Properties

Label 990.2.bh.d.523.9
Level $990$
Weight $2$
Character 990.523
Analytic conductor $7.905$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(73,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.bh (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 523.9
Character \(\chi\) \(=\) 990.523
Dual form 990.2.bh.d.937.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.453990 - 0.891007i) q^{2} +(-0.587785 - 0.809017i) q^{4} +(-1.04130 + 1.97881i) q^{5} +(1.08010 + 0.171071i) q^{7} +(-0.987688 + 0.156434i) q^{8} +(1.29039 + 1.82617i) q^{10} +(-3.30854 + 0.231505i) q^{11} +(-2.08157 - 1.06061i) q^{13} +(0.642782 - 0.884714i) q^{14} +(-0.309017 + 0.951057i) q^{16} +(-2.96964 + 1.51311i) q^{17} +(-4.05531 - 2.94635i) q^{19} +(2.21295 - 0.320687i) q^{20} +(-1.29577 + 3.05303i) q^{22} +(-2.67409 - 2.67409i) q^{23} +(-2.83139 - 4.12107i) q^{25} +(-1.89002 + 1.37318i) q^{26} +(-0.496469 - 0.974375i) q^{28} +(1.72903 - 1.25621i) q^{29} +(-0.615977 - 1.89578i) q^{31} +(0.707107 + 0.707107i) q^{32} +3.33290i q^{34} +(-1.46323 + 1.95918i) q^{35} +(0.392539 - 2.47839i) q^{37} +(-4.46629 + 2.27569i) q^{38} +(0.718926 - 2.11734i) q^{40} +(-3.67243 + 5.05467i) q^{41} +(0.876728 - 0.876728i) q^{43} +(2.13200 + 2.54059i) q^{44} +(-3.59664 + 1.16862i) q^{46} +(-4.68990 + 0.742808i) q^{47} +(-5.52004 - 1.79357i) q^{49} +(-4.95733 + 0.651858i) q^{50} +(0.365462 + 2.30744i) q^{52} +(-3.40646 + 6.68555i) q^{53} +(2.98707 - 6.78803i) q^{55} -1.09357 q^{56} +(-0.334331 - 2.11088i) q^{58} +(-0.531320 - 0.731299i) q^{59} +(6.76905 + 2.19940i) q^{61} +(-1.96880 - 0.311828i) q^{62} +(0.951057 - 0.309017i) q^{64} +(4.26629 - 3.01462i) q^{65} +(0.578715 - 0.578715i) q^{67} +(2.96964 + 1.51311i) q^{68} +(1.08135 + 2.19320i) q^{70} +(-5.17298 + 15.9208i) q^{71} +(-0.870026 + 5.49313i) q^{73} +(-2.03006 - 1.47492i) q^{74} +5.01264i q^{76} +(-3.61316 - 0.315947i) q^{77} +(1.22478 + 3.76949i) q^{79} +(-1.56018 - 1.60182i) q^{80} +(2.83649 + 5.56693i) q^{82} +(-5.34777 - 10.4956i) q^{83} +(0.0981327 - 7.45195i) q^{85} +(-0.383144 - 1.17920i) q^{86} +(3.23159 - 0.746223i) q^{88} +2.76909i q^{89} +(-2.06687 - 1.50167i) q^{91} +(-0.591594 + 3.73518i) q^{92} +(-1.46733 + 4.51596i) q^{94} +(10.0531 - 4.95665i) q^{95} +(12.0797 + 6.15492i) q^{97} +(-4.10413 + 4.10413i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 40 q^{7} + 24 q^{16} + 4 q^{22} + 8 q^{25} + 20 q^{28} - 16 q^{31} + 64 q^{37} - 40 q^{46} - 40 q^{52} - 36 q^{55} - 12 q^{58} - 80 q^{61} - 48 q^{67} - 52 q^{70} + 20 q^{73} + 48 q^{82} - 160 q^{85}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.453990 0.891007i 0.321020 0.630037i
\(3\) 0 0
\(4\) −0.587785 0.809017i −0.293893 0.404508i
\(5\) −1.04130 + 1.97881i −0.465684 + 0.884951i
\(6\) 0 0
\(7\) 1.08010 + 0.171071i 0.408240 + 0.0646589i 0.357178 0.934037i \(-0.383739\pi\)
0.0510629 + 0.998695i \(0.483739\pi\)
\(8\) −0.987688 + 0.156434i −0.349201 + 0.0553079i
\(9\) 0 0
\(10\) 1.29039 + 1.82617i 0.408058 + 0.577485i
\(11\) −3.30854 + 0.231505i −0.997561 + 0.0698013i
\(12\) 0 0
\(13\) −2.08157 1.06061i −0.577323 0.294161i 0.140844 0.990032i \(-0.455019\pi\)
−0.718167 + 0.695871i \(0.755019\pi\)
\(14\) 0.642782 0.884714i 0.171791 0.236450i
\(15\) 0 0
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) −2.96964 + 1.51311i −0.720243 + 0.366982i −0.775378 0.631497i \(-0.782441\pi\)
0.0551357 + 0.998479i \(0.482441\pi\)
\(18\) 0 0
\(19\) −4.05531 2.94635i −0.930352 0.675940i 0.0157271 0.999876i \(-0.494994\pi\)
−0.946079 + 0.323936i \(0.894994\pi\)
\(20\) 2.21295 0.320687i 0.494831 0.0717077i
\(21\) 0 0
\(22\) −1.29577 + 3.05303i −0.276259 + 0.650908i
\(23\) −2.67409 2.67409i −0.557587 0.557587i 0.371033 0.928620i \(-0.379004\pi\)
−0.928620 + 0.371033i \(0.879004\pi\)
\(24\) 0 0
\(25\) −2.83139 4.12107i −0.566278 0.824215i
\(26\) −1.89002 + 1.37318i −0.370664 + 0.269303i
\(27\) 0 0
\(28\) −0.496469 0.974375i −0.0938238 0.184139i
\(29\) 1.72903 1.25621i 0.321072 0.233272i −0.415561 0.909565i \(-0.636415\pi\)
0.736633 + 0.676293i \(0.236415\pi\)
\(30\) 0 0
\(31\) −0.615977 1.89578i −0.110633 0.340493i 0.880378 0.474272i \(-0.157289\pi\)
−0.991011 + 0.133779i \(0.957289\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 3.33290i 0.571588i
\(35\) −1.46323 + 1.95918i −0.247331 + 0.331162i
\(36\) 0 0
\(37\) 0.392539 2.47839i 0.0645330 0.407446i −0.934183 0.356793i \(-0.883870\pi\)
0.998716 0.0506522i \(-0.0161300\pi\)
\(38\) −4.46629 + 2.27569i −0.724528 + 0.369166i
\(39\) 0 0
\(40\) 0.718926 2.11734i 0.113672 0.334781i
\(41\) −3.67243 + 5.05467i −0.573537 + 0.789406i −0.992968 0.118381i \(-0.962230\pi\)
0.419431 + 0.907787i \(0.362230\pi\)
\(42\) 0 0
\(43\) 0.876728 0.876728i 0.133700 0.133700i −0.637090 0.770790i \(-0.719862\pi\)
0.770790 + 0.637090i \(0.219862\pi\)
\(44\) 2.13200 + 2.54059i 0.321411 + 0.383008i
\(45\) 0 0
\(46\) −3.59664 + 1.16862i −0.530296 + 0.172304i
\(47\) −4.68990 + 0.742808i −0.684093 + 0.108350i −0.488801 0.872395i \(-0.662566\pi\)
−0.195292 + 0.980745i \(0.562566\pi\)
\(48\) 0 0
\(49\) −5.52004 1.79357i −0.788577 0.256224i
\(50\) −4.95733 + 0.651858i −0.701072 + 0.0921866i
\(51\) 0 0
\(52\) 0.365462 + 2.30744i 0.0506805 + 0.319984i
\(53\) −3.40646 + 6.68555i −0.467913 + 0.918331i 0.529627 + 0.848231i \(0.322332\pi\)
−0.997540 + 0.0701006i \(0.977668\pi\)
\(54\) 0 0
\(55\) 2.98707 6.78803i 0.402777 0.915298i
\(56\) −1.09357 −0.146134
\(57\) 0 0
\(58\) −0.334331 2.11088i −0.0438998 0.277172i
\(59\) −0.531320 0.731299i −0.0691720 0.0952071i 0.773029 0.634370i \(-0.218741\pi\)
−0.842201 + 0.539163i \(0.818741\pi\)
\(60\) 0 0
\(61\) 6.76905 + 2.19940i 0.866689 + 0.281604i 0.708419 0.705792i \(-0.249409\pi\)
0.158269 + 0.987396i \(0.449409\pi\)
\(62\) −1.96880 0.311828i −0.250038 0.0396022i
\(63\) 0 0
\(64\) 0.951057 0.309017i 0.118882 0.0386271i
\(65\) 4.26629 3.01462i 0.529168 0.373917i
\(66\) 0 0
\(67\) 0.578715 0.578715i 0.0707013 0.0707013i −0.670872 0.741573i \(-0.734080\pi\)
0.741573 + 0.670872i \(0.234080\pi\)
\(68\) 2.96964 + 1.51311i 0.360121 + 0.183491i
\(69\) 0 0
\(70\) 1.08135 + 2.19320i 0.129246 + 0.262137i
\(71\) −5.17298 + 15.9208i −0.613920 + 1.88945i −0.197411 + 0.980321i \(0.563253\pi\)
−0.416509 + 0.909131i \(0.636747\pi\)
