Properties

Label 990.2.t.a.131.11
Level $990$
Weight $2$
Character 990.131
Analytic conductor $7.905$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(131,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 131.11
Character \(\chi\) \(=\) 990.131
Dual form 990.2.t.a.461.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.234765 - 1.71607i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.866025 - 0.500000i) q^{5} +(-1.36878 + 1.06135i) q^{6} +(3.20594 - 1.85095i) q^{7} +1.00000 q^{8} +(-2.88977 + 0.805744i) q^{9} +1.00000i q^{10} +(3.31504 + 0.102382i) q^{11} +(1.60354 + 0.654721i) q^{12} +(-1.47269 - 0.850259i) q^{13} +(-3.20594 - 1.85095i) q^{14} +(-0.654721 + 1.60354i) q^{15} +(-0.500000 - 0.866025i) q^{16} -6.30104 q^{17} +(2.14268 + 2.09974i) q^{18} -8.13491i q^{19} +(0.866025 - 0.500000i) q^{20} +(-3.92900 - 5.06707i) q^{21} +(-1.56886 - 2.92210i) q^{22} +(5.99664 + 3.46216i) q^{23} +(-0.234765 - 1.71607i) q^{24} +(0.500000 + 0.866025i) q^{25} +1.70052i q^{26} +(2.06113 + 4.76988i) q^{27} +3.70190i q^{28} +(-2.93922 - 5.09088i) q^{29} +(1.71607 - 0.234765i) q^{30} +(4.67635 - 8.09968i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-0.602562 - 5.71287i) q^{33} +(3.15052 + 5.45686i) q^{34} -3.70190 q^{35} +(0.747091 - 2.90549i) q^{36} -4.24407 q^{37} +(-7.04504 + 4.06746i) q^{38} +(-1.11337 + 2.72685i) q^{39} +(-0.866025 - 0.500000i) q^{40} +(0.847146 - 1.46730i) q^{41} +(-2.42371 + 5.93615i) q^{42} +(-0.116302 + 0.0671471i) q^{43} +(-1.74619 + 2.81972i) q^{44} +(2.90549 + 0.747091i) q^{45} -6.92433i q^{46} +(-5.80744 + 3.35293i) q^{47} +(-1.36878 + 1.06135i) q^{48} +(3.35205 - 5.80591i) q^{49} +(0.500000 - 0.866025i) q^{50} +(1.47926 + 10.8130i) q^{51} +(1.47269 - 0.850259i) q^{52} +11.7272i q^{53} +(3.10027 - 4.16993i) q^{54} +(-2.81972 - 1.74619i) q^{55} +(3.20594 - 1.85095i) q^{56} +(-13.9601 + 1.90979i) q^{57} +(-2.93922 + 5.09088i) q^{58} +(-9.11652 - 5.26343i) q^{59} +(-1.06135 - 1.36878i) q^{60} +(-12.3423 + 7.12584i) q^{61} -9.35271 q^{62} +(-7.77305 + 7.93200i) q^{63} +1.00000 q^{64} +(0.850259 + 1.47269i) q^{65} +(-4.64621 + 3.37827i) q^{66} +(1.52684 - 2.64456i) q^{67} +(3.15052 - 5.45686i) q^{68} +(4.53350 - 11.1034i) q^{69} +(1.85095 + 3.20594i) q^{70} +7.72800i q^{71} +(-2.88977 + 0.805744i) q^{72} -4.82386i q^{73} +(2.12203 + 3.67547i) q^{74} +(1.36878 - 1.06135i) q^{75} +(7.04504 + 4.06746i) q^{76} +(10.8173 - 5.80776i) q^{77} +(2.91820 - 0.399222i) q^{78} +(4.26744 - 2.46381i) q^{79} +1.00000i q^{80} +(7.70155 - 4.65683i) q^{81} -1.69429 q^{82} +(0.208818 + 0.361683i) q^{83} +(6.35271 - 0.869077i) q^{84} +(5.45686 + 3.15052i) q^{85} +(0.116302 + 0.0671471i) q^{86} +(-8.04626 + 6.23905i) q^{87} +(3.31504 + 0.102382i) q^{88} -4.53823i q^{89} +(-0.805744 - 2.88977i) q^{90} -6.29516 q^{91} +(-5.99664 + 3.46216i) q^{92} +(-14.9974 - 6.12341i) q^{93} +(5.80744 + 3.35293i) q^{94} +(-4.06746 + 7.04504i) q^{95} +(1.60354 + 0.654721i) q^{96} +(6.30071 + 10.9132i) q^{97} -6.70409 q^{98} +(-9.66221 + 2.37522i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{2} - 2 q^{3} - 24 q^{4} - 2 q^{6} + 48 q^{8} + 10 q^{9} - 6 q^{11} + 4 q^{12} + 24 q^{13} - 4 q^{15} - 24 q^{16} - 12 q^{17} - 8 q^{18} - 16 q^{21} + 12 q^{22} + 36 q^{23} - 2 q^{24} + 24 q^{25}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.234765 1.71607i −0.135541 0.990772i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.866025 0.500000i −0.387298 0.223607i
\(6\) −1.36878 + 1.06135i −0.558800 + 0.433293i
\(7\) 3.20594 1.85095i 1.21173 0.699594i 0.248596 0.968607i \(-0.420031\pi\)
0.963136 + 0.269013i \(0.0866975\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.88977 + 0.805744i −0.963257 + 0.268581i
\(10\) 1.00000i 0.316228i
\(11\) 3.31504 + 0.102382i 0.999523 + 0.0308692i
\(12\) 1.60354 + 0.654721i 0.462902 + 0.189002i
\(13\) −1.47269 0.850259i −0.408451 0.235819i 0.281673 0.959511i \(-0.409111\pi\)
−0.690124 + 0.723691i \(0.742444\pi\)
\(14\) −3.20594 1.85095i −0.856824 0.494688i
\(15\) −0.654721 + 1.60354i −0.169048 + 0.414032i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −6.30104 −1.52823 −0.764113 0.645082i \(-0.776823\pi\)
−0.764113 + 0.645082i \(0.776823\pi\)
\(18\) 2.14268 + 2.09974i 0.505035 + 0.494914i
\(19\) 8.13491i 1.86628i −0.359517 0.933139i \(-0.617058\pi\)
0.359517 0.933139i \(-0.382942\pi\)
\(20\) 0.866025 0.500000i 0.193649 0.111803i
\(21\) −3.92900 5.06707i −0.857378 1.10573i
\(22\) −1.56886 2.92210i −0.334481 0.622995i
\(23\) 5.99664 + 3.46216i 1.25039 + 0.721911i 0.971186 0.238322i \(-0.0765974\pi\)
0.279200 + 0.960233i \(0.409931\pi\)
\(24\) −0.234765 1.71607i −0.0479212 0.350291i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 1.70052i 0.333499i
\(27\) 2.06113 + 4.76988i 0.396664 + 0.917964i
\(28\) 3.70190i 0.699594i
\(29\) −2.93922 5.09088i −0.545799 0.945352i −0.998556 0.0537180i \(-0.982893\pi\)
0.452757 0.891634i \(-0.350441\pi\)
\(30\) 1.71607 0.234765i 0.313310 0.0428620i
\(31\) 4.67635 8.09968i 0.839898 1.45475i −0.0500817 0.998745i \(-0.515948\pi\)
0.889979 0.456001i \(-0.150718\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −0.602562 5.71287i −0.104893 0.994484i
\(34\) 3.15052 + 5.45686i 0.540310 + 0.935844i
\(35\) −3.70190 −0.625736
\(36\) 0.747091 2.90549i 0.124515 0.484248i
\(37\) −4.24407 −0.697721 −0.348860 0.937175i \(-0.613431\pi\)
−0.348860 + 0.937175i \(0.613431\pi\)
\(38\) −7.04504 + 4.06746i −1.14286 + 0.659829i
\(39\) −1.11337 + 2.72685i −0.178281 + 0.436645i
\(40\) −0.866025 0.500000i −0.136931 0.0790569i
\(41\) 0.847146 1.46730i 0.132302 0.229154i −0.792262 0.610182i \(-0.791096\pi\)
0.924564 + 0.381028i \(0.124430\pi\)
\(42\) −2.42371 + 5.93615i −0.373987 + 0.915968i
\(43\) −0.116302 + 0.0671471i −0.0177359 + 0.0102398i −0.508842 0.860860i \(-0.669926\pi\)
0.491106 + 0.871100i \(0.336593\pi\)
\(44\) −1.74619 + 2.81972i −0.263248 + 0.425089i
\(45\) 2.90549 + 0.747091i 0.433124 + 0.111370i
\(46\) 6.92433i 1.02094i
\(47\) −5.80744 + 3.35293i −0.847102 + 0.489075i −0.859672 0.510846i \(-0.829332\pi\)
0.0125701 + 0.999921i \(0.495999\pi\)
\(48\) −1.36878 + 1.06135i −0.197566 + 0.153192i
\(49\) 3.35205 5.80591i 0.478864 0.829416i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 1.47926 + 10.8130i 0.207138 + 1.51412i
\(52\) 1.47269 0.850259i 0.204226 0.117910i
\(53\) 11.7272i 1.61086i 0.592694 + 0.805428i \(0.298064\pi\)
−0.592694 + 0.805428i \(0.701936\pi\)
\(54\) 3.10027 4.16993i 0.421894 0.567455i
\(55\) −2.81972 1.74619i −0.380211 0.235456i
\(56\) 3.20594 1.85095i 0.428412 0.247344i
\(57\) −13.9601 + 1.90979i −1.84905 + 0.252958i
\(58\) −2.93922 + 5.09088i −0.385938 + 0.668465i
\(59\) −9.11652 5.26343i −1.18687 0.685240i −0.229276 0.973361i \(-0.573636\pi\)
−0.957594 + 0.288122i \(0.906969\pi\)
\(60\) −1.06135 1.36878i −0.137019 0.176708i
\(61\) −12.3423 + 7.12584i −1.58027 + 0.912370i −0.585452 + 0.810707i \(0.699083\pi\)
−0.994819 + 0.101663i \(0.967584\pi\)
\(62\) −9.35271 −1.18779
\(63\) −7.77305 + 7.93200i −0.979312 + 0.999338i
\(64\) 1.00000 0.125000
\(65\) 0.850259 + 1.47269i 0.105462 + 0.182665i
\(66\) −4.64621 + 3.37827i −0.571909 + 0.415836i
\(67\) 1.52684 2.64456i 0.186533 0.323085i −0.757559 0.652767i \(-0.773608\pi\)
0.944092 + 0.329682i \(0.106942\pi\)
\(68\) 3.15052 5.45686i 0.382057 0.661741i
\(69\) 4.53350 11.1034i 0.545770 1.33670i
\(70\) 1.85095 + 3.20594i 0.221231 + 0.383183i
\(71\) 7.72800i 0.917145i 0.888657 + 0.458573i \(0.151639\pi\)
