L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (0.587 + 0.809i)5-s + (−1.61 + 0.524i)7-s + (0.309 − 0.951i)8-s − i·10-s + (1.21 + 3.08i)11-s + (3.64 − 5.01i)13-s + (1.61 + 0.524i)14-s + (−0.809 + 0.587i)16-s + (−5.56 + 4.04i)17-s + (2.46 + 0.801i)19-s + (−0.587 + 0.809i)20-s + (0.830 − 3.21i)22-s − 0.389i·23-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.154 + 0.475i)4-s + (0.262 + 0.361i)5-s + (−0.610 + 0.198i)7-s + (0.109 − 0.336i)8-s − 0.316i·10-s + (0.366 + 0.930i)11-s + (1.01 − 1.39i)13-s + (0.431 + 0.140i)14-s + (−0.202 + 0.146i)16-s + (−1.34 + 0.980i)17-s + (0.565 + 0.183i)19-s + (−0.131 + 0.180i)20-s + (0.177 − 0.684i)22-s − 0.0812i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.604 - 0.796i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.604 - 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.944210 + 0.468514i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.944210 + 0.468514i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.587 - 0.809i)T \) |
| 11 | \( 1 + (-1.21 - 3.08i)T \) |
good | 7 | \( 1 + (1.61 - 0.524i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.64 + 5.01i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (5.56 - 4.04i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.46 - 0.801i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 0.389iT - 23T^{2} \) |
| 29 | \( 1 + (0.320 + 0.987i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-6.40 - 4.65i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.965 - 2.97i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (3.40 - 10.4i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 5.33iT - 43T^{2} \) |
| 47 | \( 1 + (-3.49 - 1.13i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (2.34 - 3.22i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.21 + 0.395i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (5.79 + 7.97i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 3.54T + 67T^{2} \) |
| 71 | \( 1 + (-8.36 - 11.5i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (4.28 - 1.39i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-4.79 + 6.60i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-2.87 + 2.08i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 13.5iT - 89T^{2} \) |
| 97 | \( 1 + (-14.8 - 10.8i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09084312455945590614625352295, −9.447341624139664533151240961525, −8.491431537408969207025101657137, −7.82202559741884025923211188222, −6.59041983467993241288657226614, −6.17699487857653927800174459265, −4.74675882480028947011227441962, −3.55336871596919062415048342725, −2.67475838940921816102933274590, −1.34824934863562525812921175844,
0.63660376781456746489672331767, 2.10850486933381914827735301924, 3.58521329037626086233789156804, 4.64214830561486939681020005408, 5.83672226685494862955957548489, 6.55146404156782365213391142784, 7.19172503569679659622730494757, 8.483934950069161459864780086712, 9.035814622361270266680615490450, 9.528739562517880044822354193625