\(72\) 0 0
\(73\) −0.870026 + 5.49313i −0.101829 + 0.642922i 0.882997 + 0.469378i \(0.155522\pi\)
−0.984826 + 0.173544i \(0.944478\pi\)
\(74\) −2.03006 1.47492i −0.235989 0.171456i
\(75\) 0 0
\(76\) 5.01264i 0.574989i
\(77\) −3.61316 0.315947i −0.411758 0.0360055i
\(78\) 0 0
\(79\) 1.22478 + 3.76949i 0.137799 + 0.424101i 0.996015 0.0891877i \(-0.0284271\pi\)
−0.858216 + 0.513288i \(0.828427\pi\)
\(80\) −1.56018 1.60182i −0.174434 0.179089i
\(81\) 0 0
\(82\) 2.83649 + 5.56693i 0.313238 + 0.614764i
\(83\) −5.34777 10.4956i −0.586994 1.15204i −0.973272 0.229657i \(-0.926239\pi\)
0.386278 0.922382i \(-0.373761\pi\)
\(84\) 0 0
\(85\) 0.0981327 7.45195i 0.0106440 0.808277i
\(86\) −0.383144 1.17920i −0.0413155 0.127156i
\(87\) 0 0
\(88\) 3.23159 0.746223i 0.344488 0.0795477i
\(89\) 2.76909i 0.293523i 0.989172 + 0.146761i \(0.0468850\pi\)
−0.989172 + 0.146761i \(0.953115\pi\)
\(90\) 0 0
\(91\) −2.06687 1.50167i −0.216666 0.157417i
\(92\) −0.591594 + 3.73518i −0.0616779 + 0.389419i
\(93\) 0 0
\(94\) −1.46733 + 4.51596i −0.151343 + 0.465786i
\(95\) 10.0531 4.95665i 1.03142 0.508542i
\(96\) 0 0
\(97\) 12.0797 + 6.15492i 1.22651 + 0.624938i 0.942604 0.333914i \(-0.108370\pi\)
0.283906 + 0.958852i \(0.408370\pi\)
\(98\) −4.10413 + 4.10413i −0.414580 + 0.414580i
\(99\) 0 0
\(100\) −1.66977 + 4.71295i −0.166977 + 0.471295i
\(101\) 10.8280 3.51822i 1.07742 0.350076i 0.284048 0.958810i \(-0.408322\pi\)
0.793374 + 0.608734i \(0.208322\pi\)
\(102\) 0 0
\(103\) 9.42509 + 1.49279i 0.928681 + 0.147089i 0.602409 0.798187i \(-0.294207\pi\)
0.326272 + 0.945276i \(0.394207\pi\)
\(104\) 2.22186 + 0.721925i 0.217871 + 0.0707906i
\(105\) 0 0
\(106\) 4.41037 + 6.07036i 0.428373 + 0.589605i
\(107\) −1.31509 8.30313i −0.127134 0.802694i −0.966035 0.258410i \(-0.916801\pi\)
0.838901 0.544284i \(-0.183199\pi\)
\(108\) 0 0
\(109\) −18.5282 −1.77468 −0.887339 0.461117i \(-0.847449\pi\)
−0.887339 + 0.461117i \(0.847449\pi\)
\(110\) −4.69208 5.74320i −0.447372 0.547593i
\(111\) 0 0
\(112\) −0.496469 + 0.974375i −0.0469119 + 0.0920697i
\(113\) −0.314977 1.98869i −0.0296306 0.187080i 0.968434 0.249271i \(-0.0801911\pi\)
−0.998064 + 0.0621913i \(0.980191\pi\)
\(114\) 0 0
\(115\) 8.07605 2.50699i 0.753096 0.233778i
\(116\) −2.03259 0.660429i −0.188721 0.0613193i
\(117\) 0 0
\(118\) −0.892807 + 0.141407i −0.0821895 + 0.0130175i
\(119\) −3.46636 + 1.12629i −0.317761 + 0.103247i
\(120\) 0 0
\(121\) 10.8928 1.53188i 0.990256 0.139262i
\(122\) 5.03276 5.03276i 0.455645 0.455645i
\(123\) 0 0
\(124\) −1.17166 + 1.61265i −0.105218 + 0.144820i
\(125\) 11.1032 1.31151i 0.993096 0.117305i
\(126\) 0 0
\(127\) 11.5818 5.90124i 1.02772 0.523651i 0.142977 0.989726i \(-0.454332\pi\)
0.884745 + 0.466075i \(0.154332\pi\)
\(128\) 0.156434 0.987688i 0.0138270 0.0873001i
\(129\) 0 0
\(130\) −0.749188 5.16990i −0.0657081 0.453430i
\(131\) 1.20664i 0.105424i 0.998610 + 0.0527122i \(0.0167866\pi\)
−0.998610 + 0.0527122i \(0.983213\pi\)
\(132\) 0 0
\(133\) −3.87611 3.87611i −0.336102 0.336102i
\(134\) −0.252908 0.778370i −0.0218479 0.0672409i
\(135\) 0 0
\(136\) 2.69637 1.95903i 0.231212 0.167985i
\(137\) 0.357788 + 0.702199i 0.0305679 + 0.0599929i 0.905785 0.423737i \(-0.139282\pi\)
−0.875217 + 0.483730i \(0.839282\pi\)
\(138\) 0 0
\(139\) −9.52324 + 6.91904i −0.807750 + 0.586865i −0.913178 0.407562i \(-0.866379\pi\)
0.105427 + 0.994427i \(0.466379\pi\)
\(140\) 2.44508 + 0.0321985i 0.206647 + 0.00272127i
\(141\) 0 0
\(142\) 11.8371 + 11.8371i 0.993344 + 0.993344i
\(143\) 7.13248 + 3.02718i 0.596448 + 0.253145i
\(144\) 0 0
\(145\) 0.685369 + 4.72951i 0.0569168 + 0.392764i
\(146\) 4.49943 + 3.26903i 0.372375 + 0.270546i
\(147\) 0 0
\(148\) −2.23579 + 1.13919i −0.183781 + 0.0936411i
\(149\) 2.80098 8.62053i 0.229465 0.706221i −0.768342 0.640039i \(-0.778918\pi\)
0.997808 0.0661821i \(-0.0210818\pi\)
\(150\) 0 0
\(151\) 7.70864 10.6100i 0.627320 0.863432i −0.370540 0.928817i \(-0.620827\pi\)
0.997860 + 0.0653842i \(0.0208273\pi\)
\(152\) 4.46629 + 2.27569i 0.362264 + 0.184583i
\(153\) 0 0
\(154\) −1.92185 + 3.07591i −0.154867 + 0.247864i
\(155\) 4.39282 + 0.755177i 0.352839 + 0.0606572i
\(156\) 0 0
\(157\) −16.9785 + 2.68914i −1.35504 + 0.214616i −0.791345 0.611370i \(-0.790619\pi\)
−0.563690 + 0.825986i \(0.690619\pi\)
\(158\) 3.91468 + 0.620024i 0.311435 + 0.0493265i
\(159\) 0 0
\(160\) −2.13554 + 0.662921i −0.168829 + 0.0524085i
\(161\) −2.43083 3.34575i −0.191576 0.263682i
\(162\) 0 0
\(163\) 8.03732 15.7741i 0.629532 1.23553i −0.327310 0.944917i \(-0.606142\pi\)
0.956842 0.290608i \(-0.0938577\pi\)
\(164\) 6.24791 0.487880
\(165\) 0 0
\(166\) −11.7795 −0.914264
\(167\) 5.81678 11.4161i 0.450116 0.883402i −0.548759 0.835981i \(-0.684900\pi\)
0.998875 0.0474215i \(-0.0151004\pi\)
\(168\) 0 0
\(169\) −4.43318 6.10175i −0.341014 0.469365i
\(170\) −6.59518 3.47055i −0.505827 0.266179i
\(171\) 0 0
\(172\) −1.22462 0.193960i −0.0933760 0.0147893i
\(173\) −1.94142 + 0.307491i −0.147604 + 0.0233781i −0.229799 0.973238i \(-0.573807\pi\)
0.0821952 + 0.996616i \(0.473807\pi\)
\(174\) 0 0
\(175\) −2.35319 4.93555i −0.177885 0.373093i
\(176\) 0.802220 3.21814i 0.0604696 0.242577i
\(177\) 0 0
\(178\) 2.46728 + 1.25714i 0.184930 + 0.0942266i
\(179\) −12.0420 + 16.5744i −0.900061 + 1.23883i 0.0703878 + 0.997520i \(0.477576\pi\)
−0.970449 + 0.241308i \(0.922424\pi\)
\(180\) 0 0
\(181\) −7.71475 + 23.7436i −0.573433 + 1.76485i 0.0680210 + 0.997684i \(0.478331\pi\)
−0.641454 + 0.767161i \(0.721669\pi\)
\(182\) −2.27633 + 1.15985i −0.168733 + 0.0859738i
\(183\) 0 0
\(184\) 3.05949 + 2.22285i 0.225548 + 0.163871i
\(185\) 4.49552 + 3.35751i 0.330518 + 0.246849i
\(186\) 0 0
\(187\) 9.47486 5.69365i 0.692870 0.416361i
\(188\) 3.35760 + 3.35760i 0.244878 + 0.244878i
\(189\) 0 0
\(190\) 0.147590 11.2076i 0.0107073 0.813087i
\(191\) 13.6740 9.93478i 0.989419 0.718855i 0.0296254 0.999561i \(-0.490569\pi\)
0.959794 + 0.280706i \(0.0905686\pi\)
\(192\) 0 0
\(193\) −1.88940 3.70815i −0.136002 0.266918i 0.812954 0.582328i \(-0.197858\pi\)
−0.948956 + 0.315410i \(0.897858\pi\)
\(194\) 10.9682 7.96883i 0.787468 0.572129i
\(195\) 0 0
\(196\) 1.79357 + 5.52004i 0.128112 + 0.394289i
\(197\) −16.2104 16.2104i −1.15494 1.15494i −0.985548 0.169397i \(-0.945818\pi\)