−0.888657 + 0.458573i \(0.848361\pi\)
\(72\) −2.88977 + 0.805744i −0.340563 + 0.0949578i
\(73\) 4.82386i 0.564590i −0.959328 0.282295i \(-0.908904\pi\)
0.959328 0.282295i \(-0.0910957\pi\)
\(74\) 2.12203 + 3.67547i 0.246682 + 0.427265i
\(75\) 1.36878 1.06135i 0.158053 0.122554i
\(76\) 7.04504 + 4.06746i 0.808122 + 0.466569i
\(77\) 10.8173 5.80776i 1.23275 0.661855i
\(78\) 2.91820 0.399222i 0.330421 0.0452030i
\(79\) 4.26744 2.46381i 0.480124 0.277200i −0.240344 0.970688i \(-0.577260\pi\)
0.720468 + 0.693488i \(0.243927\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 7.70155 4.65683i 0.855728 0.517426i
\(82\) −1.69429 −0.187103
\(83\) 0.208818 + 0.361683i 0.0229207 + 0.0396999i 0.877258 0.480019i \(-0.159370\pi\)
−0.854338 + 0.519719i \(0.826037\pi\)
\(84\) 6.35271 0.869077i 0.693138 0.0948240i
\(85\) 5.45686 + 3.15052i 0.591879 + 0.341722i
\(86\) 0.116302 + 0.0671471i 0.0125412 + 0.00724066i
\(87\) −8.04626 + 6.23905i −0.862650 + 0.668897i
\(88\) 3.31504 + 0.102382i 0.353385 + 0.0109139i
\(89\) 4.53823i 0.481051i −0.970643 0.240526i \(-0.922680\pi\)
0.970643 0.240526i \(-0.0773198\pi\)
\(90\) −0.805744 2.88977i −0.0849329 0.304609i
\(91\) −6.29516 −0.659912
\(92\) −5.99664 + 3.46216i −0.625193 + 0.360955i
\(93\) −14.9974 6.12341i −1.55516 0.634969i
\(94\) 5.80744 + 3.35293i 0.598992 + 0.345828i
\(95\) −4.06746 + 7.04504i −0.417312 + 0.722806i
\(96\) 1.60354 + 0.654721i 0.163661 + 0.0668222i
\(97\) 6.30071 + 10.9132i 0.639740 + 1.10806i 0.985490 + 0.169736i \(0.0542914\pi\)
−0.345749 + 0.938327i \(0.612375\pi\)
\(98\) −6.70409 −0.677216
\(99\) −9.66221 + 2.37522i −0.971089 + 0.238718i
\(100\) −1.00000 −0.100000
\(101\) −3.56165 6.16895i −0.354397 0.613834i 0.632617 0.774464i \(-0.281981\pi\)
−0.987015 + 0.160631i \(0.948647\pi\)
\(102\) 8.62470 6.68758i 0.853973 0.662169i
\(103\) 1.51569 2.62526i 0.149346 0.258674i −0.781640 0.623730i \(-0.785617\pi\)
0.930986 + 0.365055i \(0.118950\pi\)
\(104\) −1.47269 0.850259i −0.144409 0.0833748i
\(105\) 0.869077 + 6.35271i 0.0848132 + 0.619961i
\(106\) 10.1561 5.86360i 0.986444 0.569523i
\(107\) 6.00734 0.580751 0.290376 0.956913i \(-0.406220\pi\)
0.290376 + 0.956913i \(0.406220\pi\)
\(108\) −5.16140 0.599952i −0.496656 0.0577304i
\(109\) 4.74953i 0.454923i 0.973787 + 0.227461i \(0.0730426\pi\)
−0.973787 + 0.227461i \(0.926957\pi\)
\(110\) −0.102382 + 3.31504i −0.00976170 + 0.316077i
\(111\) 0.996358 + 7.28311i 0.0945701 + 0.691282i
\(112\) −3.20594 1.85095i −0.302933 0.174899i
\(113\) 9.55200 + 5.51485i 0.898577 + 0.518794i 0.876738 0.480968i \(-0.159715\pi\)
0.0218388 + 0.999762i \(0.493048\pi\)
\(114\) 8.63396 + 11.1349i 0.808644 + 1.04288i
\(115\) −3.46216 5.99664i −0.322848 0.559190i
\(116\) 5.87844 0.545799
\(117\) 4.94083 + 1.27044i 0.456780 + 0.117452i
\(118\) 10.5269i 0.969075i
\(119\) −20.2008 + 11.6629i −1.85180 + 1.06914i
\(120\) −0.654721 + 1.60354i −0.0597676 + 0.146382i
\(121\) 10.9790 + 0.678799i 0.998094 + 0.0617090i
\(122\) 12.3423 + 7.12584i 1.11742 + 0.645143i
\(123\) −2.71687 1.10929i −0.244971 0.100021i
\(124\) 4.67635 + 8.09968i 0.419949 + 0.727373i
\(125\) 1.00000i 0.0894427i
\(126\) 10.7558 + 2.76566i 0.958206 + 0.246384i
\(127\) 11.1622i 0.990483i −0.868755 0.495241i \(-0.835080\pi\)
0.868755 0.495241i \(-0.164920\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0.142533 + 0.183819i 0.0125493 + 0.0161843i
\(130\) 0.850259 1.47269i 0.0745727 0.129164i
\(131\) 3.26700 5.65861i 0.285439 0.494395i −0.687276 0.726396i \(-0.741194\pi\)
0.972716 + 0.232001i \(0.0745272\pi\)
\(132\) 5.24877 + 2.33460i 0.456847 + 0.203201i
\(133\) −15.0573 26.0801i −1.30564 2.26143i
\(134\) −3.05368 −0.263797
\(135\) 0.599952 5.16140i 0.0516356 0.444223i
\(136\) −6.30104 −0.540310
\(137\) −6.06599 + 3.50220i −0.518252 + 0.299213i −0.736219 0.676743i \(-0.763391\pi\)
0.217967 + 0.975956i \(0.430057\pi\)
\(138\) −11.8826 + 1.62559i −1.01151 + 0.138379i
\(139\) −1.05294 0.607915i −0.0893092 0.0515627i 0.454680 0.890655i \(-0.349754\pi\)
−0.543989 + 0.839092i \(0.683087\pi\)
\(140\) 1.85095 3.20594i 0.156434 0.270952i
\(141\) 7.11723 + 9.17880i 0.599379 + 0.772995i
\(142\) 6.69265 3.86400i 0.561634 0.324260i
\(143\) −4.79499 2.96942i −0.400977 0.248316i
\(144\) 2.14268 + 2.09974i 0.178557 + 0.174979i
\(145\) 5.87844i 0.488178i
\(146\) −4.17758 + 2.41193i −0.345739 + 0.199613i
\(147\) −10.7503 4.38931i −0.886668 0.362024i
\(148\) 2.12203 3.67547i 0.174430 0.302122i
\(149\) −3.54443 + 6.13914i −0.290371 + 0.502938i −0.973898 0.226988i \(-0.927112\pi\)
0.683526 + 0.729926i \(0.260445\pi\)
\(150\) −1.60354 0.654721i −0.130928 0.0534578i
\(151\) 5.98852 3.45747i 0.487339 0.281365i −0.236131 0.971721i \(-0.575879\pi\)
0.723470 + 0.690356i \(0.242546\pi\)
\(152\) 8.13491i 0.659829i
\(153\) 18.2086 5.07702i 1.47207 0.410453i
\(154\) −10.4383 6.46422i −0.841145 0.520901i
\(155\) −8.09968 + 4.67635i −0.650582 + 0.375614i
\(156\) −1.80484 2.32763i −0.144503 0.186359i
\(157\) 5.63065 9.75257i 0.449375 0.778340i −0.548971 0.835842i \(-0.684980\pi\)
0.998345 + 0.0575019i \(0.0183135\pi\)
\(158\) −4.26744 2.46381i −0.339499 0.196010i
\(159\) 20.1247 2.75313i 1.59599 0.218338i
\(160\) 0.866025 0.500000i 0.0684653 0.0395285i
\(161\) 25.6332 2.02018
\(162\) −7.88371 4.34132i −0.619403 0.341087i
\(163\) −0.950144 −0.0744210 −0.0372105 0.999307i \(-0.511847\pi\)
−0.0372105 + 0.999307i \(0.511847\pi\)
\(164\) 0.847146 + 1.46730i 0.0661510 + 0.114577i
\(165\) −2.33460 + 5.24877i −0.181749 + 0.408617i
\(166\) 0.208818 0.361683i 0.0162074 0.0280720i
\(167\) 5.34171 9.25211i 0.413354 0.715950i −0.581900 0.813260i \(-0.697691\pi\)
0.995254 + 0.0973102i \(0.0310239\pi\)
\(168\) −3.92900 5.06707i −0.303129 0.390933i
\(169\) −5.05412 8.75399i −0.388778 0.673384i
\(170\) 6.30104i 0.483268i
\(171\) 6.55466 + 23.5080i 0.501247 + 1.79770i
\(172\) 0.134294i 0.0102398i
\(173\) −11.6874 20.2432i −0.888576 1.53906i −0.841559 0.540165i \(-0.818362\pi\)
−0.0470165 0.998894i \(-0.514971\pi\)
\(174\) 9.42631 + 3.84874i 0.714607 + 0.291772i
\(175\) 3.20594 + 1.85095i 0.242347 + 0.139919i
\(176\) −1.56886 2.92210i −0.118257 0.220262i
\(177\) −6.89215 + 16.8802i −0.518046 + 1.26880i
\(178\) −3.93022 + 2.26911i −0.294583 + 0.170077i
\(179\) 20.8131i 1.55565i −0.628483 0.777824i \(-0.716324\pi\)
0.628483 0.777824i \(-0.283676\pi\)
\(180\) −2.09974 + 2.14268i −0.156506 + 0.159706i
\(181\) 16.6474 1.23739 0.618697 0.785629i \(-0.287661\pi\)
0.618697 + 0.785629i \(0.287661\pi\)
\(182\) 3.14758 + 5.45177i 0.233314 + 0.404112i
\(183\) 15.1259 + 19.5073i 1.11814 + 1.44202i
\(184\) 5.99664 + 3.46216i 0.442078 + 0.255234i
\(185\) 3.67547 + 2.12203i 0.270226 + 0.156015i
\(186\) 2.19569 + 16.0499i 0.160995 + 1.17683i
\(187\) −20.8882 0.645110i −1.52750 0.0471751i
\(188\) 6.70585i 0.489075i
\(189\) 15.4367 + 11.4769i 1.12285 + 0.834823i
\(190\) 8.13491 0.590169
\(191\) 13.9415 8.04916i 1.00877 0.582416i 0.0979422 0.995192i \(-0.468774\pi\)
0.910833 + 0.412776i \(0.135441\pi\)
\(192\) −0.234765 1.71607i −0.0169427 0.123846i
\(193\) 8.32495 + 4.80641i 0.599243 + 0.345973i 0.768744 0.639557i \(-0.220882\pi\)
−0.169501 + 0.985530i \(0.554216\pi\)
\(194\) 6.30071 10.9132i 0.452365 0.783519i
\(195\) 2.32763 1.80484i 0.166685 0.129247i
\(196\) 3.35205 + 5.80591i 0.239432 + 0.414708i
\(197\) −6.51573 −0.464226 −0.232113 0.972689i \(-0.574564\pi\)
−0.232113 + 0.972689i \(0.574564\pi\)
\(198\) 6.88810 + 7.18011i 0.489516 + 0.510268i
\(199\) −8.85635 −0.627810 −0.313905 0.949454i \(-0.601637\pi\)
