234695i
\(611\) 18.4563 13.4093i 0.746660 0.542480i
\(612\) 0 0
\(613\) −13.4962 4.38519i −0.545107 0.177116i 0.0235020 0.999724i \(-0.492518\pi\)
−0.568609 + 0.822608i \(0.692518\pi\)
\(614\) 10.9409 15.0589i 0.441540 0.607727i
\(615\) 0 0
\(616\) −5.24131 + 2.06466i −0.211178 + 0.0831877i
\(617\) 11.3503i 0.456947i 0.973550 + 0.228473i \(0.0733733\pi\)
−0.973550 + 0.228473i \(0.926627\pi\)
\(618\) 0 0
\(619\) 8.24664 25.3805i 0.331460 1.02013i −0.636979 0.770881i \(-0.719816\pi\)
0.968439 0.249249i \(-0.0801837\pi\)
\(620\) −7.52845 + 2.44614i −0.302350 + 0.0982394i
\(621\) 0 0
\(622\) −8.73961 12.0290i −0.350426 0.482320i
\(623\) −7.13331 21.9541i −0.285790 0.879571i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 1.55878 0.0623015
\(627\) 0 0
\(628\) −0.546938 −0.0218252
\(629\) −17.3800 12.6273i −0.692986 0.503484i
\(630\) 0 0
\(631\) −10.7354 33.0401i −0.427369 1.31531i −0.900708 0.434425i \(-0.856952\pi\)
0.473339 0.880880i \(-0.343048\pi\)
\(632\) −4.79552 6.60047i −0.190756 0.262553i
\(633\) 0 0
\(634\) −21.0128 + 6.82747i −0.834525 + 0.271153i
\(635\) −4.24327 + 13.0594i −0.168389 + 0.518248i
\(636\) 0 0
\(637\) 25.5235i 1.01128i
\(638\) −3.43825 + 0.210325i −0.136122 + 0.00832683i
\(639\) 0 0
\(640\) −0.587785 + 0.809017i −0.0232343 + 0.0319792i
\(641\) −22.0975 7.17992i −0.872799 0.283590i −0.161835 0.986818i \(-0.551741\pi\)
−0.710964 + 0.703228i \(0.751741\pi\)
\(642\) 0 0
\(643\) −7.61817 + 5.53492i −0.300431 + 0.218276i −0.727780 0.685811i \(-0.759448\pi\)
0.427349 + 0.904087i \(0.359448\pi\)
\(644\) −0.535664 + 0.389182i −0.0211081 + 0.0153359i
\(645\) 0 0
\(646\) 16.9592 + 5.51039i 0.667252 + 0.216803i
\(647\) 0.944989 1.30067i 0.0371513 0.0511344i −0.790037 0.613059i \(-0.789939\pi\)
0.827189 + 0.561924i \(0.189939\pi\)
\(648\) 0 0
\(649\) 2.70071 + 3.27616i 0.106012 + 0.128601i
\(650\) 6.20244i 0.243280i
\(651\) 0 0
\(652\) 6.33846 19.5078i 0.248233 0.763983i
\(653\) −1.95595 + 0.635525i −0.0765421 + 0.0248700i −0.347038 0.937851i \(-0.612812\pi\)
0.270496 + 0.962721i \(0.412812\pi\)
\(654\) 0 0
\(655\) −7.09014 9.75875i −0.277035 0.381306i
\(656\) −3.40165 10.4692i −0.132812 0.408754i
\(657\) 0 0
\(658\) 5.05416 + 3.67206i 0.197031 + 0.143152i
\(659\) 43.1008 1.67897 0.839484 0.543385i \(-0.182858\pi\)
0.839484 + 0.543385i \(0.182858\pi\)
\(660\) 0 0
\(661\) 27.8596 1.08361 0.541807 0.840503i \(-0.317740\pi\)
0.541807 + 0.840503i \(0.317740\pi\)
\(662\) −15.1041 10.9737i −0.587036 0.426507i
\(663\) 0 0
\(664\) −1.09758 3.37801i −0.0425944 0.131092i