−0.169397 0.985548i \(-0.554182\pi\)
\(198\) 0 0
\(199\) 3.84089i 0.272274i 0.990690 + 0.136137i \(0.0434687\pi\)
−0.990690 + 0.136137i \(0.956531\pi\)
\(200\) 3.44121 + 3.62741i 0.243330 + 0.256497i
\(201\) 0 0
\(202\) 1.78104 11.2450i 0.125313 0.791197i
\(203\) 2.08243 1.06105i 0.146158 0.0744711i
\(204\) 0 0
\(205\) −6.17813 12.5305i −0.431499 0.875166i
\(206\) 5.60898 7.72010i 0.390796 0.537885i
\(207\) 0 0
\(208\) 1.65194 1.65194i 0.114542 0.114542i
\(209\) 14.0992 + 8.80930i 0.975264 + 0.609352i
\(210\) 0 0
\(211\) −20.0607 + 6.51811i −1.38103 + 0.448725i −0.903009 0.429622i \(-0.858647\pi\)
−0.478024 + 0.878347i \(0.658647\pi\)
\(212\) 7.41099 1.17379i 0.508989 0.0806160i
\(213\) 0 0
\(214\) −7.99518 2.59779i −0.546540 0.177581i
\(215\) 0.821942 + 2.64782i 0.0560560 + 0.180580i
\(216\) 0 0
\(217\) −0.341004 2.15302i −0.0231489 0.146156i
\(218\) −8.41162 + 16.5087i −0.569707 + 1.11811i
\(219\) 0 0
\(220\) −7.24739 + 1.57331i −0.488619 + 0.106073i
\(221\) 7.78632 0.523765
\(222\) 0 0
\(223\) −3.99212 25.2053i −0.267332 1.68787i −0.646796 0.762663i \(-0.723892\pi\)
0.379464 0.925207i \(-0.376108\pi\)
\(224\) 0.642782 + 0.884714i 0.0429477 + 0.0591124i
\(225\) 0 0
\(226\) −1.91493 0.622199i −0.127379 0.0413881i
\(227\) −6.73403 1.06657i −0.446953 0.0707904i −0.0710991 0.997469i \(-0.522651\pi\)
−0.375854 + 0.926679i \(0.622651\pi\)
\(228\) 0 0
\(229\) −17.1075 + 5.55855i −1.13049 + 0.367320i −0.813763 0.581196i \(-0.802585\pi\)
−0.316730 + 0.948516i \(0.602585\pi\)
\(230\) 1.43271 8.33397i 0.0944699 0.549525i
\(231\) 0 0
\(232\) −1.51122 + 1.51122i −0.0992167 + 0.0992167i
\(233\) 17.6450 + 8.99060i 1.15597 + 0.588994i 0.923495 0.383610i \(-0.125319\pi\)
0.232470 + 0.972604i \(0.425319\pi\)
\(234\) 0 0
\(235\) 3.41372 10.0539i 0.222687 0.655846i
\(236\) −0.279331 + 0.859694i −0.0181829 + 0.0559613i
\(237\) 0 0
\(238\) −0.570164 + 3.59988i −0.0369583 + 0.233345i
\(239\) 0.468024 + 0.340039i 0.0302740 + 0.0219953i 0.602819 0.797878i \(-0.294044\pi\)
−0.572545 + 0.819873i \(0.694044\pi\)
\(240\) 0 0
\(241\) 29.7695i 1.91763i 0.284040 + 0.958813i \(0.408325\pi\)
−0.284040 + 0.958813i \(0.591675\pi\)
\(242\) 3.58032 10.4010i 0.230151 0.668603i
\(243\) 0 0
\(244\) −2.19940 6.76905i −0.140802 0.433344i
\(245\) 9.29715 9.05547i 0.593973 0.578533i
\(246\) 0 0
\(247\) 5.31646 + 10.4341i 0.338279 + 0.663909i
\(248\) 0.904960 + 1.77608i 0.0574650 + 0.112781i
\(249\) 0 0
\(250\) 3.87216 10.4884i 0.244897 0.663344i
\(251\) −3.62089 11.1439i −0.228548 0.703400i −0.997912 0.0645885i \(-0.979427\pi\)
0.769364 0.638811i \(-0.220573\pi\)
\(252\) 0 0
\(253\) 9.46639 + 8.22826i 0.595147 + 0.517306i
\(254\) 12.9986i 0.815605i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −1.73653 + 10.9640i −0.108322 + 0.683918i 0.872441 + 0.488719i \(0.162536\pi\)
−0.980764 + 0.195200i \(0.937464\pi\)
\(258\) 0 0
\(259\) 0.847965 2.60977i 0.0526900 0.162163i
\(260\) −4.94654 1.67955i −0.306771 0.104161i
\(261\) 0 0
\(262\) 1.07512 + 0.547802i 0.0664213 + 0.0338433i
\(263\) 5.16707 5.16707i 0.318615 0.318615i −0.529620 0.848235i \(-0.677665\pi\)
0.848235 + 0.529620i \(0.177665\pi\)
\(264\) 0 0
\(265\) −9.68230 13.7024i −0.594779 0.841732i
\(266\) −5.21336 + 1.69392i −0.319652 + 0.103861i
\(267\) 0 0
\(268\) −0.808351 0.128030i −0.0493779 0.00782069i
\(269\) −16.9878 5.51966i −1.03576 0.336539i −0.258696 0.965959i \(-0.583293\pi\)
−0.777066 + 0.629419i \(0.783293\pi\)
\(270\) 0 0
\(271\) 8.01595 + 11.0330i 0.486934 + 0.670208i 0.979819 0.199887i \(-0.0640575\pi\)
−0.492885 + 0.870095i \(0.664058\pi\)
\(272\) −0.521381 3.29187i −0.0316133 0.199599i
\(273\) 0 0
\(274\) 0.788097 0.0476107
\(275\) 10.3218 + 12.9792i 0.622428 + 0.782677i
\(276\) 0 0
\(277\) 0.136060 0.267032i 0.00817504 0.0160444i −0.886883 0.461994i \(-0.847134\pi\)
0.895058 + 0.445950i \(0.147134\pi\)
\(278\) 1.84145 + 11.6264i 0.110443 + 0.697308i
\(279\) 0 0
\(280\) 1.13873 2.16396i 0.0680522 0.129321i
\(281\) 13.9727 + 4.54000i 0.833540 + 0.270834i 0.694536 0.719458i \(-0.255610\pi\)
0.139004 + 0.990292i \(0.455610\pi\)
\(282\) 0 0
\(283\) 31.3103 4.95906i 1.86120 0.294786i 0.878189 0.478314i \(-0.158752\pi\)
0.983014 + 0.183528i \(0.0587519\pi\)
\(284\) 15.9208 5.17298i 0.944726 0.306960i
\(285\) 0 0
\(286\) 5.93531 4.98077i 0.350962 0.294519i
\(287\) −4.83131 + 4.83131i −0.285183 + 0.285183i
\(288\) 0 0
\(289\) −3.46309 + 4.76654i −0.203711 + 0.280385i
\(290\) 4.52517 + 1.53648i 0.265727 + 0.0902254i
\(291\) 0 0
\(292\) 4.95542 2.52491i 0.289994 0.147759i
\(293\) 3.37389 21.3019i 0.197104 1.24447i −0.668489 0.743722i \(-0.733059\pi\)
0.865594 0.500747i \(-0.166941\pi\)
\(294\) 0 0
\(295\) 2.00037 0.289880i 0.116466 0.0168775i
\(296\) 2.50929i 0.145849i
\(297\) 0 0
\(298\) −6.40933 6.40933i −0.371282 0.371282i
\(299\) 2.73013 + 8.40248i 0.157887 + 0.485928i
\(300\) 0 0
\(301\) 1.09694 0.796973i 0.0632265 0.0459367i
\(302\) −5.95396 11.6853i −0.342612 0.672414i
\(303\) 0 0
\(304\) 4.05531 2.94635i 0.232588 0.168985i
\(305\) −11.4008 + 11.1044i −0.652809 + 0.635839i
\(306\) 0 0
\(307\) 14.2674 + 14.2674i 0.814282 + 0.814282i 0.985273 0.170991i \(-0.0546968\pi\)
−0.170991 + 0.985273i \(0.554697\pi\)
\(308\) 1.86816 + 3.10882i 0.106448 + 0.177141i
\(309\) 0 0
\(310\) 2.66716 3.57118i 0.151485 0.202830i
\(311\) 9.40697 + 6.83456i 0.533420 + 0.387552i 0.821636 0.570013i \(-0.193062\pi\)
−0.288215 + 0.957566i \(0.593062\pi\)
\(312\) 0 0
\(313\) −26.1779 + 13.3383i −1.47966 + 0.753926i −0.992826 0.119566i \(-0.961850\pi\)
−0.486838 + 0.873492i \(0.661850\pi\)
\(314\) −5.31206 + 16.3488i −0.299777 + 0.922618i
\(315\) 0 0
\(316\) 2.32967 3.20652i 0.131054 0.180381i
\(317\) −9.25608 4.71621i −0.519873 0.264889i 0.174305 0.984692i \(-0.444232\pi\)
−0.694178 + 0.719803i \(0.744232\pi\)
\(318\) 0 0
\(319\) −5.42972 + 4.55649i −0.304006 + 0.255115i
\(320\) −0.378849 + 2.20374i −0.0211783 + 0.123193i
\(321\) 0 0
\(322\) −4.08466 + 0.646947i −0.227629 + 0.0360529i
\(323\) 16.5009 + 2.61349i 0.918137 + 0.145419i
\(324\) 0 0
\(325\) 1.52287 + 11.5813i 0.0844736 + 0.642415i
\(326\) −10.4060 14.3226i −0.576334 0.793256i
\(327\) 0 0
\(328\) 2.83649 5.56693i 0.156619 0.307382i
\(329\) −5.19265 −0.286280
\(330\) 0 0