−0.313905 + 0.949454i \(0.601637\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) −4.89669 1.99931i −0.345386 0.141020i
\(202\) −3.56165 + 6.16895i −0.250597 + 0.434046i
\(203\) −18.8459 10.8807i −1.32273 0.763676i
\(204\) −10.1040 4.12542i −0.707419 0.288837i
\(205\) −1.46730 + 0.847146i −0.102481 + 0.0591673i
\(206\) −3.03139 −0.211207
\(207\) −20.1185 5.17310i −1.39834 0.359555i
\(208\) 1.70052i 0.117910i
\(209\) 0.832865 26.9676i 0.0576105 1.86539i
\(210\) 5.06707 3.92900i 0.349661 0.271127i
\(211\) 13.8138 + 7.97541i 0.950982 + 0.549050i 0.893386 0.449290i \(-0.148323\pi\)
0.0575960 + 0.998340i \(0.481656\pi\)
\(212\) −10.1561 5.86360i −0.697521 0.402714i
\(213\) 13.2618 1.81426i 0.908681 0.124311i
\(214\) −3.00367 5.20251i −0.205327 0.355636i
\(215\) 0.134294 0.00915879
\(216\) 2.06113 + 4.76988i 0.140242 + 0.324549i
\(217\) 34.6228i 2.35035i
\(218\) 4.11322 2.37477i 0.278582 0.160840i
\(219\) −8.27806 + 1.13247i −0.559380 + 0.0765253i
\(220\) 2.92210 1.56886i 0.197008 0.105772i
\(221\) 9.27949 + 5.35752i 0.624206 + 0.360385i
\(222\) 5.80918 4.50442i 0.389886 0.302317i
\(223\) 10.6625 + 18.4681i 0.714017 + 1.23671i 0.963337 + 0.268293i \(0.0864594\pi\)
−0.249321 + 0.968421i \(0.580207\pi\)
\(224\) 3.70190i 0.247344i
\(225\) −2.14268 2.09974i −0.142845 0.139983i
\(226\) 11.0297i 0.733685i
\(227\) 5.69581 + 9.86544i 0.378045 + 0.654792i 0.990778 0.135498i \(-0.0432633\pi\)
−0.612733 + 0.790290i \(0.709930\pi\)
\(228\) 5.32610 13.0447i 0.352730 0.863904i
\(229\) 2.57721 4.46385i 0.170307 0.294980i −0.768220 0.640185i \(-0.778857\pi\)
0.938527 + 0.345206i \(0.112191\pi\)
\(230\) −3.46216 + 5.99664i −0.228288 + 0.395407i
\(231\) −12.5060 17.1998i −0.822837 1.13167i
\(232\) −2.93922 5.09088i −0.192969 0.334232i
\(233\) −24.7686 −1.62264 −0.811321 0.584600i \(-0.801251\pi\)
−0.811321 + 0.584600i \(0.801251\pi\)
\(234\) −1.37018 4.91411i −0.0895716 0.321245i
\(235\) 6.70585 0.437442
\(236\) 9.11652 5.26343i 0.593435 0.342620i
\(237\) −5.22990 6.74479i −0.339719 0.438121i
\(238\) 20.2008 + 11.6629i 1.30942 + 0.755995i
\(239\) −2.51124 + 4.34960i −0.162439 + 0.281352i −0.935743 0.352683i \(-0.885269\pi\)
0.773304 + 0.634035i \(0.218603\pi\)
\(240\) 1.71607 0.234765i 0.110772 0.0151540i
\(241\) 6.58899 3.80415i 0.424434 0.245047i −0.272539 0.962145i \(-0.587863\pi\)
0.696973 + 0.717098i \(0.254530\pi\)
\(242\) −4.90166 9.84752i −0.315091 0.633023i
\(243\) −9.79949 12.1231i −0.628637 0.777699i
\(244\) 14.2517i 0.912370i
\(245\) −5.80591 + 3.35205i −0.370926 + 0.214154i
\(246\) 0.397760 + 2.90752i 0.0253603 + 0.185377i
\(247\) −6.91679 + 11.9802i −0.440105 + 0.762283i
\(248\) 4.67635 8.09968i 0.296949 0.514330i
\(249\) 0.571649 0.443256i 0.0362268 0.0280902i
\(250\) −0.866025 + 0.500000i −0.0547723 + 0.0316228i
\(251\) 16.3323i 1.03088i −0.856925 0.515442i \(-0.827628\pi\)
0.856925 0.515442i \(-0.172372\pi\)
\(252\) −2.98279 10.6977i −0.187898 0.673889i
\(253\) 19.5247 + 12.0912i 1.22751 + 0.760165i
\(254\) −9.66673 + 5.58109i −0.606544 + 0.350189i
\(255\) 4.12542 10.1040i 0.258344 0.632735i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 10.0935 + 5.82747i 0.629614 + 0.363508i 0.780603 0.625028i \(-0.214912\pi\)
−0.150988 + 0.988536i \(0.548246\pi\)
\(258\) 0.0879252 0.215346i 0.00547399 0.0134069i
\(259\) −13.6062 + 7.85557i −0.845451 + 0.488121i
\(260\) −1.70052 −0.105462
\(261\) 12.5956 + 12.3432i 0.779649 + 0.764025i
\(262\) −6.53400 −0.403672
\(263\) −5.72200 9.91079i −0.352833 0.611126i 0.633911 0.773406i \(-0.281448\pi\)
−0.986745 + 0.162280i \(0.948115\pi\)
\(264\) −0.602562 5.71287i −0.0370851 0.351603i
\(265\) 5.86360 10.1561i 0.360198 0.623882i
\(266\) −15.0573 + 26.0801i −0.923224 + 1.59907i
\(267\) −7.78790 + 1.06542i −0.476612 + 0.0652024i
\(268\) 1.52684 + 2.64456i 0.0932665 + 0.161542i
\(269\) 23.9445i 1.45992i 0.683489 + 0.729961i \(0.260462\pi\)
−0.683489 + 0.729961i \(0.739538\pi\)
\(270\) −4.76988 + 2.06113i −0.290286 + 0.125436i
\(271\) 6.48042i 0.393657i −0.980438 0.196829i \(-0.936936\pi\)
0.980438 0.196829i \(-0.0630643\pi\)
\(272\) 3.15052 + 5.45686i 0.191028 + 0.330871i
\(273\) 1.47788 + 10.8029i 0.0894454 + 0.653822i
\(274\) 6.06599 + 3.50220i 0.366460 + 0.211576i
\(275\) 1.56886 + 2.92210i 0.0946056 + 0.176209i
\(276\) 7.34910 + 9.47785i 0.442364 + 0.570499i
\(277\) 14.3214 8.26849i 0.860492 0.496805i −0.00368500 0.999993i \(-0.501173\pi\)
0.864177 + 0.503188i \(0.167840\pi\)
\(278\) 1.21583i 0.0729207i
\(279\) −6.98732 + 27.1742i −0.418320 + 1.62687i
\(280\) −3.70190 −0.221231
\(281\) 7.80447 + 13.5177i 0.465575 + 0.806400i 0.999227 0.0393040i \(-0.0125141\pi\)
−0.533652 + 0.845704i \(0.679181\pi\)
\(282\) 4.39046 10.7531i 0.261448 0.640338i
\(283\) 21.8952 + 12.6412i 1.30154 + 0.751443i 0.980668 0.195680i \(-0.0626915\pi\)
0.320870 + 0.947123i \(0.396025\pi\)
\(284\) −6.69265 3.86400i −0.397136 0.229286i
\(285\) 13.0447 + 5.32610i 0.772699 + 0.315491i
\(286\) −0.174102 + 5.63729i −0.0102949 + 0.333340i
\(287\) 6.27211i 0.370231i
\(288\) 0.747091 2.90549i 0.0440227 0.171207i
\(289\) 22.7031 1.33547
\(290\) 5.09088 2.93922i 0.298947 0.172597i
\(291\) 17.2485 13.3745i 1.01113 0.784025i
\(292\) 4.17758 + 2.41193i 0.244475 + 0.141147i
\(293\) 10.3738 17.9679i 0.606042 1.04970i −0.385843 0.922564i \(-0.626090\pi\)
0.991886 0.127132i \(-0.0405771\pi\)
\(294\) 1.57388 + 11.5047i 0.0917908 + 0.670966i
\(295\) 5.26343 + 9.11652i 0.306449 + 0.530785i
\(296\) −4.24407 −0.246682
\(297\) 6.34438 + 16.0234i 0.368138 + 0.929771i
\(298\) 7.08887 0.410647
\(299\) −5.88747 10.1974i −0.340481 0.589731i
\(300\) 0.234765 + 1.71607i 0.0135541 + 0.0990772i
\(301\) −0.248572 + 0.430539i −0.0143275 + 0.0248159i
\(302\) −5.98852 3.45747i −0.344600 0.198955i
\(303\) −9.75019 + 7.56028i −0.560134 + 0.434327i
\(304\) −7.04504 + 4.06746i −0.404061 + 0.233285i
\(305\) 14.2517 0.816048
\(306\) −13.5011 13.2306i −0.771807 0.756341i
\(307\) 11.7469i 0.670431i 0.942141 + 0.335216i \(0.108809\pi\)
−0.942141 + 0.335216i \(0.891191\pi\)
\(308\) −0.379007 + 12.2720i −0.0215959 + 0.699261i
\(309\) −4.86095 1.98471i −0.276530 0.112906i
\(310\) 8.09968 + 4.67635i 0.460031 + 0.265599i
\(311\) 9.13746 + 5.27551i 0.518138 + 0.299147i 0.736172 0.676794i \(-0.236631\pi\)
−0.218035 + 0.975941i \(0.569965\pi\)
\(312\) −1.11337 + 2.72685i −0.0630319 + 0.154377i
\(313\) 4.93502 + 8.54771i 0.278944 + 0.483145i 0.971123 0.238581i \(-0.0766823\pi\)
−0.692179 + 0.721726i \(0.743349\pi\)
\(314\) −11.2613 −0.635512
\(315\) 10.6977 2.98279i 0.602745 0.168061i
\(316\) 4.92761i 0.277200i
\(317\) 23.9489 13.8269i 1.34511 0.776598i 0.357555 0.933892i \(-0.383611\pi\)
0.987552 + 0.157295i \(0.0502772\pi\)
\(318\) −12.4466 16.0519i −0.697972 0.900146i
\(319\) −9.22243 17.1774i −0.516357 0.961750i
\(320\) −0.866025 0.500000i −0.0484123 0.0279508i
\(321\) −1.41031 10.3090i −0.0787159 0.575392i
\(322\) −12.8166 22.1990i −0.714241 1.23710i
\(323\) 51.2584i 2.85209i
\(324\) 0.182158 + 8.99816i 0.0101199 + 0.499898i
\(325\) 1.70052i 0.0943278i
\(326\) 0.475072 + 0.822849i 0.0263118 + 0.0455734i
\(327\) 8.15052 1.11502i 0.450725 0.0616609i
\(328\) 0.847146 1.46730i 0.0467758 0.0810181i
\(329\) −12.4122 + 21.4986i −0.684307 + 1.18525i
\(330\) 5.71287 0.602562i 0.314483 0.0331699i
\(331\) −11.9098 20.6284i −0.654623 1.13384i −0.981988 0.188943i \(-0.939494\pi\)
0.327365 0.944898i \(-0.393839\pi\)
\(332\) −0.417636 −0.0229207
\(333\) 12.2644 3.41963i 0.672084 0.187395i