\(665\) −2.58805 3.56215i −0.100360 0.138134i
\(666\) 0 0
\(667\) −0.385058 + 0.125113i −0.0149095 + 0.00484439i
\(668\) 5.48448 16.8795i 0.212201 0.653088i
\(669\) 0 0
\(670\) 3.54231i 0.136851i
\(671\) 17.5734 27.5853i 0.678414 1.06492i
\(672\) 0 0
\(673\) −3.68226 + 5.06820i −0.141941 + 0.195365i −0.874069 0.485803i \(-0.838527\pi\)
0.732128 + 0.681167i \(0.238527\pi\)
\(674\) −1.82329 0.592422i −0.0702304 0.0228192i
\(675\) 0 0
\(676\) 20.6058 14.9710i 0.792532 0.575808i
\(677\) 25.3638 18.4279i 0.974810 0.708241i 0.0182674 0.999833i \(-0.494185\pi\)
0.956543 + 0.291592i \(0.0941850\pi\)
\(678\) 0 0
\(679\) −29.6821 9.64428i −1.13909 0.370114i
\(680\) −4.04326 + 5.56507i −0.155052 + 0.213411i
\(681\) 0 0
\(682\) 20.2581 16.6998i 0.775722 0.639468i
\(683\) 29.4142i 1.12550i 0.826627 + 0.562751i \(0.190257\pi\)
−0.826627 + 0.562751i \(0.809743\pi\)
\(684\) 0 0
\(685\) −1.01147 + 3.11299i −0.0386463 + 0.118941i
\(686\) −17.9550 + 5.83394i −0.685526 + 0.222741i
\(687\) 0 0
\(688\) −3.13448 4.31424i −0.119501 0.164479i
\(689\) 7.64273 + 23.5219i 0.291165 + 0.896113i
\(690\) 0 0
\(691\) −20.5530 14.9327i −0.781874 0.568065i 0.123667 0.992324i \(-0.460535\pi\)
−0.905541 + 0.424259i \(0.860535\pi\)
\(692\) 23.7982 0.904672
\(693\) 0 0
\(694\) −15.0138 −0.569916
\(695\) 12.7321 + 9.25043i 0.482957 + 0.350889i
\(696\) 0 0
\(697\) −23.3993 72.0157i −0.886313 2.72779i
\(698\) 17.5321 + 24.1309i 0.663601 + 0.913368i
\(699\) 0 0
\(700\) 1.61538 0.524868i 0.0610555 0.0198381i
\(701\) −6.19791 + 19.0752i −0.234092 + 0.720460i 0.763149 + 0.646223i \(0.223652\pi\)
−0.997241 + 0.0742375i \(0.976348\pi\)
\(702\) 0 0
\(703\) 8.09591i 0.305343i
\(704\) 0.830387 3.21099i 0.0312964 0.121019i
\(705\) 0 0
\(706\) −2.25436 + 3.10286i −0.0848439 + 0.116778i
\(707\) −12.0421 3.91270i −0.452888 0.147152i
\(708\) 0 0
\(709\) −18.3056 + 13.2998i −0.687482 + 0.499485i −0.875832 0.482617i \(-0.839686\pi\)
0.188349 + 0.982102i \(0.439686\pi\)
\(710\) 11.5148 8.36599i 0.432143 0.313970i
\(711\) 0 0
\(712\) 12.9255 + 4.19975i 0.484404 + 0.157392i
\(713\) 1.81378 2.49646i 0.0679267 0.0934931i
\(714\) 0 0
\(715\) 7.53953 + 19.1397i 0.281962 + 0.715784i
\(716\) 5.69783i 0.212938i
\(717\) 0 0
\(718\) 5.12869 15.7845i 0.191401 0.589072i
\(719\) −16.1703 + 5.25405i −0.603050 + 0.195943i −0.594600 0.804021i \(-0.702690\pi\)
−0.00844994 + 0.999964i \(0.502690\pi\)
\(720\) 0 0
\(721\) 12.7679 + 17.5735i 0.475501 + 0.654471i
\(722\) 3.79471 + 11.6789i 0.141224 + 0.434644i