\(331\) −1.46257 −0.0803901 −0.0401951 0.999192i \(-0.512798\pi\)
−0.0401951 + 0.999192i \(0.512798\pi\)
\(332\) −5.34777 + 10.4956i −0.293497 + 0.576020i
\(333\) 0 0
\(334\) −7.53103 10.3656i −0.412080 0.567179i
\(335\) 0.542552 + 1.74778i 0.0296428 + 0.0954917i
\(336\) 0 0
\(337\) 19.1441 + 3.03213i 1.04285 + 0.165171i 0.654282 0.756251i \(-0.272971\pi\)
0.388565 + 0.921421i \(0.372971\pi\)
\(338\) −7.44932 + 1.17986i −0.405190 + 0.0641757i
\(339\) 0 0
\(340\) −6.08643 + 4.30075i −0.330083 + 0.233241i
\(341\) 2.47687 + 6.12967i 0.134130 + 0.331940i
\(342\) 0 0
\(343\) −12.4760 6.35684i −0.673641 0.343237i
\(344\) −0.728783 + 1.00308i −0.0392934 + 0.0540827i
\(345\) 0 0
\(346\) −0.607411 + 1.86942i −0.0326546 + 0.100501i
\(347\) 31.8605 16.2337i 1.71036 0.871473i 0.727741 0.685853i \(-0.240571\pi\)
0.982622 0.185620i \(-0.0594295\pi\)
\(348\) 0 0
\(349\) −9.79945 7.11972i −0.524553 0.381110i 0.293763 0.955878i \(-0.405092\pi\)
−0.818316 + 0.574768i \(0.805092\pi\)
\(350\) −5.46593 0.143984i −0.292166 0.00769626i
\(351\) 0 0
\(352\) −2.50319 2.17579i −0.133420 0.115970i
\(353\) −23.1648 23.1648i −1.23294 1.23294i −0.962830 0.270108i \(-0.912941\pi\)
−0.270108 0.962830i \(-0.587059\pi\)
\(354\) 0 0
\(355\) −26.1176 26.8147i −1.38618 1.42318i
\(356\) 2.24024 1.62763i 0.118732 0.0862642i
\(357\) 0 0
\(358\) 9.30093 + 18.2541i 0.491570 + 0.964760i
\(359\) 1.78802 1.29907i 0.0943681 0.0685624i −0.539601 0.841921i \(-0.681425\pi\)
0.633969 + 0.773359i \(0.281425\pi\)
\(360\) 0 0
\(361\) 1.89321 + 5.82669i 0.0996424 + 0.306668i
\(362\) 17.6532 + 17.6532i 0.927834 + 0.927834i
\(363\) 0 0
\(364\) 2.55479i 0.133907i
\(365\) −9.96390 7.44161i −0.521534 0.389512i
\(366\) 0 0
\(367\) −3.40825 + 21.5188i −0.177909 + 1.12327i 0.723506 + 0.690318i \(0.242529\pi\)
−0.901415 + 0.432955i \(0.857471\pi\)
\(368\) 3.36955 1.71687i 0.175650 0.0894981i
\(369\) 0 0
\(370\) 5.03249 2.48126i 0.261627 0.128995i
\(371\) −4.82303 + 6.63834i −0.250399 + 0.344645i
\(372\) 0 0
\(373\) −5.83919 + 5.83919i −0.302342 + 0.302342i −0.841929 0.539588i \(-0.818580\pi\)
0.539588 + 0.841929i \(0.318580\pi\)
\(374\) −0.771582 11.0270i −0.0398976 0.570194i
\(375\) 0 0
\(376\) 4.51596 1.46733i 0.232893 0.0756715i
\(377\) −4.93144 + 0.781063i −0.253982 + 0.0402268i
\(378\) 0 0
\(379\) 19.7939 + 6.43143i 1.01675 + 0.330361i 0.769537 0.638602i \(-0.220487\pi\)
0.247208 + 0.968962i \(0.420487\pi\)
\(380\) −9.91907 5.21966i −0.508837 0.267763i
\(381\) 0 0
\(382\) −2.64406 16.6940i −0.135282 0.854137i
\(383\) 10.3490 20.3110i 0.528807 1.03784i −0.459898 0.887972i \(-0.652114\pi\)
0.988706 0.149871i \(-0.0478858\pi\)
\(384\) 0 0
\(385\) 4.38758 6.82077i 0.223612 0.347619i
\(386\) −4.16175 −0.211828
\(387\) 0 0
\(388\) −2.12084 13.3905i −0.107669 0.679798i
\(389\) −14.8071 20.3802i −0.750750 1.03332i −0.997928 0.0643483i \(-0.979503\pi\)
0.247178 0.968970i \(-0.420497\pi\)
\(390\) 0 0
\(391\) 11.9873 + 3.89490i 0.606222 + 0.196973i
\(392\) 5.73265 + 0.907963i 0.289543 + 0.0458591i
\(393\) 0 0
\(394\) −21.8030 + 7.08421i −1.09842 + 0.356898i
\(395\) −8.73447 1.50156i −0.439479 0.0755516i
\(396\) 0 0
\(397\) −16.8124 + 16.8124i −0.843788 + 0.843788i −0.989349 0.145561i \(-0.953501\pi\)
0.145561 + 0.989349i \(0.453501\pi\)
\(398\) 3.42226 + 1.74373i 0.171542 + 0.0874052i
\(399\) 0 0
\(400\) 4.79432 1.41933i 0.239716 0.0709664i
\(401\) −0.686588 + 2.11310i −0.0342865 + 0.105523i −0.966735 0.255780i \(-0.917668\pi\)
0.932449 + 0.361303i \(0.117668\pi\)
\(402\) 0 0
\(403\) −0.728492 + 4.59952i −0.0362888 + 0.229118i
\(404\) −9.21082 6.69205i −0.458255 0.332942i
\(405\) 0 0
\(406\) 2.33716i 0.115991i
\(407\) −0.724970 + 8.29073i −0.0359354 + 0.410956i
\(408\) 0 0
\(409\) 5.22226 + 16.0725i 0.258224 + 0.794732i 0.993177 + 0.116614i \(0.0372042\pi\)
−0.734953 + 0.678118i \(0.762796\pi\)
\(410\) −13.9695 0.183961i −0.689906 0.00908519i
\(411\) 0 0
\(412\) −4.33224 8.50249i −0.213434 0.418888i
\(413\) −0.448776 0.880772i −0.0220828 0.0433400i
\(414\) 0 0
\(415\) 26.3374 + 0.346830i 1.29285 + 0.0170252i
\(416\) −0.721925 2.22186i −0.0353953 0.108935i
\(417\) 0 0
\(418\) 14.2501 8.56317i 0.696993 0.418838i
\(419\) 2.38744i 0.116634i −0.998298 0.0583169i \(-0.981427\pi\)
0.998298 0.0583169i \(-0.0185734\pi\)
\(420\) 0 0
\(421\) −20.8060 15.1165i −1.01402 0.736732i −0.0489752 0.998800i \(-0.515596\pi\)
−0.965049 + 0.262068i \(0.915596\pi\)
\(422\) −3.29968 + 20.8333i −0.160626 + 1.01415i
\(423\) 0 0
\(424\) 2.31867 7.13613i 0.112605 0.346561i
\(425\) 14.6438 + 7.95390i 0.710329 + 0.385821i
\(426\) 0 0
\(427\) 6.93502 + 3.53357i 0.335609 + 0.171001i
\(428\) −5.94439 + 5.94439i −0.287333 + 0.287333i
\(429\) 0 0
\(430\) 2.73237 + 0.469727i 0.131767 + 0.0226523i
\(431\) −16.8034 + 5.45976i −0.809393 + 0.262988i −0.684341 0.729163i \(-0.739910\pi\)
−0.125052 + 0.992150i \(0.539910\pi\)
\(432\) 0 0
\(433\) 24.4394 + 3.87082i 1.17448 + 0.186020i 0.713022 0.701142i \(-0.247326\pi\)
0.461459 + 0.887161i \(0.347326\pi\)
\(434\) −2.07316 0.673612i −0.0995151 0.0323344i
\(435\) 0 0
\(436\) 10.8906 + 14.9896i 0.521565 + 0.717873i
\(437\) 2.96545 + 18.7231i 0.141857 + 0.895647i
\(438\) 0 0
\(439\) 1.55255 0.0740992 0.0370496 0.999313i \(-0.488204\pi\)
0.0370496 + 0.999313i \(0.488204\pi\)
\(440\) −1.88842 + 7.17174i −0.0900267 + 0.341899i
\(441\) 0 0
\(442\) 3.53492 6.93766i 0.168139 0.329991i
\(443\) −2.07371 13.0929i −0.0985252 0.622063i −0.986699 0.162556i \(-0.948026\pi\)
0.888174 0.459507i \(-0.151974\pi\)
\(444\) 0 0
\(445\) −5.47950 2.88345i −0.259753 0.136689i
\(446\) −24.2704 7.88594i −1.14924 0.373410i
\(447\) 0 0
\(448\) 1.08010 0.171071i 0.0510300 0.00808237i
\(449\) −32.3129 + 10.4991i −1.52494 + 0.495483i −0.947174 0.320719i \(-0.896076\pi\)
−0.577766 + 0.816202i \(0.696076\pi\)
\(450\) 0 0
\(451\) 10.9802 17.5737i 0.517037 0.827514i
\(452\) −1.42374 + 1.42374i −0.0669673 + 0.0669673i
\(453\) 0 0
\(454\) −4.00750 + 5.51585i −0.188081 + 0.258872i
\(455\) 5.12374 2.52625i 0.240205 0.118433i
\(456\) 0 0
\(457\) 7.51784 3.83053i 0.351670 0.179185i −0.269228 0.963077i \(-0.586768\pi\)
0.620897 + 0.783892i \(0.286768\pi\)
\(458\) −2.81392 + 17.7664i −0.131486 + 0.830169i
\(459\) 0 0
\(460\) −6.77518 5.06009i −0.315895 0.235928i
\(461\) 22.5506i 1.05028i 0.851014 + 0.525142i \(0.175988\pi\)