\(334\) −10.6834 −0.584571
\(335\) −2.64456 + 1.52684i −0.144488 + 0.0834201i
\(336\) −2.42371 + 5.93615i −0.132224 + 0.323844i
\(337\) 19.0990 + 11.0268i 1.04039 + 0.600670i 0.919944 0.392049i \(-0.128234\pi\)
0.120447 + 0.992720i \(0.461567\pi\)
\(338\) −5.05412 + 8.75399i −0.274908 + 0.476154i
\(339\) 7.22138 17.6866i 0.392212 0.960603i
\(340\) −5.45686 + 3.15052i −0.295940 + 0.170861i
\(341\) 16.3316 26.3720i 0.884404 1.42813i
\(342\) 17.0812 17.4305i 0.923647 0.942535i
\(343\) 1.09542i 0.0591471i
\(344\) −0.116302 + 0.0671471i −0.00627059 + 0.00362033i
\(345\) −9.47785 + 7.34910i −0.510270 + 0.395662i
\(346\) −11.6874 + 20.2432i −0.628318 + 1.08828i
\(347\) −1.41366 + 2.44854i −0.0758895 + 0.131444i −0.901473 0.432836i \(-0.857513\pi\)
0.825583 + 0.564280i \(0.190846\pi\)
\(348\) −1.38005 10.0878i −0.0739784 0.540762i
\(349\) −15.3832 + 8.88151i −0.823445 + 0.475416i −0.851603 0.524187i \(-0.824369\pi\)
0.0281580 + 0.999603i \(0.491036\pi\)
\(350\) 3.70190i 0.197875i
\(351\) 1.02023 8.77706i 0.0544558 0.468485i
\(352\) −1.74619 + 2.81972i −0.0930721 + 0.150292i
\(353\) 8.18276 4.72432i 0.435524 0.251450i −0.266173 0.963925i \(-0.585759\pi\)
0.701697 + 0.712475i \(0.252426\pi\)
\(354\) 18.0648 2.47133i 0.960133 0.131350i
\(355\) 3.86400 6.69265i 0.205080 0.355209i
\(356\) 3.93022 + 2.26911i 0.208301 + 0.120263i
\(357\) 24.7568 + 31.9278i 1.31027 + 1.68980i
\(358\) −18.0247 + 10.4066i −0.952635 + 0.550004i
\(359\) 15.8662 0.837385 0.418692 0.908128i \(-0.362489\pi\)
0.418692 + 0.908128i \(0.362489\pi\)
\(360\) 2.90549 + 0.747091i 0.153133 + 0.0393751i
\(361\) −47.1768 −2.48299
\(362\) −8.32372 14.4171i −0.437485 0.757746i
\(363\) −1.41263 19.0001i −0.0741437 0.997248i
\(364\) 3.14758 5.45177i 0.164978 0.285750i
\(365\) −2.41193 + 4.17758i −0.126246 + 0.218665i
\(366\) 9.33087 22.8531i 0.487732 1.19455i
\(367\) −0.928259 1.60779i −0.0484547 0.0839261i 0.840781 0.541376i \(-0.182096\pi\)
−0.889236 + 0.457450i \(0.848763\pi\)
\(368\) 6.92433i 0.360955i
\(369\) −1.26579 + 4.92274i −0.0658944 + 0.256268i
\(370\) 4.24407i 0.220639i
\(371\) 21.7065 + 37.5968i 1.12695 + 1.95193i
\(372\) 12.8018 9.92645i 0.663740 0.514663i
\(373\) 12.4567 + 7.19188i 0.644984 + 0.372382i 0.786532 0.617550i \(-0.211875\pi\)
−0.141548 + 0.989931i \(0.545208\pi\)
\(374\) 9.88543 + 18.4123i 0.511163 + 0.952076i
\(375\) −1.71607 + 0.234765i −0.0886173 + 0.0121232i
\(376\) −5.80744 + 3.35293i −0.299496 + 0.172914i
\(377\) 9.99639i 0.514840i
\(378\) 2.22096 19.1070i 0.114234 0.982759i
\(379\) 3.35572 0.172372 0.0861860 0.996279i \(-0.472532\pi\)
0.0861860 + 0.996279i \(0.472532\pi\)
\(380\) −4.06746 7.04504i −0.208656 0.361403i
\(381\) −19.1550 + 2.62049i −0.981342 + 0.134252i
\(382\) −13.9415 8.04916i −0.713312 0.411831i
\(383\) 9.95383 + 5.74685i 0.508617 + 0.293650i 0.732265 0.681020i \(-0.238463\pi\)
−0.223648 + 0.974670i \(0.571797\pi\)
\(384\) −1.36878 + 1.06135i −0.0698500 + 0.0541616i
\(385\) −12.2720 0.379007i −0.625438 0.0193160i
\(386\) 9.61282i 0.489280i
\(387\) 0.281983 0.287749i 0.0143340 0.0146271i
\(388\) −12.6014 −0.639740
\(389\) 30.5931 17.6629i 1.55113 0.895545i 0.553080 0.833128i \(-0.313452\pi\)
0.998050 0.0624171i \(-0.0198809\pi\)
\(390\) −2.72685 1.11337i −0.138079 0.0563775i
\(391\) −37.7851 21.8152i −1.91087 1.10324i
\(392\) 3.35205 5.80591i 0.169304 0.293243i
\(393\) −10.4775 4.27795i −0.528522 0.215794i
\(394\) 3.25786 + 5.64278i 0.164129 + 0.284279i
\(395\) −4.92761 −0.247935
\(396\) 2.77411 9.55533i 0.139404 0.480173i
\(397\) −28.8574 −1.44831 −0.724155 0.689637i \(-0.757770\pi\)
−0.724155 + 0.689637i \(0.757770\pi\)
\(398\) 4.42817 + 7.66982i 0.221964 + 0.384453i
\(399\) −41.2202 + 31.9621i −2.06359 + 1.60011i
\(400\) 0.500000 0.866025i 0.0250000 0.0433013i
\(401\) −7.66139 4.42331i −0.382592 0.220889i 0.296354 0.955078i \(-0.404229\pi\)
−0.678945 + 0.734189i \(0.737563\pi\)
\(402\) 0.716896 + 5.24031i 0.0357555 + 0.261363i
\(403\) −13.7737 + 7.95222i −0.686115 + 0.396129i
\(404\) 7.12329 0.354397
\(405\) −8.99816 + 0.182158i −0.447122 + 0.00905150i
\(406\) 21.7614i 1.08000i
\(407\) −14.0693 0.434515i −0.697388 0.0215381i
\(408\) 1.47926 + 10.8130i 0.0732344 + 0.535323i
\(409\) −22.9860 13.2710i −1.13659 0.656208i −0.191003 0.981589i \(-0.561174\pi\)
−0.945583 + 0.325381i \(0.894507\pi\)
\(410\) 1.46730 + 0.847146i 0.0724648 + 0.0418376i
\(411\) 7.43409 + 9.58745i 0.366697 + 0.472914i
\(412\) 1.51569 + 2.62526i 0.0746729 + 0.129337i
\(413\) −38.9694 −1.91756
\(414\) 5.57923 + 20.0097i 0.274204 + 0.983424i
\(415\) 0.417636i 0.0205009i
\(416\) 1.47269 0.850259i 0.0722047 0.0416874i
\(417\) −0.796030 + 1.94963i −0.0389818 + 0.0954739i
\(418\) −23.7711 + 12.7625i −1.16268 + 0.624235i
\(419\) −20.5371 11.8571i −1.00330 0.579257i −0.0940788 0.995565i \(-0.529991\pi\)
−0.909224 + 0.416308i \(0.863324\pi\)
\(420\) −5.93615 2.42371i −0.289654 0.118265i
\(421\) 10.3493 + 17.9255i 0.504394 + 0.873636i 0.999987 + 0.00508089i \(0.00161730\pi\)
−0.495593 + 0.868555i \(0.665049\pi\)
\(422\) 15.9508i 0.776473i
\(423\) 14.0806 14.3685i 0.684621 0.698620i
\(424\) 11.7272i 0.569523i
\(425\) −3.15052 5.45686i −0.152823 0.264697i
\(426\) −8.20208 10.5779i −0.397392 0.512501i
\(427\) −26.3792 + 45.6900i −1.27658 + 2.21110i
\(428\) −3.00367 + 5.20251i −0.145188 + 0.251473i
\(429\) −3.97003 + 8.92564i −0.191675 + 0.430934i
\(430\) −0.0671471 0.116302i −0.00323812 0.00560859i
\(431\) −16.9532 −0.816605 −0.408303 0.912847i \(-0.633879\pi\)
−0.408303 + 0.912847i \(0.633879\pi\)
\(432\) 3.10027 4.16993i 0.149162 0.200626i
\(433\) −37.9368 −1.82313 −0.911563 0.411161i \(-0.865123\pi\)
−0.911563 + 0.411161i \(0.865123\pi\)
\(434\) −29.9842 + 17.3114i −1.43929 + 0.830974i
\(435\) 10.0878 1.38005i 0.483673 0.0661683i
\(436\) −4.11322 2.37477i −0.196987 0.113731i
\(437\) 28.1644 48.7822i 1.34729 2.33357i
\(438\) 5.11978 + 6.60278i 0.244633 + 0.315493i
\(439\) 19.7502 11.4028i 0.942628 0.544226i 0.0518447 0.998655i \(-0.483490\pi\)
0.890783 + 0.454429i \(0.150157\pi\)
\(440\) −2.81972 1.74619i −0.134425 0.0832462i
\(441\) −5.00857 + 19.4787i −0.238503 + 0.927555i
\(442\) 10.7150i 0.509662i
\(443\) 9.65829 5.57622i 0.458879 0.264934i −0.252694 0.967546i \(-0.581316\pi\)
0.711573 + 0.702612i \(0.247983\pi\)
\(444\) −6.80553 2.77868i −0.322976 0.131870i
\(445\) −2.26911 + 3.93022i −0.107566 + 0.186310i
\(446\) 10.6625 18.4681i 0.504886 0.874489i
\(447\) 11.3673 + 4.64123i 0.537654 + 0.219523i
\(448\) 3.20594 1.85095i 0.151467 0.0874493i
\(449\) 28.0037i 1.32158i 0.750572 + 0.660788i \(0.229778\pi\)
−0.750572 + 0.660788i \(0.770222\pi\)
\(450\) −0.747091 + 2.90549i −0.0352182 + 0.136966i
\(451\) 2.95855 4.77743i 0.139313 0.224961i
\(452\) −9.55200 + 5.51485i −0.449289 + 0.259397i
\(453\) −7.33915 9.46500i −0.344823 0.444705i
\(454\) 5.69581 9.86544i 0.267318 0.463008i
\(455\) 5.45177 + 3.14758i 0.255583 + 0.147561i
\(456\) −13.9601 + 1.90979i −0.653740 + 0.0894342i
\(457\) 5.08207 2.93413i 0.237729 0.137253i −0.376404 0.926456i \(-0.622839\pi\)
0.614133 + 0.789203i \(0.289506\pi\)
\(458\) −5.15442 −0.240850
\(459\) −12.9872 30.0552i −0.606192 1.40286i
\(460\) 6.92433 0.322848
\(461\) 10.4234 + 18.0539i 0.485467 + 0.840854i 0.999861 0.0167003i \(-0.00531612\pi\)
−0.514393 + 0.857554i \(0.671983\pi\)
\(462\) −8.64247 + 19.4305i −0.402084 + 0.903987i
\(463\) 4.67597 8.09902i 0.217311 0.376393i −0.736674 0.676248i \(-0.763605\pi\)
0.953985 + 0.299855i \(0.0969381\pi\)