\(723\) 0 0
\(724\) −5.97112 4.33827i −0.221915 0.161231i
\(725\) 1.03861 0.0385730
\(726\) 0 0
\(727\) −49.7264 −1.84425 −0.922124 0.386893i \(-0.873548\pi\)
−0.922124 + 0.386893i \(0.873548\pi\)
\(728\) 8.52290 + 6.19225i 0.315880 + 0.229500i
\(729\) 0 0
\(730\) 1.39192 + 4.28390i 0.0515174 + 0.158554i
\(731\) −21.5615 29.6768i −0.797481 1.09764i
\(732\) 0 0
\(733\) 6.15015 1.99831i 0.227161 0.0738091i −0.193225 0.981155i \(-0.561895\pi\)
0.420386 + 0.907345i \(0.361895\pi\)
\(734\) 7.55388 23.2485i 0.278819 0.858116i
\(735\) 0 0
\(736\) 0.389823i 0.0143691i
\(737\) 4.30595 + 10.9310i 0.158612 + 0.402648i
\(738\) 0 0
\(739\) 6.60348 9.08891i 0.242913 0.334341i −0.670101 0.742270i \(-0.733749\pi\)
0.913014 + 0.407929i \(0.133749\pi\)
\(740\) −2.97020 0.965076i −0.109187 0.0354769i
\(741\) 0 0
\(742\) −5.47935 + 3.98098i −0.201153 + 0.146146i
\(743\) −33.5835 + 24.3998i −1.23206 + 0.895142i −0.997043 0.0768497i \(-0.975514\pi\)
−0.235015 + 0.971992i \(0.575514\pi\)
\(744\) 0 0
\(745\) 14.3903 + 4.67568i 0.527219 + 0.171304i
\(746\) 2.60109 3.58009i 0.0952326 0.131076i
\(747\) 0 0
\(748\) 5.71207 22.0878i 0.208854 0.807610i
\(749\) 29.9750i 1.09526i
\(750\) 0 0
\(751\) −0.466342 + 1.43525i −0.0170171 + 0.0523732i −0.959204 0.282713i \(-0.908766\pi\)
0.942187 + 0.335086i \(0.108766\pi\)
\(752\) −3.49808 + 1.13660i −0.127562 + 0.0414474i
\(753\) 0 0
\(754\) 3.78646 + 5.21162i 0.137895 + 0.189796i
\(755\) −0.963144 2.96425i −0.0350524 0.107880i
\(756\) 0 0
\(757\) 6.61741 + 4.80783i 0.240514 + 0.174744i 0.701512 0.712657i \(-0.252509\pi\)
−0.460998 + 0.887401i \(0.652509\pi\)
\(758\) −17.1119 −0.621531
\(759\) 0 0
\(760\) 2.59231 0.0940329
\(761\) −9.90410 7.19575i −0.359023 0.260846i 0.393621 0.919273i \(-0.371222\pi\)
−0.752645 + 0.658427i \(0.771222\pi\)
\(762\) 0 0
\(763\) −7.48888 23.0484i −0.271116 0.834409i
\(764\) 4.21088 + 5.79578i 0.152344 + 0.209684i
\(765\) 0 0
\(766\) −12.9781 + 4.21686i −0.468920 + 0.152361i
\(767\) 2.45364 7.55152i 0.0885958 0.272670i
\(768\) 0 0
\(769\) 45.7938i 1.65136i −0.564135 0.825682i \(-0.690790\pi\)
0.564135 0.825682i \(-0.309210\pi\)
\(770\) −4.34677 + 3.58327i −0.156647 + 0.129132i
\(771\) 0 0
\(772\) 3.47734 4.78614i 0.125152 0.172257i
\(773\) −12.0552 3.91696i −0.433594 0.140883i 0.0840840 0.996459i \(-0.473204\pi\)
−0.517678 + 0.855575i \(0.673204\pi\)
\(774\) 0 0
\(775\) −6.40408 + 4.65284i −0.230041 + 0.167135i
\(776\) 14.8654 10.8004i 0.533638 0.387711i
\(777\) 0 0
\(778\) 20.3193 + 6.60215i 0.728483 + 0.236698i