−0.851014 + 0.525142i \(0.824012\pi\)
\(462\) 0 0
\(463\) −4.94536 4.94536i −0.229830 0.229830i 0.582792 0.812622i \(-0.301960\pi\)
−0.812622 + 0.582792i \(0.801960\pi\)
\(464\) 0.660429 + 2.03259i 0.0306596 + 0.0943607i
\(465\) 0 0
\(466\) 16.0214 11.6402i 0.742175 0.539222i
\(467\) 11.0991 + 21.7833i 0.513606 + 1.00801i 0.991563 + 0.129626i \(0.0413776\pi\)
−0.477957 + 0.878383i \(0.658622\pi\)
\(468\) 0 0
\(469\) 0.724073 0.526070i 0.0334346 0.0242917i
\(470\) −7.40831 7.60603i −0.341720 0.350840i
\(471\) 0 0
\(472\) 0.639179 + 0.639179i 0.0294206 + 0.0294206i
\(473\) −2.69772 + 3.10365i −0.124041 + 0.142706i
\(474\) 0 0
\(475\) −0.659986 + 25.0545i −0.0302822 + 1.14958i
\(476\) 2.94866 + 2.14233i 0.135152 + 0.0981935i
\(477\) 0 0
\(478\) 0.515456 0.262638i 0.0235764 0.0120128i
\(479\) −7.00499 + 21.5591i −0.320066 + 0.985062i 0.653553 + 0.756881i \(0.273278\pi\)
−0.973619 + 0.228181i \(0.926722\pi\)
\(480\) 0 0
\(481\) −3.44571 + 4.74262i −0.157111 + 0.216245i
\(482\) 26.5249 + 13.5151i 1.20817 + 0.615596i
\(483\) 0 0
\(484\) −7.64195 7.91205i −0.347361 0.359639i
\(485\) −24.7580 + 17.4944i −1.12421 + 0.794378i
\(486\) 0 0
\(487\) −33.4504 + 5.29802i −1.51578 + 0.240076i −0.858203 0.513310i \(-0.828419\pi\)
−0.657578 + 0.753387i \(0.728419\pi\)
\(488\) −7.02978 1.11341i −0.318223 0.0504016i
\(489\) 0 0
\(490\) −3.84767 12.3949i −0.173820 0.559946i
\(491\) −16.2581 22.3774i −0.733718 1.00988i −0.998956 0.0456935i \(-0.985450\pi\)
0.265237 0.964183i \(-0.414550\pi\)
\(492\) 0 0
\(493\) −3.23380 + 6.34669i −0.145643 + 0.285840i
\(494\) 11.7105 0.526881
\(495\) 0 0
\(496\) 1.99334 0.0895038
\(497\) −8.31095 + 16.3112i −0.372797 + 0.731655i
\(498\) 0 0
\(499\) 9.04686 + 12.4519i 0.404993 + 0.557425i 0.961988 0.273090i \(-0.0880458\pi\)
−0.556995 + 0.830516i \(0.688046\pi\)
\(500\) −7.58730 8.21175i −0.339314 0.367241i
\(501\) 0 0
\(502\) −11.5732 1.83301i −0.516536 0.0818113i
\(503\) −18.1534 + 2.87522i −0.809421 + 0.128200i −0.547409 0.836865i \(-0.684386\pi\)
−0.262011 + 0.965065i \(0.584386\pi\)
\(504\) 0 0
\(505\) −4.31327 + 25.0900i −0.191938 + 1.11649i
\(506\) 11.6291 4.69906i 0.516976 0.208899i
\(507\) 0 0
\(508\) −11.5818 5.90124i −0.513861 0.261825i
\(509\) −2.72418 + 3.74951i −0.120747 + 0.166194i −0.865112 0.501579i \(-0.832753\pi\)
0.744364 + 0.667774i \(0.232753\pi\)
\(510\) 0 0
\(511\) −1.87943 + 5.78430i −0.0831413 + 0.255882i
\(512\) −0.891007 + 0.453990i −0.0393773 + 0.0200637i
\(513\) 0 0
\(514\) 8.98066 + 6.52484i 0.396120 + 0.287798i
\(515\) −12.7683 + 17.0960i −0.562638 + 0.753341i
\(516\) 0 0
\(517\) 15.3448 3.54334i 0.674861 0.155836i
\(518\) −1.94035 1.94035i −0.0852542 0.0852542i
\(519\) 0 0
\(520\) −3.74217 + 3.64489i −0.164105 + 0.159839i
\(521\) −19.0400 + 13.8333i −0.834156 + 0.606050i −0.920732 0.390196i \(-0.872407\pi\)
0.0865764 + 0.996245i \(0.472407\pi\)
\(522\) 0 0
\(523\) 14.5656 + 28.5865i 0.636907 + 1.25000i 0.953487 + 0.301435i \(0.0974657\pi\)
−0.316579 + 0.948566i \(0.602534\pi\)
\(524\) 0.976190 0.709244i 0.0426451 0.0309835i
\(525\) 0 0
\(526\) −2.25809 6.94970i −0.0984576 0.303021i
\(527\) 4.69775 + 4.69775i 0.204637 + 0.204637i
\(528\) 0 0
\(529\) 8.69847i 0.378195i
\(530\) −16.6046 + 2.40623i −0.721258 + 0.104520i
\(531\) 0 0
\(532\) −0.857519 + 5.41416i −0.0371782 + 0.234734i
\(533\) 13.0055 6.62661i 0.563329 0.287030i
\(534\) 0 0
\(535\) 17.7997 + 6.04374i 0.769550 + 0.261294i
\(536\) −0.481059 + 0.662121i −0.0207786 + 0.0285993i
\(537\) 0 0
\(538\) −12.6303 + 12.6303i −0.544532 + 0.544532i
\(539\) 18.6785 + 4.65617i 0.804538 + 0.200556i
\(540\) 0 0
\(541\) −21.0951 + 6.85421i −0.906949 + 0.294686i −0.725102 0.688641i \(-0.758208\pi\)
−0.181847 + 0.983327i \(0.558208\pi\)
\(542\) 13.4696 2.13338i 0.578571 0.0916366i
\(543\) 0 0
\(544\) −3.16978 1.02992i −0.135903 0.0441576i
\(545\) 19.2934 36.6638i 0.826439 1.57050i
\(546\) 0 0
\(547\) −3.06685 19.3633i −0.131129 0.827915i −0.962318 0.271926i \(-0.912339\pi\)
0.831189 0.555989i \(-0.187661\pi\)
\(548\) 0.357788 0.702199i 0.0152840 0.0299965i
\(549\) 0 0
\(550\) 16.2506 3.30434i 0.692927 0.140897i
\(551\) −10.7130 −0.456388
\(552\) 0 0
\(553\) 0.678038 + 4.28096i 0.0288331 + 0.182045i
\(554\) −0.176158 0.242460i −0.00748423 0.0103012i
\(555\) 0 0
\(556\) 11.1952 + 3.63755i 0.474784 + 0.154267i
\(557\) −24.2134 3.83502i −1.02595 0.162495i −0.379296 0.925276i \(-0.623834\pi\)
−0.646657 + 0.762781i \(0.723834\pi\)
\(558\) 0 0
\(559\) −2.75484 + 0.895101i −0.116517 + 0.0378587i
\(560\) −1.41113 1.99703i −0.0596312 0.0843901i
\(561\) 0 0
\(562\) 10.3886 10.3886i 0.438218 0.438218i
\(563\) −32.4116 16.5145i −1.36598 0.696004i −0.391441 0.920203i \(-0.628023\pi\)
−0.974543 + 0.224200i \(0.928023\pi\)
\(564\) 0 0
\(565\) 4.26323 + 1.44754i 0.179355 + 0.0608985i
\(566\) 9.79602 30.1490i 0.411757 1.26726i
\(567\) 0 0
\(568\) 2.61873 16.5340i 0.109880 0.693752i
\(569\) 12.4610 + 9.05343i 0.522391 + 0.379540i 0.817504 0.575923i \(-0.195357\pi\)
−0.295113 + 0.955462i \(0.595357\pi\)
\(570\) 0 0
\(571\) 22.4382i 0.939010i 0.882930 + 0.469505i \(0.155568\pi\)
−0.882930 + 0.469505i \(0.844432\pi\)
\(572\) −1.74333 7.54963i −0.0728921 0.315666i
\(573\) 0 0
\(574\) 2.11136 + 6.49810i 0.0881264 + 0.271225i
\(575\) −3.44873 + 18.5915i −0.143822 + 0.775320i
\(576\) 0 0
\(577\) 12.2008 + 23.9453i 0.507924 + 0.996858i 0.992516 + 0.122117i \(0.0389683\pi\)
−0.484591 + 0.874741i \(0.661032\pi\)
\(578\) 2.67481 + 5.24960i 0.111257 + 0.218355i
\(579\) 0 0
\(580\) 3.42340 3.33441i 0.142149 0.138454i
\(581\) −3.98064 12.2512i −0.165145 0.508264i
\(582\) 0 0
\(583\) 9.72266 22.9080i 0.402671 0.948752i
\(584\) 5.56160i 0.230141i
\(585\) 0 0
\(586\) −17.4484 12.6770i −0.720787 0.523682i
\(587\) −2.65963 + 16.7923i −0.109775 + 0.693091i 0.870010 + 0.493035i \(0.164112\pi\)
−0.979784 + 0.200056i \(0.935888\pi\)
\(588\) 0 0
\(589\) −3.08767 + 9.50288i −0.127225 + 0.391559i
\(590\) 0.649863 1.91394i 0.0267544 0.0787958i
\(591\) 0 0
\(592\) 2.23579 + 1.13919i 0.0918905 + 0.0468205i
\(593\) 9.90575 9.90575i 0.406781 0.406781i −0.473834 0.880614i \(-0.657130\pi\)
0.880614 + 0.473834i \(0.157130\pi\)
\(594\) 0 0
\(595\) 1.38081 8.03208i 0.0566076 0.329283i