\(464\) −2.93922 + 5.09088i −0.136450 + 0.236338i
\(465\) 9.92645 + 12.8018i 0.460328 + 0.593667i
\(466\) 12.3843 + 21.4502i 0.573691 + 0.993662i
\(467\) 7.16114i 0.331378i 0.986178 + 0.165689i \(0.0529848\pi\)
−0.986178 + 0.165689i \(0.947015\pi\)
\(468\) −3.57065 + 3.64367i −0.165053 + 0.168429i
\(469\) 11.3044i 0.521990i
\(470\) −3.35293 5.80744i −0.154659 0.267877i
\(471\) −18.0579 7.37301i −0.832066 0.339730i
\(472\) −9.11652 5.26343i −0.419622 0.242269i
\(473\) −0.392421 + 0.210688i −0.0180436 + 0.00968746i
\(474\) −3.22621 + 7.90162i −0.148185 + 0.362934i
\(475\) 7.04504 4.06746i 0.323249 0.186628i
\(476\) 23.3258i 1.06914i
\(477\) −9.44913 33.8889i −0.432646 1.55167i
\(478\) 5.02249 0.229723
\(479\) 6.52135 + 11.2953i 0.297968 + 0.516096i 0.975671 0.219240i \(-0.0703577\pi\)
−0.677703 + 0.735336i \(0.737024\pi\)
\(480\) −1.06135 1.36878i −0.0484436 0.0624758i
\(481\) 6.25021 + 3.60856i 0.284985 + 0.164536i
\(482\) −6.58899 3.80415i −0.300120 0.173274i
\(483\) −6.01777 43.9883i −0.273818 2.00154i
\(484\) −6.07738 + 9.16872i −0.276244 + 0.416760i
\(485\) 12.6014i 0.572201i
\(486\) −5.59919 + 14.5482i −0.253984 + 0.659918i
\(487\) −7.94167 −0.359872 −0.179936 0.983678i \(-0.557589\pi\)
−0.179936 + 0.983678i \(0.557589\pi\)
\(488\) −12.3423 + 7.12584i −0.558710 + 0.322571i
\(489\) 0.223060 + 1.63051i 0.0100871 + 0.0737342i
\(490\) 5.80591 + 3.35205i 0.262284 + 0.151430i
\(491\) 9.59045 16.6111i 0.432811 0.749650i −0.564303 0.825568i \(-0.690855\pi\)
0.997114 + 0.0759172i \(0.0241885\pi\)
\(492\) 2.31911 1.79823i 0.104553 0.0810705i
\(493\) 18.5201 + 32.0778i 0.834105 + 1.44471i
\(494\) 13.8336 0.622402
\(495\) 9.55533 + 2.77411i 0.429480 + 0.124687i
\(496\) −9.35271 −0.419949
\(497\) 14.3042 + 24.7755i 0.641629 + 1.11133i
\(498\) −0.669695 0.273435i −0.0300098 0.0122529i
\(499\) 18.8531 32.6546i 0.843982 1.46182i −0.0425200 0.999096i \(-0.513539\pi\)
0.886502 0.462724i \(-0.153128\pi\)
\(500\) 0.866025 + 0.500000i 0.0387298 + 0.0223607i
\(501\) −17.1313 6.99466i −0.765370 0.312498i
\(502\) −14.1442 + 8.16613i −0.631284 + 0.364472i
\(503\) 34.9467 1.55820 0.779098 0.626902i \(-0.215677\pi\)
0.779098 + 0.626902i \(0.215677\pi\)
\(504\) −7.77305 + 7.93200i −0.346239 + 0.353319i
\(505\) 7.12329i 0.316982i
\(506\) 0.708923 22.9544i 0.0315155 1.02045i
\(507\) −13.8359 + 10.7283i −0.614474 + 0.476462i
\(508\) 9.66673 + 5.58109i 0.428892 + 0.247621i
\(509\) 10.1145 + 5.83963i 0.448319 + 0.258837i 0.707120 0.707094i \(-0.249994\pi\)
−0.258801 + 0.965931i \(0.583327\pi\)
\(510\) −10.8130 + 1.47926i −0.478808 + 0.0655028i
\(511\) −8.92873 15.4650i −0.394984 0.684132i
\(512\) 1.00000 0.0441942
\(513\) 38.8026 16.7671i 1.71318 0.740285i
\(514\) 11.6549i 0.514078i
\(515\) −2.62526 + 1.51569i −0.115683 + 0.0667895i
\(516\) −0.230458 + 0.0315275i −0.0101453 + 0.00138792i
\(517\) −19.5952 + 10.5205i −0.861796 + 0.462692i
\(518\) 13.6062 + 7.85557i 0.597824 + 0.345154i
\(519\) −31.9948 + 24.8087i −1.40442 + 1.08898i
\(520\) 0.850259 + 1.47269i 0.0372863 + 0.0645818i
\(521\) 31.3047i 1.37149i 0.727844 + 0.685743i \(0.240523\pi\)
−0.727844 + 0.685743i \(0.759477\pi\)
\(522\) 4.39173 17.0797i 0.192221 0.747559i
\(523\) 8.03315i 0.351265i −0.984456 0.175633i \(-0.943803\pi\)
0.984456 0.175633i \(-0.0561971\pi\)
\(524\) 3.26700 + 5.65861i 0.142720 + 0.247198i
\(525\) 2.42371 5.93615i 0.105780 0.259075i
\(526\) −5.72200 + 9.91079i −0.249491 + 0.432131i
\(527\) −29.4659 + 51.0364i −1.28355 + 2.22318i
\(528\) −4.64621 + 3.37827i −0.202200 + 0.147020i
\(529\) 12.4731 + 21.6041i 0.542311 + 0.939310i
\(530\) −11.7272 −0.509397
\(531\) 30.5856 + 7.86451i 1.32730 + 0.341291i
\(532\) 30.1147 1.30564
\(533\) −2.49517 + 1.44059i −0.108078 + 0.0623988i
\(534\) 4.81663 + 6.21181i 0.208436 + 0.268812i
\(535\) −5.20251 3.00367i −0.224924 0.129860i
\(536\) 1.52684 2.64456i 0.0659494 0.114228i
\(537\) −35.7167 + 4.88619i −1.54129 + 0.210855i
\(538\) 20.7365 11.9723i 0.894016 0.516160i
\(539\) 11.7066 18.9037i 0.504239 0.814239i
\(540\) 4.16993 + 3.10027i 0.179445 + 0.133415i
\(541\) 20.9687i 0.901516i −0.892646 0.450758i \(-0.851154\pi\)
0.892646 0.450758i \(-0.148846\pi\)
\(542\) −5.61221 + 3.24021i −0.241065 + 0.139179i
\(543\) −3.90823 28.5681i −0.167718 1.22598i
\(544\) 3.15052 5.45686i 0.135077 0.233961i
\(545\) 2.37477 4.11322i 0.101724 0.176191i
\(546\) 8.61665 6.68134i 0.368759 0.285935i
\(547\) −26.4030 + 15.2438i −1.12891 + 0.651777i −0.943661 0.330915i \(-0.892643\pi\)
−0.185250 + 0.982691i \(0.559309\pi\)
\(548\) 7.00440i 0.299213i
\(549\) 29.9248 30.5368i 1.27716 1.30328i
\(550\) 1.74619 2.81972i 0.0744577 0.120233i
\(551\) −41.4138 + 23.9103i −1.76429 + 1.01861i
\(552\) 4.53350 11.1034i 0.192959 0.472594i
\(553\) 9.12077 15.7976i 0.387855 0.671784i
\(554\) −14.3214 8.26849i −0.608460 0.351294i
\(555\) 2.77868 6.80553i 0.117948 0.288879i
\(556\) 1.05294 0.607915i 0.0446546 0.0257814i
\(557\) 30.5744 1.29548 0.647740 0.761862i \(-0.275714\pi\)
0.647740 + 0.761862i \(0.275714\pi\)
\(558\) 27.0272 7.53589i 1.14415 0.319020i
\(559\) 0.228370 0.00965901
\(560\) 1.85095 + 3.20594i 0.0782170 + 0.135476i
\(561\) 3.79677 + 35.9970i 0.160300 + 1.51980i
\(562\) 7.80447 13.5177i 0.329212 0.570211i
\(563\) −8.04154 + 13.9284i −0.338911 + 0.587010i −0.984228 0.176904i \(-0.943392\pi\)
0.645317 + 0.763914i \(0.276725\pi\)
\(564\) −11.5077 + 1.57430i −0.484561 + 0.0662899i
\(565\) −5.51485 9.55200i −0.232012 0.401856i
\(566\) 25.2825i 1.06270i
\(567\) 16.0712 29.1847i 0.674926 1.22564i
\(568\) 7.72800i 0.324260i
\(569\) 6.32652 + 10.9578i 0.265221 + 0.459377i 0.967622 0.252405i \(-0.0812216\pi\)
−0.702400 + 0.711782i \(0.747888\pi\)
\(570\) −1.90979 13.9601i −0.0799923 0.584722i
\(571\) −6.85184 3.95591i −0.286741 0.165550i 0.349730 0.936850i \(-0.386273\pi\)
−0.636471 + 0.771301i \(0.719607\pi\)
\(572\) 4.96909 2.66787i 0.207768 0.111549i
\(573\) −17.0859 22.0350i −0.713773 0.920524i
\(574\) −5.43180 + 3.13605i −0.226719 + 0.130896i
\(575\) 6.92433i 0.288764i
\(576\) −2.88977 + 0.805744i −0.120407 + 0.0335727i
\(577\) 11.0441 0.459774 0.229887 0.973217i \(-0.426164\pi\)
0.229887 + 0.973217i \(0.426164\pi\)
\(578\) −11.3515 19.6614i −0.472162 0.817808i
\(579\) 6.29372 15.4145i 0.261558 0.640606i
\(580\) −5.09088 2.93922i −0.211387 0.122044i
\(581\) 1.33892 + 0.773023i 0.0555476 + 0.0320704i
\(582\) −20.2069 8.25042i −0.837602 0.341991i
\(583\) −1.20065 + 38.8762i −0.0497258 + 1.61009i
\(584\) 4.82386i 0.199613i
\(585\) −3.64367 3.57065i −0.150647 0.147628i
\(586\) −20.7475 −0.857073
\(587\) 11.9704 6.91111i 0.494071 0.285252i −0.232191 0.972670i \(-0.574589\pi\)
0.726262 + 0.687418i \(0.241256\pi\)
\(588\) 9.17640 7.11536i 0.378428 0.293432i
\(589\) −65.8902 38.0417i −2.71496 1.56748i
\(590\) 5.26343 9.11652i 0.216692 0.375321i
\(591\) 1.52966 + 11.1814i 0.0629219 + 0.459942i
\(592\) 2.12203 + 3.67547i 0.0872151 + 0.151061i
\(593\) −32.9775 −1.35422 −0.677111 0.735881i \(-0.736768\pi\)
−0.677111 + 0.735881i \(0.736768\pi\)
\(594\) 10.7045 13.5061i 0.439210 0.554161i
\(595\) 23.3258 0.956266
\(596\) −3.54443 6.13914i −0.145186 0.251469i
\(597\) 2.07916 + 15.1981i 0.0850943 + 0.622016i
\(598\) −5.88747 + 10.1974i −0.240757 + 0.417003i
\(599\) 27.3340 + 15.7813i 1.11684 + 0.644805i 0.940591 0.339541i \(-0.110272\pi\)
0.176244 + 0.984346i \(0.443605\pi\)
\(600\) 1.36878 1.06135i 0.0558800 0.0433293i
\(601\) −26.3640 + 15.2213i −1.07541 + 0.620889i −0.929655 0.368431i \(-0.879895\pi\)
−0.145757 + 0.989320i \(0.546562\pi\)