\(779\) −16.7731 + 23.0862i −0.600958 + 0.827148i
\(780\) 0 0
\(781\) −25.3633 + 39.8132i −0.907569 + 1.42463i
\(782\) 2.68152i 0.0958909i
\(783\) 0 0
\(784\) 1.27163 3.91367i 0.0454153 0.139774i
\(785\) −0.520169 + 0.169013i −0.0185656 + 0.00603233i
\(786\) 0 0
\(787\) 11.2679 + 15.5089i 0.401656 + 0.552832i 0.961159 0.275997i \(-0.0890079\pi\)
−0.559503 + 0.828829i \(0.689008\pi\)
\(788\) −4.73870 14.5842i −0.168809 0.519541i
\(789\) 0 0
\(790\) −6.60047 4.79552i −0.234834 0.170617i
\(791\) 4.30885 0.153205
\(792\) 0 0
\(793\) −61.1662 −2.17208
\(794\) 2.32023 + 1.68575i 0.0823419 + 0.0598249i
\(795\) 0 0
\(796\) −1.28310 3.94899i −0.0454784 0.139968i
\(797\) −3.99961 5.50499i −0.141673 0.194997i 0.732284 0.681000i \(-0.238454\pi\)
−0.873957 + 0.486003i \(0.838454\pi\)
\(798\) 0 0
\(799\) −24.0626 + 7.81842i −0.851275 + 0.276596i
\(800\) −0.309017 + 0.951057i −0.0109254 + 0.0336249i
\(801\) 0 0
\(802\) 18.0165i 0.636184i
\(803\) −9.50266 11.5274i −0.335341 0.406794i
\(804\) 0 0
\(805\) −0.389182 + 0.535664i −0.0137169 + 0.0188797i
\(806\) −46.6947 15.1720i −1.64475 0.534412i
\(807\) 0 0
\(808\) 6.03094 4.38173i 0.212168 0.154149i
\(809\) −12.2423 + 8.89457i −0.430417 + 0.312717i −0.781816 0.623509i \(-0.785706\pi\)
0.351398 + 0.936226i \(0.385706\pi\)
\(810\) 0 0
\(811\) 2.61264 + 0.848899i 0.0917423 + 0.0298089i 0.354528 0.935045i \(-0.384641\pi\)
−0.262786 + 0.964854i \(0.584641\pi\)
\(812\) −1.03690 + 1.42718i −0.0363882 + 0.0500841i
\(813\) 0 0
\(814\) 10.3387 0.632436i 0.362370 0.0221669i
\(815\) 20.5117i 0.718493i
\(816\) 0 0
\(817\) −4.27185 + 13.1474i −0.149453 + 0.459969i
\(818\) −29.8175 + 9.68828i −1.04254 + 0.338743i
\(819\) 0 0
\(820\) −6.47033 8.90564i −0.225954 0.310998i
\(821\) −5.31937 16.3713i −0.185647 0.571364i 0.814311 0.580428i \(-0.197115\pi\)
−0.999959 + 0.00906407i \(0.997115\pi\)
\(822\) 0 0
\(823\) 27.4634 + 19.9534i 0.957315 + 0.695530i 0.952526 0.304458i \(-0.0984755\pi\)
0.00478949 + 0.999989i \(0.498475\pi\)
\(824\) −12.7889 −0.445522
\(825\) 0 0
\(826\) 2.17437 0.0756560
\(827\) 1.94119 + 1.41036i 0.0675017 + 0.0490429i 0.621024 0.783791i \(-0.286717\pi\)
−0.553523 + 0.832834i \(0.686717\pi\)
\(828\) 0 0
\(829\) −1.84865 5.68956i −0.0642062 0.197606i 0.913807 0.406148i \(-0.133128\pi\)
−0.978013 + 0.208542i \(0.933128\pi\)
\(830\) −2.08772 2.87351i −0.0724660 0.0997409i
\(831\) 0 0
\(832\) −5.89887 + 1.91666i −0.204506 + 0.0664482i
\(833\) 8.74729 26.9214i 0.303075 0.932770i
\(834\) 0 0
\(835\) 17.7482i 0.614201i