\(596\) −8.62053 + 2.80098i −0.353111 + 0.114733i
\(597\) 0 0
\(598\) 8.72611 + 1.38208i 0.356837 + 0.0565175i
\(599\) −12.7899 4.15568i −0.522580 0.169796i 0.0358361 0.999358i \(-0.488591\pi\)
−0.558416 + 0.829561i \(0.688591\pi\)
\(600\) 0 0
\(601\) 3.15713 + 4.34542i 0.128782 + 0.177253i 0.868539 0.495621i \(-0.165059\pi\)
−0.739757 + 0.672874i \(0.765059\pi\)
\(602\) −0.212108 1.33920i −0.00864488 0.0545816i
\(603\) 0 0
\(604\) −13.1147 −0.533631
\(605\) −8.31138 + 23.1500i −0.337906 + 0.941180i
\(606\) 0 0
\(607\) 10.6923 20.9848i 0.433987 0.851747i −0.565646 0.824648i \(-0.691373\pi\)
0.999633 0.0270990i \(-0.00862694\pi\)
\(608\) −0.784149 4.95092i −0.0318015 0.200787i
\(609\) 0 0
\(610\) 4.71827 + 15.1995i 0.191037 + 0.615410i
\(611\) 10.5502 + 3.42796i 0.426815 + 0.138681i
\(612\) 0 0
\(613\) −12.1333 + 1.92172i −0.490058 + 0.0776176i −0.396573 0.918003i \(-0.629801\pi\)
−0.0934849 + 0.995621i \(0.529801\pi\)
\(614\) 19.1896 6.23507i 0.774428 0.251627i
\(615\) 0 0
\(616\) 3.61810 0.253166i 0.145777 0.0102003i
\(617\) −22.4668 + 22.4668i −0.904481 + 0.904481i −0.995820 0.0913392i \(-0.970885\pi\)
0.0913392 + 0.995820i \(0.470885\pi\)
\(618\) 0 0
\(619\) 20.8674 28.7215i 0.838730 1.15441i −0.147505 0.989061i \(-0.547124\pi\)
0.986235 0.165351i \(-0.0528758\pi\)
\(620\) −1.97108 3.99774i −0.0791605 0.160553i
\(621\) 0 0
\(622\) 10.3603 5.27884i 0.415411 0.211662i
\(623\) −0.473712 + 2.99090i −0.0189789 + 0.119828i
\(624\) 0 0
\(625\) −8.96648 + 23.3367i −0.358659 + 0.933469i
\(626\) 29.3802i 1.17427i
\(627\) 0 0
\(628\) 12.1553 + 12.1553i 0.485049 + 0.485049i
\(629\) 2.58437 + 7.95389i 0.103046 + 0.317142i
\(630\) 0 0
\(631\) 24.8174 18.0309i 0.987967 0.717800i 0.0284919 0.999594i \(-0.490930\pi\)
0.959475 + 0.281794i \(0.0909295\pi\)
\(632\) −1.79938 3.53148i −0.0715755 0.140475i
\(633\) 0 0
\(634\) −8.40435 + 6.10612i −0.333779 + 0.242505i
\(635\) −0.382726 + 29.0632i −0.0151880 + 1.15334i
\(636\) 0 0
\(637\) 9.58806 + 9.58806i 0.379893 + 0.379893i
\(638\) 1.59482 + 6.90652i 0.0631397 + 0.273432i
\(639\) 0 0
\(640\) 1.79155 + 1.33803i 0.0708174 + 0.0528904i
\(641\) 7.95986 + 5.78318i 0.314396 + 0.228422i 0.733780 0.679387i \(-0.237754\pi\)
−0.419385 + 0.907809i \(0.637754\pi\)
\(642\) 0 0
\(643\) −1.59593 + 0.813166i −0.0629373 + 0.0320681i −0.485176 0.874417i \(-0.661244\pi\)
0.422239 + 0.906485i \(0.361244\pi\)
\(644\) −1.27796 + 3.93317i −0.0503588 + 0.154989i
\(645\) 0 0
\(646\) 9.81991 13.5159i 0.386359 0.531778i
\(647\) −29.1710 14.8634i −1.14683 0.584339i −0.225933 0.974143i \(-0.572543\pi\)
−0.920898 + 0.389804i \(0.872543\pi\)
\(648\) 0 0
\(649\) 1.92719 + 2.29653i 0.0756488 + 0.0901466i
\(650\) 11.0104 + 3.90091i 0.431863 + 0.153006i
\(651\) 0 0
\(652\) −17.4858 + 2.76947i −0.684795 + 0.108461i
\(653\) 22.3316 + 3.53698i 0.873903 + 0.138413i 0.577245 0.816571i \(-0.304128\pi\)
0.296658 + 0.954984i \(0.404128\pi\)
\(654\) 0 0
\(655\) −2.38771 1.25647i −0.0932955 0.0490944i
\(656\) −3.67243 5.05467i −0.143384 0.197352i
\(657\) 0 0
\(658\) −2.35741 + 4.62669i −0.0919016 + 0.180367i
\(659\) −24.8542 −0.968181 −0.484090 0.875018i \(-0.660849\pi\)
−0.484090 + 0.875018i \(0.660849\pi\)
\(660\) 0 0
\(661\) −7.73442 −0.300834 −0.150417 0.988623i \(-0.548062\pi\)
−0.150417 + 0.988623i \(0.548062\pi\)
\(662\) −0.663993 + 1.30316i −0.0258068 + 0.0506487i
\(663\) 0 0
\(664\) 6.92380 + 9.52979i 0.268695 + 0.369828i
\(665\) 11.7063 3.63390i 0.453951 0.140917i
\(666\) 0 0
\(667\) −7.98279 1.26435i −0.309095 0.0489558i
\(668\) −12.6548 + 2.00433i −0.489629 + 0.0775497i
\(669\) 0 0
\(670\) 1.80360 + 0.310060i 0.0696792 + 0.0119787i
\(671\) −22.9048 5.70972i −0.884231 0.220421i
\(672\) 0 0
\(673\) −35.9248 18.3046i −1.38480 0.705591i −0.406668 0.913576i \(-0.633309\pi\)
−0.978132 + 0.207985i \(0.933309\pi\)
\(674\) 11.3929 15.6810i 0.438838 0.604009i
\(675\) 0 0
\(676\) −2.33066 + 7.17304i −0.0896408 + 0.275886i
\(677\) 26.8343 13.6728i 1.03133 0.525487i 0.145430 0.989369i \(-0.453544\pi\)
0.885897 + 0.463881i \(0.153544\pi\)
\(678\) 0 0
\(679\) 11.9944 + 8.71444i 0.460303 + 0.334430i
\(680\) 1.06882 + 7.37555i 0.0409873 + 0.282840i
\(681\) 0 0
\(682\) 6.58605 + 0.575906i 0.252193 + 0.0220526i
\(683\) −1.26442 1.26442i −0.0483815 0.0483815i 0.682502 0.730884i \(-0.260892\pi\)
−0.730884 + 0.682502i \(0.760892\pi\)
\(684\) 0 0
\(685\) −1.76208 0.0232044i −0.0673258 0.000886595i
\(686\) −11.3280 + 8.23025i −0.432504 + 0.314233i
\(687\) 0 0
\(688\) 0.562894 + 1.10474i 0.0214601 + 0.0421179i
\(689\) 14.1816 10.3035i 0.540274 0.392532i
\(690\) 0 0
\(691\) −11.1192 34.2213i −0.422994 1.30184i −0.904902 0.425619i \(-0.860056\pi\)
0.481909 0.876222i \(-0.339944\pi\)
\(692\) 1.38991 + 1.38991i 0.0528363 + 0.0528363i
\(693\) 0 0
\(694\) 35.7579i 1.35735i
\(695\) −3.77492 26.0495i −0.143191 0.988113i
\(696\) 0 0
\(697\) 3.25754 20.5673i 0.123388 0.779042i
\(698\) −10.7926 + 5.49909i −0.408505 + 0.208144i
\(699\) 0 0
\(700\) −2.60977 + 4.80482i −0.0986401 + 0.181605i
\(701\) 24.1969 33.3041i 0.913902 1.25788i −0.0519138 0.998652i \(-0.516532\pi\)
0.965816 0.259227i \(-0.0834679\pi\)
\(702\) 0 0
\(703\) −8.89410 + 8.89410i −0.335447 + 0.335447i
\(704\) −3.07507 + 1.24257i −0.115896 + 0.0468310i
\(705\) 0 0
\(706\) −31.1566 + 10.1234i −1.17259 + 0.380999i
\(707\) 12.2972 1.94768i 0.462483 0.0732501i
\(708\) 0 0
\(709\) −22.3270 7.25447i −0.838507 0.272447i −0.141882 0.989884i \(-0.545315\pi\)
−0.696624 + 0.717436i \(0.745315\pi\)
\(710\) −35.7492 + 11.0974i −1.34164 + 0.416477i
\(711\) 0 0
\(712\) −0.433181 2.73500i −0.0162341 0.102498i
\(713\) −3.42232 + 6.71668i −0.128167 + 0.251542i
\(714\) 0 0
\(715\) −13.4173 + 10.9616i −0.501777 + 0.409942i
\(716\) 20.4871 0.765637
\(717\) 0 0
\(718\) −0.345738 2.18290i −0.0129028 0.0814652i
\(719\) −24.1755 33.2748i −0.901595 1.24094i −0.969957 0.243278i \(-0.921777\pi\)
0.0683616 0.997661i \(-0.478223\pi\)
\(720\) 0 0
\(721\) 9.92469 + 3.22473i 0.369615 + 0.120095i
\(722\) 6.05112 + 0.958403i 0.225199 + 0.0356680i
\(723\) 0 0
\(724\) 23.7436 7.71475i 0.882423 0.286717i
\(725\) −10.0725 3.56862i −0.374082 0.132535i
\(726\) 0 0
\(727\) −25.5963 + 25.5963i −0.949313 + 0.949313i −0.998776 0.0494633i \(-0.984249\pi\)
0.0494633 + 0.998776i \(0.484249\pi\)