\(602\) 0.497144 0.0202621
\(603\) −2.28137 + 8.87242i −0.0929047 + 0.361313i
\(604\) 6.91494i 0.281365i
\(605\) −9.16872 6.07738i −0.372762 0.247080i
\(606\) 11.4225 + 4.66377i 0.464007 + 0.189453i
\(607\) 40.0695 + 23.1341i 1.62637 + 0.938986i 0.985164 + 0.171618i \(0.0548996\pi\)
0.641208 + 0.767367i \(0.278434\pi\)
\(608\) 7.04504 + 4.06746i 0.285714 + 0.164957i
\(609\) −14.2477 + 34.8953i −0.577344 + 1.41403i
\(610\) −7.12584 12.3423i −0.288517 0.499725i
\(611\) 11.4034 0.461333
\(612\) −4.70745 + 18.3076i −0.190287 + 0.740040i
\(613\) 34.3945i 1.38918i 0.719405 + 0.694591i \(0.244415\pi\)
−0.719405 + 0.694591i \(0.755585\pi\)
\(614\) 10.1731 5.87345i 0.410554 0.237033i
\(615\) 1.79823 + 2.31911i 0.0725116 + 0.0935153i
\(616\) 10.8173 5.80776i 0.435843 0.234001i
\(617\) −11.0645 6.38808i −0.445439 0.257175i 0.260463 0.965484i \(-0.416125\pi\)
−0.705902 + 0.708309i \(0.749458\pi\)
\(618\) 0.711663 + 5.20206i 0.0286273 + 0.209258i
\(619\) 22.4955 + 38.9633i 0.904170 + 1.56607i 0.822027 + 0.569448i \(0.192843\pi\)
0.0821426 + 0.996621i \(0.473824\pi\)
\(620\) 9.35271i 0.375614i
\(621\) −4.15426 + 35.7392i −0.166705 + 1.43417i
\(622\) 10.5510i 0.423058i
\(623\) −8.40004 14.5493i −0.336541 0.582905i
\(624\) 2.91820 0.399222i 0.116822 0.0159817i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 4.93502 8.54771i 0.197243 0.341635i
\(627\) −46.4737 + 4.90179i −1.85598 + 0.195759i
\(628\) 5.63065 + 9.75257i 0.224687 + 0.389170i
\(629\) 26.7420 1.06628
\(630\) −7.93200 7.77305i −0.316018 0.309686i
\(631\) 1.04968 0.0417871 0.0208935 0.999782i \(-0.493349\pi\)
0.0208935 + 0.999782i \(0.493349\pi\)
\(632\) 4.26744 2.46381i 0.169750 0.0980050i
\(633\) 10.4433 25.5778i 0.415085 1.01662i
\(634\) −23.9489 13.8269i −0.951134 0.549137i
\(635\) −5.58109 + 9.66673i −0.221479 + 0.383612i
\(636\) −7.67805 + 18.8050i −0.304455 + 0.745668i
\(637\) −9.87307 + 5.70022i −0.391185 + 0.225851i
\(638\) −10.2649 + 16.5756i −0.406389 + 0.656233i
\(639\) −6.22679 22.3322i −0.246328 0.883447i
\(640\) 1.00000i 0.0395285i
\(641\) 19.4193 11.2118i 0.767018 0.442838i −0.0647921 0.997899i \(-0.520638\pi\)
0.831810 + 0.555061i \(0.187305\pi\)
\(642\) −8.22269 + 6.37586i −0.324524 + 0.251635i
\(643\) 10.3829 17.9836i 0.409460 0.709205i −0.585370 0.810767i \(-0.699051\pi\)
0.994829 + 0.101562i \(0.0323839\pi\)
\(644\) −12.8166 + 22.1990i −0.505045 + 0.874763i
\(645\) −0.0315275 0.230458i −0.00124140 0.00907427i
\(646\) 44.3911 25.6292i 1.74654 1.00837i
\(647\) 4.93788i 0.194128i 0.995278 + 0.0970640i \(0.0309451\pi\)
−0.995278 + 0.0970640i \(0.969055\pi\)
\(648\) 7.70155 4.65683i 0.302546 0.182938i
\(649\) −29.6828 18.3819i −1.16515 0.721551i
\(650\) −1.47269 + 0.850259i −0.0577637 + 0.0333499i
\(651\) −59.4151 + 8.12822i −2.32866 + 0.318570i
\(652\) 0.475072 0.822849i 0.0186053 0.0322252i
\(653\) −23.6272 13.6412i −0.924603 0.533820i −0.0395024 0.999219i \(-0.512577\pi\)
−0.885101 + 0.465400i \(0.845911\pi\)
\(654\) −5.04090 6.50104i −0.197115 0.254211i
\(655\) −5.65861 + 3.26700i −0.221100 + 0.127652i
\(656\) −1.69429 −0.0661510
\(657\) 3.88679 + 13.9398i 0.151638 + 0.543845i
\(658\) 24.8244 0.967757
\(659\) −6.36870 11.0309i −0.248089 0.429703i 0.714906 0.699220i \(-0.246469\pi\)
−0.962996 + 0.269517i \(0.913136\pi\)
\(660\) −3.37827 4.64621i −0.131499 0.180854i
\(661\) −4.16400 + 7.21226i −0.161961 + 0.280524i −0.935572 0.353136i \(-0.885115\pi\)
0.773611 + 0.633661i \(0.218448\pi\)
\(662\) −11.9098 + 20.6284i −0.462888 + 0.801746i
\(663\) 7.01536 17.1820i 0.272454 0.667293i
\(664\) 0.208818 + 0.361683i 0.00810370 + 0.0140360i
\(665\) 30.1147i 1.16780i
\(666\) −9.09368 8.91146i −0.352373 0.345312i
\(667\) 40.7042i 1.57607i
\(668\) 5.34171 + 9.25211i 0.206677 + 0.357975i
\(669\) 29.1893 22.6333i 1.12852 0.875054i
\(670\) 2.64456 + 1.52684i 0.102168 + 0.0589869i
\(671\) −41.6449 + 22.3588i −1.60768 + 0.863153i
\(672\) 6.35271 0.869077i 0.245061 0.0335254i
\(673\) −40.8988 + 23.6129i −1.57653 + 0.910211i −0.581193 + 0.813766i \(0.697414\pi\)
−0.995338 + 0.0964450i \(0.969253\pi\)
\(674\) 22.0537i 0.849476i
\(675\) −3.10027 + 4.16993i −0.119330 + 0.160501i
\(676\) 10.1082 0.388778
\(677\) −19.2311 33.3093i −0.739111 1.28018i −0.952896 0.303298i \(-0.901912\pi\)
0.213784 0.976881i \(-0.431421\pi\)
\(678\) −18.9277 + 2.58939i −0.726914 + 0.0994448i
\(679\) 40.3994 + 23.3246i 1.55039 + 0.895117i
\(680\) 5.45686 + 3.15052i 0.209261 + 0.120817i
\(681\) 15.5926 12.0905i 0.597509 0.463307i
\(682\) −31.0046 0.957545i −1.18723 0.0366663i
\(683\) 1.00073i 0.0382918i 0.999817 + 0.0191459i \(0.00609470\pi\)
−0.999817 + 0.0191459i \(0.993905\pi\)
\(684\) −23.6359 6.07752i −0.903741 0.232380i
\(685\) 7.00440 0.267624
\(686\) 0.948662 0.547710i 0.0362201 0.0209117i
\(687\) −8.26531 3.37471i −0.315341 0.128753i
\(688\) 0.116302 + 0.0671471i 0.00443398 + 0.00255996i
\(689\) 9.97117 17.2706i 0.379871 0.657956i
\(690\) 11.1034 + 4.53350i 0.422700 + 0.172588i
\(691\) −9.68498 16.7749i −0.368434 0.638146i 0.620887 0.783900i \(-0.286773\pi\)
−0.989321 + 0.145754i \(0.953439\pi\)
\(692\) 23.3748 0.888576
\(693\) −26.5801 + 25.4991i −1.00969 + 0.968631i
\(694\) 2.82733 0.107324
\(695\) 0.607915 + 1.05294i 0.0230595 + 0.0399403i
\(696\) −8.04626 + 6.23905i −0.304993 + 0.236491i
\(697\) −5.33790 + 9.24551i −0.202187 + 0.350199i
\(698\) 15.3832 + 8.88151i 0.582264 + 0.336170i
\(699\) 5.81479 + 42.5045i 0.219935 + 1.60767i
\(700\) −3.20594 + 1.85095i −0.121173 + 0.0699594i
\(701\) 24.3953 0.921398 0.460699 0.887557i \(-0.347599\pi\)
0.460699 + 0.887557i \(0.347599\pi\)
\(702\) −8.11127 + 3.50498i −0.306140 + 0.132287i
\(703\) 34.5251i 1.30214i
\(704\) 3.31504 + 0.102382i 0.124940 + 0.00385865i
\(705\) −1.57430 11.5077i −0.0592915 0.433405i
\(706\) −8.18276 4.72432i −0.307962 0.177802i
\(707\) −22.8369 13.1849i −0.858869 0.495868i
\(708\) −11.1726 14.4089i −0.419893 0.541519i
\(709\) −16.7454 29.0038i −0.628885 1.08926i −0.987776 0.155881i \(-0.950178\pi\)
0.358891 0.933380i \(-0.383155\pi\)
\(710\) −7.72800 −0.290027
\(711\) −10.3467 + 10.5583i −0.388032 + 0.395967i
\(712\) 4.53823i 0.170077i
\(713\) 56.0848 32.3806i 2.10039 1.21266i
\(714\) 15.2719 37.4039i 0.571537 1.39981i
\(715\) 2.66787 + 4.96909i 0.0997727 + 0.185833i
\(716\) 18.0247 + 10.4066i 0.673615 + 0.388912i
\(717\) 8.05376 + 3.28833i 0.300773 + 0.122805i
\(718\) −7.93309 13.7405i −0.296060 0.512791i
\(719\) 39.1570i 1.46031i −0.683282 0.730155i \(-0.739448\pi\)
0.683282 0.730155i \(-0.260552\pi\)
\(720\) −0.805744 2.88977i −0.0300283 0.107695i
\(721\) 11.2219i 0.417926i
\(722\) 23.5884 + 40.8563i 0.877870 + 1.52052i
\(723\) −8.07504 10.4141i −0.300314 0.387303i
\(724\) −8.32372 + 14.4171i −0.309349 + 0.535808i
\(725\) 2.93922 5.09088i 0.109160 0.189070i
\(726\) −15.7483 + 10.7234i −0.584473 + 0.397984i
\(727\) 18.9732 + 32.8626i 0.703677 + 1.21881i 0.967167 + 0.254143i \(0.0817933\pi\)
−0.263489 + 0.964662i \(0.584873\pi\)
\(728\) −6.29516 −0.233314
\(729\) −18.5035 + 19.6627i −0.685315 + 0.728247i
\(730\) 4.82386 0.178539
\(731\) 0.732824 0.423096i 0.0271045 0.0156488i
\(732\) −24.4568 + 3.34579i −0.903950 + 0.123664i
\(733\) −15.5569 8.98180i −0.574609 0.331751i 0.184379 0.982855i \(-0.440973\pi\)
−0.758988 + 0.651105i \(0.774306\pi\)
\(734\) −0.928259 + 1.60779i −0.0342627 + 0.0593447i
\(735\) 7.11536 + 9.17640i 0.262454 + 0.338476i
\(736\) −5.99664 + 3.46216i −0.221039 + 0.127617i
\(737\) 5.33229 8.61052i 0.196417 0.317173i