\(836\) −7.99943 + 3.15115i −0.276666 + 0.108985i
\(837\) 0 0
\(838\) −2.96294 + 4.07814i −0.102353 + 0.140877i
\(839\) 21.1525 + 6.87287i 0.730266 + 0.237278i 0.650468 0.759533i \(-0.274573\pi\)
0.0797974 + 0.996811i \(0.474573\pi\)
\(840\) 0 0
\(841\) 22.5888 16.4117i 0.778924 0.565921i
\(842\) 14.9419 10.8559i 0.514932 0.374120i
\(843\) 0 0
\(844\) −7.20520 2.34111i −0.248013 0.0805843i
\(845\) 14.9710 20.6058i 0.515019 0.708862i
\(846\) 0 0
\(847\) 9.05768 16.3412i 0.311225 0.561490i
\(848\) 3.98753i 0.136932i
\(849\) 0 0
\(850\) −2.12567 + 6.54214i −0.0729099 + 0.224393i
\(851\) 1.15785 0.376208i 0.0396906 0.0128963i
\(852\) 0 0
\(853\) −27.8060 38.2717i −0.952059 1.31040i −0.950607 0.310398i \(-0.899538\pi\)
−0.00145281 0.999999i \(-0.500462\pi\)
\(854\) −5.17606 15.9303i −0.177121 0.545123i
\(855\) 0 0
\(856\) −14.2774 10.3732i −0.487992 0.354547i
\(857\) −50.0014 −1.70802 −0.854008 0.520260i \(-0.825835\pi\)
−0.854008 + 0.520260i \(0.825835\pi\)
\(858\) 0 0
\(859\) −43.1879 −1.47355 −0.736776 0.676137i \(-0.763653\pi\)
−0.736776 + 0.676137i \(0.763653\pi\)
\(860\) −4.31424 3.13448i −0.147114 0.106885i
\(861\) 0 0
\(862\) 11.1728 + 34.3863i 0.380546 + 1.17120i
\(863\) 33.4166 + 45.9940i 1.13751 + 1.56565i 0.772942 + 0.634477i \(0.218784\pi\)
0.364571 + 0.931176i \(0.381216\pi\)
\(864\) 0 0
\(865\) 22.6334 7.35405i 0.769560 0.250045i
\(866\) −6.86971 + 21.1428i −0.233442 + 0.718462i
\(867\) 0 0
\(868\) 13.4452i 0.456359i
\(869\) 26.1973 + 6.77482i 0.888682 + 0.229820i
\(870\) 0 0
\(871\) 12.9142 17.7749i 0.437581 0.602279i
\(872\) 13.5698 + 4.40910i 0.459532 + 0.149311i
\(873\) 0 0
\(874\) −0.817545 + 0.593981i −0.0276539 + 0.0200917i
\(875\) 1.37412 0.998357i 0.0464538 0.0337506i
\(876\) 0 0
\(877\) 0.219212 + 0.0712264i 0.00740228 + 0.00240515i 0.312716 0.949847i \(-0.398761\pi\)
−0.305314 + 0.952252i \(0.598761\pi\)
\(878\) 12.8604 17.7009i 0.434019 0.597376i
\(879\) 0 0
\(880\) −0.202506 3.31044i −0.00682647 0.111595i
\(881\) 0.767691i 0.0258642i −0.999916 0.0129321i \(-0.995883\pi\)
0.999916 0.0129321i \(-0.00411652\pi\)
\(882\) 0 0
\(883\) 7.69488 23.6824i 0.258953 0.796976i −0.734072 0.679072i \(-0.762382\pi\)
0.993025 0.117904i \(-0.0376176\pi\)
\(884\) −40.5772 + 13.1843i −1.36476 + 0.443437i
\(885\) 0 0
\(886\) −5.78425 7.96134i −0.194326 0.267466i
\(887\) 4.21923 + 12.9855i 0.141668 + 0.436009i 0.996567 0.0827845i \(-0.0263813\pi\)
−0.854900 + 0.518794i \(0.826381\pi\)
\(888\) 0 0
\(889\) −18.8687 13.7089i −0.632837 0.459783i
\(890\) 13.5907 0.455561