\(728\) 2.27633 + 1.15985i 0.0843665 + 0.0429869i
\(729\) 0 0
\(730\) −11.1540 + 5.49948i −0.412829 + 0.203545i
\(731\) −1.27698 + 3.93014i −0.0472309 + 0.145362i
\(732\) 0 0
\(733\) −0.836472 + 5.28127i −0.0308958 + 0.195068i −0.998309 0.0581357i \(-0.981484\pi\)
0.967413 + 0.253204i \(0.0814844\pi\)
\(734\) 17.6261 + 12.8061i 0.650591 + 0.472682i
\(735\) 0 0
\(736\) 3.78174i 0.139397i
\(737\) −1.78072 + 2.04867i −0.0655938 + 0.0754639i
\(738\) 0 0
\(739\) −10.8738 33.4662i −0.400000 1.23107i −0.924999 0.379970i \(-0.875934\pi\)
0.524999 0.851103i \(-0.324066\pi\)
\(740\) 0.0738825 5.61045i 0.00271598 0.206244i
\(741\) 0 0
\(742\) 3.72519 + 7.31110i 0.136756 + 0.268399i
\(743\) −0.569495 1.11770i −0.0208927 0.0410043i 0.880324 0.474372i \(-0.157325\pi\)
−0.901217 + 0.433368i \(0.857325\pi\)
\(744\) 0 0
\(745\) 14.1417 + 14.5192i 0.518113 + 0.531941i
\(746\) 2.55182 + 7.85370i 0.0934288 + 0.287544i
\(747\) 0 0
\(748\) −10.1754 4.31868i −0.372051 0.157907i
\(749\) 9.19321i 0.335913i
\(750\) 0 0
\(751\) −29.3251 21.3060i −1.07009 0.777466i −0.0941612 0.995557i \(-0.530017\pi\)
−0.975928 + 0.218091i \(0.930017\pi\)
\(752\) 0.742808 4.68990i 0.0270874 0.171023i
\(753\) 0 0
\(754\) −1.54289 + 4.74854i −0.0561889 + 0.172932i
\(755\) 12.9682 + 26.3022i 0.471963 + 0.957234i
\(756\) 0 0
\(757\) −29.1464 14.8508i −1.05934 0.539763i −0.164608 0.986359i \(-0.552636\pi\)
−0.894736 + 0.446596i \(0.852636\pi\)
\(758\) 14.7167 14.7167i 0.534535 0.534535i
\(759\) 0 0
\(760\) −9.15391 + 6.46828i −0.332047 + 0.234629i
\(761\) 36.9434 12.0036i 1.33920 0.435131i 0.450152 0.892952i \(-0.351370\pi\)
0.889045 + 0.457821i \(0.151370\pi\)
\(762\) 0 0
\(763\) −20.0123 3.16964i −0.724495 0.114749i
\(764\) −16.0748 5.22302i −0.581566 0.188962i
\(765\) 0 0
\(766\) −13.3989 18.4420i −0.484121 0.666336i
\(767\) 0.330354 + 2.08577i 0.0119284 + 0.0753129i
\(768\) 0 0
\(769\) 26.4586 0.954122 0.477061 0.878870i \(-0.341702\pi\)
0.477061 + 0.878870i \(0.341702\pi\)
\(770\) −4.08543 7.00593i −0.147229 0.252476i
\(771\) 0 0
\(772\) −1.88940 + 3.70815i −0.0680009 + 0.133459i
\(773\) −0.0901421 0.569135i −0.00324219 0.0204704i 0.986014 0.166661i \(-0.0532986\pi\)
−0.989256 + 0.146191i \(0.953299\pi\)
\(774\) 0 0
\(775\) −6.06859 + 7.90619i −0.217990 + 0.283999i
\(776\) −12.8938 4.18946i −0.462862 0.150393i
\(777\) 0 0
\(778\) −24.8812 + 3.94079i −0.892034 + 0.141284i
\(779\) 29.7857 9.67795i 1.06718 0.346749i
\(780\) 0 0
\(781\) 13.4293 53.8721i 0.480537 1.92770i
\(782\) 8.91248 8.91248i 0.318710 0.318710i
\(783\) 0 0
\(784\) 3.41157 4.69563i 0.121842 0.167701i
\(785\) 12.3585 36.3975i 0.441092 1.29908i
\(786\) 0 0
\(787\) −15.3186 + 7.80519i −0.546047 + 0.278225i −0.705175 0.709033i \(-0.749132\pi\)
0.159128 + 0.987258i \(0.449132\pi\)
\(788\) −3.58626 + 22.6428i −0.127755 + 0.806615i
\(789\) 0 0
\(790\) −5.30327 + 7.10078i −0.188682 + 0.252634i
\(791\) 2.20187i 0.0782895i
\(792\) 0 0
\(793\) −11.7575 11.7575i −0.417522 0.417522i
\(794\) 7.34727 + 22.6126i 0.260745 + 0.802490i
\(795\) 0 0
\(796\) 3.10735 2.25762i 0.110137 0.0800192i
\(797\) 8.33074 + 16.3500i 0.295090 + 0.579147i 0.990184 0.139772i \(-0.0446371\pi\)
−0.695094 + 0.718919i \(0.744637\pi\)
\(798\) 0 0
\(799\) 12.8034 9.30219i 0.452951 0.329088i
\(800\) 0.911945 4.91613i 0.0322421 0.173812i
\(801\) 0 0
\(802\) 1.57108 + 1.57108i 0.0554768 + 0.0554768i
\(803\) 1.60683 18.3756i 0.0567037 0.648461i
\(804\) 0 0
\(805\) 9.15184 1.32622i 0.322560 0.0467433i
\(806\) 3.76747 + 2.73723i 0.132703 + 0.0964147i
\(807\) 0 0
\(808\) −10.1443 + 5.16877i −0.356875 + 0.181837i
\(809\) −8.39216 + 25.8284i −0.295053 + 0.908079i 0.688151 + 0.725567i \(0.258423\pi\)
−0.983204 + 0.182511i \(0.941577\pi\)
\(810\) 0 0
\(811\) 3.71141 5.10832i 0.130325 0.179377i −0.738868 0.673851i \(-0.764639\pi\)
0.869193 + 0.494473i \(0.164639\pi\)
\(812\) −2.08243 1.06105i −0.0730788 0.0372355i
\(813\) 0 0
\(814\) 7.05797 + 4.40987i 0.247382 + 0.154566i
\(815\) 22.8448 + 32.3299i 0.800217 + 1.13247i
\(816\) 0 0
\(817\) −6.13855 + 0.972251i −0.214761 + 0.0340148i
\(818\) 16.6915 + 2.64368i 0.583606 + 0.0924341i
\(819\) 0 0
\(820\) −6.50595 + 12.3634i −0.227198 + 0.431750i
\(821\) 0.638412 + 0.878699i 0.0222807 + 0.0306668i 0.820012 0.572346i \(-0.193967\pi\)
−0.797731 + 0.603013i \(0.793967\pi\)
\(822\) 0 0
\(823\) 0.916619 1.79897i 0.0319513 0.0627080i −0.874479 0.485063i \(-0.838797\pi\)
0.906430 + 0.422355i \(0.138797\pi\)
\(824\) −9.54257 −0.332431
\(825\) 0 0
\(826\) −0.988513 −0.0343948
\(827\) 20.3365 39.9126i 0.707169 1.38790i −0.205278 0.978704i \(-0.565810\pi\)
0.912447 0.409194i \(-0.134190\pi\)
\(828\) 0 0
\(829\) −1.13270 1.55903i −0.0393402 0.0541472i 0.788894 0.614530i \(-0.210654\pi\)
−0.828234 + 0.560382i \(0.810654\pi\)
\(830\) 12.2660 23.3093i 0.425758 0.809079i
\(831\) 0 0
\(832\) −2.30744 0.365462i −0.0799960 0.0126701i
\(833\) 19.1064 3.02615i 0.661997 0.104850i
\(834\) 0 0
\(835\) 16.5332 + 23.3979i 0.572156 + 0.809716i
\(836\) −1.16045 16.5845i −0.0401350 0.573587i
\(837\) 0 0
\(838\) −2.12722 1.08387i −0.0734836 0.0374418i
\(839\) −13.0989 + 18.0291i −0.452224 + 0.622433i −0.972874 0.231337i \(-0.925690\pi\)
0.520649 + 0.853771i \(0.325690\pi\)
\(840\) 0 0
\(841\) −7.55003 + 23.2366i −0.260346 + 0.801262i
\(842\) −22.9146 + 11.6756i −0.789690 + 0.402367i
\(843\) 0 0
\(844\) 17.0646 + 12.3982i 0.587389 + 0.426763i
\(845\) 16.6905 2.41868i 0.574170 0.0832050i
\(846\) 0 0
\(847\) 12.0274 + 0.208858i 0.413267 + 0.00717646i
\(848\) −5.30569 5.30569i −0.182198 0.182198i
\(849\) 0 0
\(850\) 13.7351 9.43674i 0.471111 0.323677i
\(851\) −7.67714 + 5.57777i −0.263169 + 0.191203i
\(852\) 0 0
\(853\) −10.0188 19.6630i −0.343037 0.673247i 0.653453 0.756967i \(-0.273320\pi\)
−0.996489 + 0.0837200i \(0.973320\pi\)
\(854\) 6.29686 4.57494i 0.215474 0.156551i
\(855\) 0 0
\(856\) 2.59779 + 7.99518i 0.0887907 + 0.273270i
\(857\) −5.52754 5.52754i −0.188817 0.188817i 0.606367 0.795185i \(-0.292626\pi\)
−0.795185 + 0.606367i \(0.792626\pi\)
\(858\) 0 0
\(859\) 13.0239i 0.444368i 0.975005 + 0.222184i \(0.0713186\pi\)
−0.975005 + 0.222184i \(0.928681\pi\)
\(860\) 1.65900 2.22131i 0.0565715 0.0757461i
\(861\) 0 0
\(862\) −2.76391 + 17.4506i −0.0941392 + 0.594371i