\(738\) 4.89612 1.36517i 0.180229 0.0502524i
\(739\) 32.2401i 1.18597i 0.805213 + 0.592985i \(0.202051\pi\)
−0.805213 + 0.592985i \(0.797949\pi\)
\(740\) −3.67547 + 2.12203i −0.135113 + 0.0780076i
\(741\) 22.1827 + 9.05713i 0.814901 + 0.332722i
\(742\) 21.7065 37.5968i 0.796871 1.38022i
\(743\) 5.93755 10.2841i 0.217828 0.377289i −0.736316 0.676638i \(-0.763436\pi\)
0.954144 + 0.299349i \(0.0967696\pi\)
\(744\) −14.9974 6.12341i −0.549833 0.224495i
\(745\) 6.13914 3.54443i 0.224921 0.129858i
\(746\) 14.3838i 0.526627i
\(747\) −0.894859 0.876927i −0.0327412 0.0320851i
\(748\) 11.0028 17.7672i 0.402302 0.649632i
\(749\) 19.2592 11.1193i 0.703715 0.406290i
\(750\) 1.06135 + 1.36878i 0.0387549 + 0.0499806i
\(751\) −8.97230 + 15.5405i −0.327404 + 0.567080i −0.981996 0.188902i \(-0.939507\pi\)
0.654592 + 0.755982i \(0.272840\pi\)
\(752\) 5.80744 + 3.35293i 0.211775 + 0.122269i
\(753\) −28.0272 + 3.83424i −1.02137 + 0.139727i
\(754\) 8.65713 4.99820i 0.315274 0.182024i
\(755\) −6.91494 −0.251661
\(756\) −17.6576 + 7.63009i −0.642202 + 0.277504i
\(757\) 44.3126 1.61057 0.805285 0.592887i \(-0.202012\pi\)
0.805285 + 0.592887i \(0.202012\pi\)
\(758\) −1.67786 2.90614i −0.0609427 0.105556i
\(759\) 16.1656 36.3442i 0.586772 1.31921i
\(760\) −4.06746 + 7.04504i −0.147542 + 0.255551i
\(761\) 4.67241 8.09285i 0.169375 0.293366i −0.768825 0.639459i \(-0.779158\pi\)
0.938200 + 0.346093i \(0.112492\pi\)
\(762\) 11.8469 + 15.2785i 0.429169 + 0.553482i
\(763\) 8.79116 + 15.2267i 0.318261 + 0.551245i
\(764\) 16.0983i 0.582416i
\(765\) −18.3076 4.70745i −0.661912 0.170198i
\(766\) 11.4937i 0.415284i
\(767\) 8.95056 + 15.5028i 0.323186 + 0.559774i
\(768\) 1.60354 + 0.654721i 0.0578628 + 0.0236252i
\(769\) 43.7535 + 25.2611i 1.57779 + 0.910939i 0.995167 + 0.0981981i \(0.0313079\pi\)
0.582626 + 0.812741i \(0.302025\pi\)
\(770\) 5.80776 + 10.8173i 0.209297 + 0.389830i
\(771\) 7.63074 18.6892i 0.274814 0.673074i
\(772\) −8.32495 + 4.80641i −0.299621 + 0.172986i
\(773\) 10.0301i 0.360757i −0.983597 0.180379i \(-0.942268\pi\)
0.983597 0.180379i \(-0.0577323\pi\)
\(774\) −0.390190 0.100330i −0.0140251 0.00360628i
\(775\) 9.35271 0.335959
\(776\) 6.30071 + 10.9132i 0.226182 + 0.391759i
\(777\) 16.6749 + 21.5050i 0.598210 + 0.771488i
\(778\) −30.5931 17.6629i −1.09681 0.633246i
\(779\) −11.9364 6.89146i −0.427664 0.246912i
\(780\) 0.399222 + 2.91820i 0.0142944 + 0.104488i
\(781\) −0.791205 + 25.6187i −0.0283115 + 0.916708i
\(782\) 43.6304i 1.56022i
\(783\) 18.2248 24.5127i 0.651300 0.876011i
\(784\) −6.70409 −0.239432
\(785\) −9.75257 + 5.63065i −0.348084 + 0.200966i
\(786\) 1.53395 + 11.2128i 0.0547143 + 0.399947i
\(787\) −7.93744 4.58268i −0.282939 0.163355i 0.351814 0.936070i \(-0.385565\pi\)
−0.634753 + 0.772715i \(0.718898\pi\)
\(788\) 3.25786 5.64278i 0.116057 0.201016i
\(789\) −15.6643 + 12.1460i −0.557662 + 0.432410i
\(790\) 2.46381 + 4.26744i 0.0876583 + 0.151829i
\(791\) 40.8309 1.45178
\(792\) −9.66221 + 2.37522i −0.343332 + 0.0843997i
\(793\) 24.2352 0.860618
\(794\) 14.4287 + 24.9912i 0.512055 + 0.886905i
\(795\) −18.8050 7.67805i −0.666946 0.272312i
\(796\) 4.42817 7.66982i 0.156952 0.271850i
\(797\) 9.12825 + 5.27020i 0.323339 + 0.186680i 0.652880 0.757461i \(-0.273561\pi\)
−0.329541 + 0.944141i \(0.606894\pi\)
\(798\) 48.2901 + 19.7167i 1.70945 + 0.697964i
\(799\) 36.5929 21.1269i 1.29456 0.747416i
\(800\) −1.00000 −0.0353553
\(801\) 3.65665 + 13.1144i 0.129201 + 0.463376i
\(802\) 8.84662i 0.312385i
\(803\) 0.493874 15.9913i 0.0174284 0.564321i
\(804\) 4.17980 3.24101i 0.147410 0.114301i
\(805\) −22.1990 12.8166i −0.782412 0.451726i
\(806\) 13.7737 + 7.95222i 0.485156 + 0.280105i
\(807\) 41.0904 5.62133i 1.44645 0.197880i
\(808\) −3.56165 6.16895i −0.125298 0.217023i
\(809\) 20.8254 0.732181 0.366091 0.930579i \(-0.380696\pi\)
0.366091 + 0.930579i \(0.380696\pi\)
\(810\) 4.65683 + 7.70155i 0.163624 + 0.270605i
\(811\) 1.67047i 0.0586583i 0.999570 + 0.0293291i \(0.00933710\pi\)
−0.999570 + 0.0293291i \(0.990663\pi\)
\(812\) 18.8459 10.8807i 0.661363 0.381838i
\(813\) −11.1208 + 1.52137i −0.390025 + 0.0533569i
\(814\) 6.65834 + 12.4016i 0.233375 + 0.434676i
\(815\) 0.822849 + 0.475072i 0.0288231 + 0.0166410i
\(816\) 8.62470 6.68758i 0.301925 0.234112i
\(817\) 0.546236 + 0.946108i 0.0191104 + 0.0331001i
\(818\) 26.5420i 0.928018i
\(819\) 18.1916 5.07228i 0.635665 0.177240i
\(820\) 1.69429i 0.0591673i
\(821\) 1.60676 + 2.78300i 0.0560764 + 0.0971272i 0.892701 0.450650i \(-0.148808\pi\)
−0.836624 + 0.547777i \(0.815474\pi\)
\(822\) 4.58593 11.2318i 0.159953 0.391755i
\(823\) 22.1840 38.4238i 0.773286 1.33937i −0.162467 0.986714i \(-0.551945\pi\)
0.935753 0.352656i \(-0.114721\pi\)
\(824\) 1.51569 2.62526i 0.0528017 0.0914552i
\(825\) 4.64621 3.37827i 0.161760 0.117616i
\(826\) 19.4847 + 33.7485i 0.677959 + 1.17426i
\(827\) −39.7226 −1.38129 −0.690646 0.723193i \(-0.742674\pi\)
−0.690646 + 0.723193i \(0.742674\pi\)
\(828\) 14.5393 14.8366i 0.505276 0.515608i
\(829\) 2.66747 0.0926450 0.0463225 0.998927i \(-0.485250\pi\)
0.0463225 + 0.998927i \(0.485250\pi\)
\(830\) −0.361683 + 0.208818i −0.0125542 + 0.00724817i
\(831\) −17.5514 22.6354i −0.608853 0.785213i
\(832\) −1.47269 0.850259i −0.0510564 0.0294774i
\(833\) −21.1214 + 36.5833i −0.731812 + 1.26754i
\(834\) 2.08645 0.285434i 0.0722477 0.00988378i
\(835\) −9.25211 + 5.34171i −0.320183 + 0.184858i
\(836\) 22.9382 + 14.2051i 0.793334 + 0.491293i
\(837\) 48.2731 + 5.61117i 1.66856 + 0.193950i
\(838\) 23.7142i 0.819193i
\(839\) −15.3125 + 8.84066i −0.528645 + 0.305213i −0.740465 0.672095i \(-0.765394\pi\)
0.211819 + 0.977309i \(0.432061\pi\)
\(840\) 0.869077 + 6.35271i 0.0299860 + 0.219189i
\(841\) −2.77801 + 4.81166i −0.0957936 + 0.165919i
\(842\) 10.3493 17.9255i 0.356660 0.617754i
\(843\) 21.3651 16.5665i 0.735854 0.570580i
\(844\) −13.8138 + 7.97541i −0.475491 + 0.274525i
\(845\) 10.1082i 0.347734i
\(846\) −19.4838 5.00988i −0.669866 0.172243i
\(847\) 36.4546 18.1455i 1.25259 0.623486i
\(848\) 10.1561 5.86360i 0.348760 0.201357i
\(849\) 16.5530 40.5414i 0.568096 1.39138i
\(850\) −3.15052 + 5.45686i −0.108062 + 0.187169i
\(851\) −25.4502 14.6937i −0.872421 0.503692i
\(852\) −5.05969 + 12.3922i −0.173342 + 0.424548i
\(853\) 28.7935 16.6240i 0.985872 0.569194i 0.0818343 0.996646i \(-0.473922\pi\)
0.904038 + 0.427452i \(0.140589\pi\)
\(854\) 52.7583 1.80535
\(855\) 6.07752 23.6359i 0.207847 0.808330i
\(856\) 6.00734 0.205327
\(857\) 13.1719 + 22.8143i 0.449942 + 0.779323i 0.998382 0.0568672i \(-0.0181112\pi\)
−0.548439 + 0.836190i \(0.684778\pi\)
\(858\) 9.71485 1.02467i 0.331659 0.0349816i
\(859\) 0.521587 0.903414i 0.0177963 0.0308241i −0.856990 0.515333i \(-0.827668\pi\)
0.874786 + 0.484509i \(0.161002\pi\)
\(860\) −0.0671471 + 0.116302i −0.00228970 + 0.00396587i
\(861\) −10.7634 + 1.47247i −0.366814 + 0.0501816i
\(862\) 8.47658 + 14.6819i 0.288713 + 0.500066i
\(863\) 3.30108i 0.112370i 0.998420 + 0.0561850i \(0.0178937\pi\)
−0.998420 + 0.0561850i \(0.982106\pi\)
\(864\) −5.16140 0.599952i −0.175594 0.0204108i
\(865\) 23.3748i 0.794766i
\(866\) 18.9684 + 32.8542i 0.644572 + 1.11643i
\(867\) −5.32988 38.9600i −0.181012 1.32315i
\(868\) 29.9842 + 17.3114i 1.01773 + 0.587588i
\(869\) 14.3990 7.73072i 0.488452 0.262247i
\(870\) −6.23905 8.04626i −0.211524 0.272794i
\(871\) −4.49713 + 2.59642i −0.152379 + 0.0879762i
\(872\) 4.74953i 0.160840i
\(873\) −27.0008 26.4598i −0.913839 0.895527i
\(874\) −56.3288 −1.90535