\(891\) 0 0
\(892\) −19.3706 −0.648575
\(893\) 7.71379 + 5.60440i 0.258132 + 0.187544i
\(894\) 0 0
\(895\) −1.76073 5.41896i −0.0588546 0.181136i
\(896\) −0.998357 1.37412i −0.0333528 0.0459062i
\(897\) 0 0
\(898\) −13.5233 + 4.39400i −0.451280 + 0.146630i
\(899\) 2.54059 7.81912i 0.0847333 0.260782i
\(900\) 0 0
\(901\) 27.4295i 0.913808i
\(902\) 30.7918 + 19.6162i 1.02526 + 0.653147i
\(903\) 0 0
\(904\) −1.49112 + 2.05235i −0.0495940 + 0.0682602i
\(905\) −7.01948 2.28077i −0.233335 0.0758152i
\(906\) 0 0
\(907\) −40.4482 + 29.3874i −1.34306 + 0.975791i −0.343736 + 0.939066i \(0.611692\pi\)
−0.999325 + 0.0367247i \(0.988308\pi\)
\(908\) 15.5880 11.3253i 0.517306 0.375845i
\(909\) 0 0
\(910\) 10.0193 + 3.25546i 0.332135 + 0.107917i
\(911\) 31.9556 43.9830i 1.05873 1.45722i 0.177752 0.984075i \(-0.443118\pi\)
0.880983 0.473148i \(-0.156882\pi\)
\(912\) 0 0
\(913\) 9.93534 + 6.32938i 0.328812 + 0.209472i
\(914\) 9.82397i 0.324948i
\(915\) 0 0
\(916\) −3.30755 + 10.1796i −0.109284 + 0.336343i
\(917\) 19.4854 6.33120i 0.643466 0.209075i
\(918\) 0 0
\(919\) 15.1862 + 20.9020i 0.500946 + 0.689492i 0.982360 0.187001i \(-0.0598767\pi\)
−0.481414 + 0.876493i \(0.659877\pi\)
\(920\) −0.120462 0.370743i −0.00397151 0.0122231i
\(921\) 0 0
\(922\) −13.1586 9.56031i −0.433357 0.314852i
\(923\) 88.2797 2.90576
\(924\) 0 0
\(925\) −3.12305 −0.102685
\(926\) −30.3186 22.0277i −0.996330 0.723876i
\(927\) 0 0
\(928\) −0.320948 0.987777i −0.0105356 0.0324254i
\(929\) 7.23178 + 9.95370i 0.237267 + 0.326570i 0.911001 0.412404i \(-0.135311\pi\)
−0.673734 + 0.738974i \(0.735311\pi\)
\(930\) 0 0
\(931\) −10.1454 + 3.29645i −0.332503 + 0.108037i
\(932\) 2.99034 9.20331i 0.0979518 0.301464i
\(933\) 0 0
\(934\) 25.8727i 0.846581i
\(935\) −1.39300 22.7719i −0.0455559 0.744720i
\(936\) 0 0
\(937\) −26.8318 + 36.9307i −0.876555 + 1.20647i 0.100808 + 0.994906i \(0.467857\pi\)
−0.977363 + 0.211569i \(0.932143\pi\)
\(938\) 5.72217 + 1.85924i 0.186835 + 0.0607065i
\(939\) 0 0
\(940\) −2.97565 + 2.16193i −0.0970549 + 0.0705145i
\(941\) 38.0212 27.6240i 1.23945 0.900517i 0.241893 0.970303i \(-0.422232\pi\)
0.997562 + 0.0697865i \(0.0222318\pi\)
\(942\) 0 0
\(943\) 4.08114 + 1.32604i 0.132900 + 0.0431819i
\(944\) −0.752462 + 1.03568i −0.0244906 + 0.0337084i
\(945\) 0 0
\(946\) 17.1232 + 4.42820i 0.556724 + 0.143973i
\(947\) 21.0266i 0.683274i 0.939832 + 0.341637i \(0.110981\pi\)
−0.939832 + 0.341637i \(0.889019\pi\)
\(948\) 0 0
\(949\) −8.63332 + 26.5706i −0.280249 + 0.862519i
\(950\) 2.46543 0.801067i 0.0799892 0.0259901i
\(951\) 0 0
\(952\) −6.86751 9.45232i −0.222577 0.306351i
\(953\) −7.41204 22.8119i −0.240100 0.738951i −0.996404 0.0847307i \(-0.972997\pi\)
0.756304 0.654220i \(-0.227003\pi\)
\(954\) 0 0
\(955\) 5.79578 + 4.21088i 0.187547 + 0.136261i
\(956\) 11.2009 0.362264
\(957\) 0 0
\(958\) −26.7306 −0.863627
\(959\) −4.49776 3.26781i −0.145240 0.105523i
\(960\) 0 0
\(961\) 9.78385 + 30.1116i 0.315608 + 0.971342i
\(962\) −11.3857 15.6711i −0.367090 0.505256i
\(963\) 0 0
\(964\) 11.3150 3.67647i 0.364432 0.118411i
\(965\) 1.82814 5.62645i 0.0588500 0.181122i
\(966\) 0 0
\(967\) 38.0027i 1.22209i 0.791597 + 0.611043i \(0.209250\pi\)
−0.791597 + 0.611043i \(0.790750\pi\)
\(968\) 4.64899 + 9.96930i 0.149424 + 0.320425i
\(969\) 0 0
\(970\) 10.8004 14.8654i 0.346779 0.477301i
\(971\) −13.0185 4.22996i −0.417783 0.135746i 0.0925797 0.995705i \(-0.470489\pi\)
−0.510362 + 0.859959i \(0.670489\pi\)
\(972\) 0 0
\(973\) −21.6256 + 15.7119i −0.693285 + 0.503701i
\(974\) −13.5520 + 9.84612i −0.434235 + 0.315490i
\(975\) 0 0
\(976\) 9.37898 + 3.04742i 0.300214 + 0.0975454i
\(977\) −16.3090 + 22.4474i −0.521770 + 0.718155i −0.985848 0.167640i \(-0.946386\pi\)
0.464079 + 0.885794i \(0.346386\pi\)
\(978\) 0 0
\(979\) −41.9386 + 16.5205i −1.34036 + 0.527998i
\(980\) 4.11507i 0.131451i
\(981\) 0 0
\(982\) 7.25089 22.3159i 0.231385 0.712130i
\(983\) −3.44009 + 1.11775i −0.109722 + 0.0356507i −0.363363 0.931648i \(-0.618372\pi\)
0.253642 + 0.967298i \(0.418372\pi\)
\(984\) 0 0
\(985\) −9.01354 12.4061i −0.287195 0.395290i
\(986\) −2.20774 6.79473i −0.0703088 0.216388i
\(987\) 0 0
\(988\) 13.0079 + 9.45078i 0.413836 + 0.300669i
\(989\) 2.07881 0.0661022
\(990\) 0 0
\(991\) −24.7402 −0.785899 −0.392950 0.919560i \(-0.628545\pi\)
−0.392950 + 0.919560i \(0.628545\pi\)
\(992\) 6.40408 + 4.65284i 0.203330 + 0.147728i
\(993\) 0 0
\(994\) 7.47048 + 22.9918i 0.236949 + 0.729255i
\(995\) −2.44061 3.35921i −0.0773726 0.106494i
\(996\) 0 0
\(997\) −18.3270 + 5.95482i −0.580423 + 0.188591i −0.584490 0.811401i \(-0.698705\pi\)
0.00406703 + 0.999992i \(0.498705\pi\)
\(998\) 2.16842 6.67370i 0.0686400 0.211252i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.z.a.161.6 32
3.2 odd 2 990.2.z.b.161.2 yes 32
11.8 odd 10 990.2.z.b.701.2 yes 32
33.8 even 10 inner 990.2.z.a.701.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.z.a.161.6 32 1.1 even 1 trivial
990.2.z.a.701.6 yes 32 33.8 even 10 inner
990.2.z.b.161.2 yes 32 3.2 odd 2
990.2.z.b.701.2 yes 32 11.8 odd 10