\(875\) −1.85095 3.20594i −0.0625736 0.108381i
\(876\) 3.15828 7.73525i 0.106708 0.261350i
\(877\) 0.652792 + 0.376890i 0.0220432 + 0.0127267i 0.510981 0.859592i \(-0.329282\pi\)
−0.488938 + 0.872319i \(0.662616\pi\)
\(878\) −19.7502 11.4028i −0.666539 0.384826i
\(879\) −33.2695 13.5839i −1.12215 0.458172i
\(880\) −0.102382 + 3.31504i −0.00345128 + 0.111750i
\(881\) 29.9005i 1.00737i 0.863887 + 0.503686i \(0.168023\pi\)
−0.863887 + 0.503686i \(0.831977\pi\)
\(882\) 19.3733 5.40178i 0.652333 0.181887i
\(883\) −31.4539 −1.05851 −0.529253 0.848464i \(-0.677528\pi\)
−0.529253 + 0.848464i \(0.677528\pi\)
\(884\) −9.27949 + 5.35752i −0.312103 + 0.180193i
\(885\) 14.4089 11.1726i 0.484350 0.375564i
\(886\) −9.65829 5.57622i −0.324477 0.187337i
\(887\) 2.45480 4.25184i 0.0824241 0.142763i −0.821867 0.569680i \(-0.807067\pi\)
0.904291 + 0.426917i \(0.140400\pi\)
\(888\) 0.996358 + 7.28311i 0.0334356 + 0.244405i
\(889\) −20.6607 35.7853i −0.692936 1.20020i
\(890\) 4.53823 0.152122
\(891\) 26.0078 14.6491i 0.871293 0.490763i
\(892\) −21.3251 −0.714017
\(893\) 27.2758 + 47.2430i 0.912749 + 1.58093i
\(894\) −1.66422 12.1650i −0.0556597 0.406857i
\(895\) −10.4066 + 18.0247i −0.347853 + 0.602500i
\(896\) −3.20594 1.85095i −0.107103 0.0618360i
\(897\) −16.1173 + 12.4973i −0.538139 + 0.417272i
\(898\) 24.2519 14.0019i 0.809297 0.467248i
\(899\) −54.9793 −1.83366
\(900\) 2.88977 0.805744i 0.0963257 0.0268581i
\(901\) 73.8936i 2.46175i
\(902\) −5.61665 0.173464i −0.187014 0.00577573i
\(903\) 0.797190 + 0.325491i 0.0265288 + 0.0108317i
\(904\) 9.55200 + 5.51485i 0.317695 + 0.183421i
\(905\) −14.4171 8.32372i −0.479241 0.276690i
\(906\) −4.52736 + 11.0884i −0.150411 + 0.368387i
\(907\) −2.20442 3.81816i −0.0731964 0.126780i 0.827104 0.562049i \(-0.189987\pi\)
−0.900301 + 0.435269i \(0.856653\pi\)
\(908\) −11.3916 −0.378045
\(909\) 15.2629 + 14.9571i 0.506240 + 0.496095i
\(910\) 6.29516i 0.208682i
\(911\) 25.1448 14.5174i 0.833084 0.480981i −0.0218233 0.999762i \(-0.506947\pi\)
0.854907 + 0.518780i \(0.173614\pi\)
\(912\) 8.63396 + 11.1349i 0.285899 + 0.368712i
\(913\) 0.655210 + 1.22037i 0.0216843 + 0.0403885i
\(914\) −5.08207 2.93413i −0.168100 0.0970525i
\(915\) −3.34579 24.4568i −0.110608 0.808518i
\(916\) 2.57721 + 4.46385i 0.0851533 + 0.147490i
\(917\) 24.1883i 0.798766i
\(918\) −19.5349 + 26.2749i −0.644749 + 0.867200i
\(919\) 5.48992i 0.181096i 0.995892 + 0.0905478i \(0.0288618\pi\)
−0.995892 + 0.0905478i \(0.971138\pi\)
\(920\) −3.46216 5.99664i −0.114144 0.197703i
\(921\) 20.1585 2.75776i 0.664244 0.0908713i
\(922\) 10.4234 18.0539i 0.343277 0.594574i
\(923\) 6.57081 11.3810i 0.216281 0.374609i
\(924\) 21.1485 2.23063i 0.695735 0.0733822i
\(925\) −2.12203 3.67547i −0.0697721 0.120849i
\(926\) −9.35194 −0.307324
\(927\) −2.26472 + 8.80766i −0.0743832 + 0.289281i
\(928\) 5.87844 0.192969
\(929\) −4.67701 + 2.70027i −0.153448 + 0.0885930i −0.574758 0.818324i \(-0.694904\pi\)
0.421310 + 0.906917i \(0.361570\pi\)
\(930\) 6.12341 14.9974i 0.200795 0.491785i
\(931\) −47.2306 27.2686i −1.54792 0.893693i
\(932\) 12.3843 21.4502i 0.405661 0.702625i
\(933\) 6.90798 16.9190i 0.226157 0.553903i
\(934\) 6.20173 3.58057i 0.202927 0.117160i
\(935\) 17.7672 + 11.0028i 0.581049 + 0.359830i
\(936\) 4.94083 + 1.27044i 0.161496 + 0.0415257i
\(937\) 44.5644i 1.45586i 0.685653 + 0.727928i \(0.259517\pi\)
−0.685653 + 0.727928i \(0.740483\pi\)
\(938\) −9.78991 + 5.65221i −0.319652 + 0.184551i
\(939\) 13.5099 10.4755i 0.440878 0.341856i
\(940\) −3.35293 + 5.80744i −0.109360 + 0.189418i
\(941\) 2.75946 4.77952i 0.0899558 0.155808i −0.817536 0.575877i \(-0.804661\pi\)
0.907492 + 0.420069i \(0.137994\pi\)
\(942\) 2.64376 + 19.3251i 0.0861382 + 0.629647i
\(943\) 10.1601 5.86592i 0.330857 0.191021i
\(944\) 10.5269i 0.342620i
\(945\) −7.63009 17.6576i −0.248207 0.574403i
\(946\) 0.378672 + 0.234503i 0.0123117 + 0.00762434i
\(947\) −9.64627 + 5.56928i −0.313462 + 0.180977i −0.648475 0.761236i \(-0.724593\pi\)
0.335013 + 0.942214i \(0.391259\pi\)
\(948\) 8.45611 1.15683i 0.274642 0.0375721i
\(949\) −4.10153 + 7.10406i −0.133141 + 0.230607i
\(950\) −7.04504 4.06746i −0.228571 0.131966i
\(951\) −29.3503 37.8519i −0.951749 1.22743i
\(952\) −20.2008 + 11.6629i −0.654711 + 0.377997i
\(953\) 25.6900 0.832181 0.416090 0.909323i \(-0.363400\pi\)
0.416090 + 0.909323i \(0.363400\pi\)
\(954\) −24.6241 + 25.1277i −0.797235 + 0.813538i
\(955\) −16.0983 −0.520929
\(956\) −2.51124 4.34960i −0.0812194 0.140676i
\(957\) −27.3125 + 19.8590i −0.882887 + 0.641949i
\(958\) 6.52135 11.2953i 0.210695 0.364935i
\(959\) −12.9648 + 22.4557i −0.418655 + 0.725133i
\(960\) −0.654721 + 1.60354i −0.0211310 + 0.0517540i
\(961\) −28.2366 48.9071i −0.910857 1.57765i
\(962\) 7.21712i 0.232689i
\(963\) −17.3598 + 4.84038i −0.559413 + 0.155979i
\(964\) 7.60831i 0.245047i
\(965\) −4.80641 8.32495i −0.154724 0.267989i
\(966\) −35.0861 + 27.2057i −1.12888 + 0.875328i
\(967\) 5.92658 + 3.42171i 0.190586 + 0.110035i 0.592257 0.805749i \(-0.298237\pi\)
−0.401671 + 0.915784i \(0.631570\pi\)
\(968\) 10.9790 + 0.678799i 0.352880 + 0.0218174i
\(969\) 87.9628 12.0337i 2.82577 0.386577i
\(970\) −10.9132 + 6.30071i −0.350400 + 0.202304i
\(971\) 17.2318i 0.552996i 0.961015 + 0.276498i \(0.0891739\pi\)
−0.961015 + 0.276498i \(0.910826\pi\)
\(972\) 15.3987 2.42505i 0.493913 0.0777834i
\(973\) −4.50089 −0.144292
\(974\) 3.97084 + 6.87769i 0.127234 + 0.220375i
\(975\) −2.91820 + 0.399222i −0.0934573 + 0.0127853i
\(976\) 12.3423 + 7.12584i 0.395068 + 0.228092i
\(977\) −30.1833 17.4263i −0.965649 0.557518i −0.0677422 0.997703i \(-0.521580\pi\)
−0.897907 + 0.440185i \(0.854913\pi\)
\(978\) 1.30053 1.00843i 0.0415865 0.0322461i
\(979\) 0.464631 15.0444i 0.0148497 0.480822i
\(980\) 6.70409i 0.214154i
\(981\) −3.82691 13.7251i −0.122184 0.438208i
\(982\) −19.1809 −0.612087
\(983\) −47.4751 + 27.4097i −1.51422 + 0.874235i −0.514358 + 0.857575i \(0.671970\pi\)
−0.999861 + 0.0166598i \(0.994697\pi\)
\(984\) −2.71687 1.10929i −0.0866105 0.0353628i
\(985\) 5.64278 + 3.25786i 0.179794 + 0.103804i
\(986\) 18.5201 32.0778i 0.589801 1.02157i
\(987\) 39.8069 + 16.2531i 1.26707 + 0.517341i
\(988\) −6.91679 11.9802i −0.220052 0.381142i
\(989\) −0.929897 −0.0295690
\(990\) −2.37522 9.66221i −0.0754894 0.307085i
\(991\) −2.80826 −0.0892074 −0.0446037 0.999005i \(-0.514203\pi\)
−0.0446037 + 0.999005i \(0.514203\pi\)
\(992\) 4.67635 + 8.09968i 0.148474 + 0.257165i
\(993\) −32.6037 + 25.2809i −1.03465 + 0.802264i
\(994\) 14.3042 24.7755i 0.453700 0.785832i
\(995\) 7.66982 + 4.42817i 0.243150 + 0.140383i
\(996\) 0.0980461 + 0.716691i 0.00310671 + 0.0227092i
\(997\) −28.6772 + 16.5568i −0.908216 + 0.524359i −0.879857 0.475239i \(-0.842362\pi\)
−0.0283596 + 0.999598i \(0.509028\pi\)
\(998\) −37.7063 −1.19357
\(999\) −8.74757 20.2437i −0.276761 0.640482i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.t.a.131.11 48
3.2 odd 2 2970.2.t.b.2771.13 48
9.2 odd 6 990.2.t.b.461.11 yes 48
9.7 even 3 2970.2.t.a.791.13 48
11.10 odd 2 990.2.t.b.131.11 yes 48
33.32 even 2 2970.2.t.a.2771.13 48
99.43 odd 6 2970.2.t.b.791.13 48
99.65 even 6 inner 990.2.t.a.461.11 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.11 48 1.1 even 1 trivial
990.2.t.a.461.11 yes 48 99.65 even 6 inner
990.2.t.b.131.11 yes 48 11.10 odd 2
990.2.t.b.461.11 yes 48 9.2 odd 6
2970.2.t.a.791.13 48 9.7 even 3
2970.2.t.a.2771.13 48 33.32 even 2
2970.2.t.b.791.13 48 99.43 odd 6
2970.2.t.b.2771.13 48 3.2 odd 2