\(863\) 20.1714 10.2778i 0.686643 0.349862i −0.0756136 0.997137i \(-0.524092\pi\)
0.762256 + 0.647275i \(0.224092\pi\)
\(864\) 0 0
\(865\) 1.41314 4.16190i 0.0480481 0.141509i
\(866\) 14.5442 20.0183i 0.494231 0.680250i
\(867\) 0 0
\(868\) −1.54139 + 1.54139i −0.0523182 + 0.0523182i
\(869\) −4.92489 12.1879i −0.167065 0.413448i
\(870\) 0 0
\(871\) −1.81843 + 0.590843i −0.0616151 + 0.0200199i
\(872\) 18.3001 2.89845i 0.619719 0.0981538i
\(873\) 0 0
\(874\) 18.0287 + 5.85787i 0.609829 + 0.198145i
\(875\) 12.2169 + 0.482867i 0.413007 + 0.0163239i
\(876\) 0 0
\(877\) −6.44509 40.6927i −0.217635 1.37409i −0.818391 0.574661i \(-0.805134\pi\)
0.600756 0.799432i \(-0.294866\pi\)
\(878\) 0.704843 1.38333i 0.0237873 0.0466852i
\(879\) 0 0
\(880\) 5.53275 + 4.93849i 0.186509 + 0.166477i
\(881\) 15.9880 0.538648 0.269324 0.963050i \(-0.413200\pi\)
0.269324 + 0.963050i \(0.413200\pi\)
\(882\) 0 0
\(883\) 4.17298 + 26.3472i 0.140432 + 0.886653i 0.952820 + 0.303536i \(0.0981672\pi\)
−0.812388 + 0.583117i \(0.801833\pi\)
\(884\) −4.57668 6.29926i −0.153931 0.211867i
\(885\) 0 0
\(886\) −12.6073 4.09637i −0.423551 0.137620i
\(887\) 21.3194 + 3.37666i 0.715836 + 0.113377i 0.503719 0.863867i \(-0.331965\pi\)
0.212116 + 0.977244i \(0.431965\pi\)
\(888\) 0 0
\(889\) 13.5191 4.39262i 0.453416 0.147324i
\(890\) −5.05682 + 3.57321i −0.169505 + 0.119774i
\(891\) 0 0
\(892\) −18.0450 + 18.0450i −0.604191 + 0.604191i
\(893\) 21.2076 + 10.8058i 0.709685 + 0.361603i
\(894\) 0 0
\(895\) −20.2582 41.0877i −0.677158 1.37341i
\(896\) 0.337931 1.04004i 0.0112895 0.0347454i
\(897\) 0 0
\(898\) −5.31499 + 33.5575i −0.177363 + 1.11983i
\(899\) −3.44654 2.50406i −0.114949 0.0835151i
\(900\) 0 0
\(901\) 25.0080i 0.833137i
\(902\) −10.6734 17.7617i −0.355385 0.591401i
\(903\) 0 0
\(904\) 0.622199 + 1.91493i 0.0206940 + 0.0636897i
\(905\) −38.9507 39.9902i −1.29476 1.32932i
\(906\) 0 0
\(907\) −22.2347 43.6380i −0.738290 1.44897i −0.887807 0.460216i \(-0.847772\pi\)
0.149518 0.988759i \(-0.452228\pi\)
\(908\) 3.09529 + 6.07486i 0.102721 + 0.201601i
\(909\) 0 0
\(910\) 0.0752222 5.71218i 0.00249359 0.189357i
\(911\) −9.70739 29.8763i −0.321620 0.989845i −0.972943 0.231044i \(-0.925786\pi\)
0.651323 0.758801i \(-0.274214\pi\)
\(912\) 0 0
\(913\) 20.1231 + 33.4870i 0.665976 + 1.10826i
\(914\) 8.43747i 0.279087i
\(915\) 0 0
\(916\) 14.5525 + 10.5730i 0.480828 + 0.349342i
\(917\) −0.206421 + 1.30329i −0.00681663 + 0.0430385i
\(918\) 0 0
\(919\) −1.01757 + 3.13176i −0.0335665 + 0.103307i −0.966436 0.256907i \(-0.917296\pi\)
0.932870 + 0.360214i \(0.117296\pi\)
\(920\) −7.58444 + 3.73950i −0.250052 + 0.123288i
\(921\) 0 0
\(922\) 20.0927 + 10.2377i 0.661718 + 0.337162i
\(923\) 27.6537 27.6537i 0.910233 0.910233i
\(924\) 0 0
\(925\) −11.3251 + 5.39962i −0.372366 + 0.177538i
\(926\) −6.65149 + 2.16120i −0.218581 + 0.0710214i
\(927\) 0 0
\(928\) 2.11088 + 0.334331i 0.0692931 + 0.0109749i
\(929\) 34.7596 + 11.2941i 1.14043 + 0.370547i 0.817530 0.575887i \(-0.195343\pi\)
0.322898 + 0.946434i \(0.395343\pi\)
\(930\) 0 0
\(931\) 17.1010 + 23.5375i 0.560462 + 0.771410i
\(932\) −3.09795 19.5597i −0.101477 0.640699i
\(933\) 0 0
\(934\) 24.4479 0.799961
\(935\) 1.40049 + 24.6778i 0.0458008 + 0.807049i
\(936\) 0 0
\(937\) 21.8819 42.9456i 0.714850 1.40297i −0.191948 0.981405i \(-0.561480\pi\)
0.906798 0.421566i \(-0.138520\pi\)
\(938\) −0.140009 0.883985i −0.00457147 0.0288631i
\(939\) 0 0
\(940\) −10.1403 + 3.14779i −0.330741 + 0.102670i
\(941\) 48.9385 + 15.9011i 1.59535 + 0.518360i 0.965952 0.258723i \(-0.0833017\pi\)
0.629398 + 0.777083i \(0.283302\pi\)
\(942\) 0 0
\(943\) 23.3370 3.69622i 0.759959 0.120366i
\(944\) 0.859694 0.279331i 0.0279807 0.00909147i
\(945\) 0 0
\(946\) 1.54064 + 3.81271i 0.0500904 + 0.123962i
\(947\) 16.9938 16.9938i 0.552226 0.552226i −0.374857 0.927083i \(-0.622308\pi\)
0.927083 + 0.374857i \(0.122308\pi\)
\(948\) 0 0
\(949\) 7.63709 10.5116i 0.247911 0.341220i
\(950\) 22.0241 + 11.9626i 0.714556 + 0.388117i
\(951\) 0 0
\(952\) 3.24749 1.65468i 0.105252 0.0536285i
\(953\) −9.14740 + 57.7544i −0.296313 + 1.87085i 0.168877 + 0.985637i \(0.445986\pi\)
−0.465190 + 0.885211i \(0.654014\pi\)
\(954\) 0 0
\(955\) 5.42026 + 37.4034i 0.175396 + 1.21035i
\(956\) 0.578510i 0.0187103i
\(957\) 0 0
\(958\) 16.0291 + 16.0291i 0.517878 + 0.517878i
\(959\) 0.266322 + 0.819655i 0.00859998 + 0.0264680i
\(960\) 0 0
\(961\) 21.8650 15.8858i 0.705321 0.512446i
\(962\) 2.66138 + 5.22325i 0.0858064 + 0.168404i
\(963\) 0 0
\(964\) 24.0841 17.4981i 0.775696 0.563576i
\(965\) 9.30515 + 0.122537i 0.299544 + 0.00394461i
\(966\) 0 0
\(967\) 5.32123 + 5.32123i 0.171119 + 0.171119i 0.787471 0.616352i \(-0.211390\pi\)
−0.616352 + 0.787471i \(0.711390\pi\)
\(968\) −10.5191 + 3.21703i −0.338096 + 0.103399i
\(969\) 0 0
\(970\) 4.34767 + 30.0019i 0.139595 + 0.963302i
\(971\) 1.30297 + 0.946661i 0.0418142 + 0.0303798i 0.608496 0.793557i \(-0.291773\pi\)
−0.566682 + 0.823937i \(0.691773\pi\)
\(972\) 0 0
\(973\) −11.4697 + 5.84411i −0.367702 + 0.187354i
\(974\) −10.4656 + 32.2097i −0.335339 + 1.03207i
\(975\) 0 0
\(976\) −4.18351 + 5.75810i −0.133911 + 0.184312i
\(977\) −34.7450 17.7034i −1.11159 0.566383i −0.200957 0.979600i \(-0.564405\pi\)
−0.910633 + 0.413217i \(0.864405\pi\)
\(978\) 0 0
\(979\) −0.641057 9.16163i −0.0204883 0.292807i
\(980\) −12.7908 2.19888i −0.408586 0.0702407i
\(981\) 0 0
\(982\) −27.3194 + 4.32697i −0.871798 + 0.138079i
\(983\) −12.6800 2.00832i −0.404430 0.0640554i −0.0490940 0.998794i \(-0.515633\pi\)
−0.355336 + 0.934739i \(0.615633\pi\)
\(984\) 0 0
\(985\) 48.9573 15.1975i 1.55991 0.484231i
\(986\) 4.18683 + 5.76267i 0.133336 + 0.183521i
\(987\) 0 0
\(988\) 5.31646 10.4341i 0.169139 0.331954i
\(989\) −4.68890 −0.149098
\(990\) 0 0
\(991\) 13.9933 0.444511 0.222256 0.974988i \(-0.428658\pi\)
0.222256 + 0.974988i \(0.428658\pi\)
\(992\) 0.904960 1.77608i 0.0287325 0.0563907i
\(993\) 0 0
\(994\) 10.7603 + 14.8102i 0.341295 + 0.469752i
\(995\) −7.60040 3.99952i −0.240949 0.126793i
\(996\) 0 0
\(997\) −33.7368 5.34338i −1.06845 0.169227i −0.402651 0.915354i \(-0.631911\pi\)
−0.665804 + 0.746127i \(0.731911\pi\)
\(998\) 15.2019 2.40775i 0.481209 0.0762161i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.bh.d.523.9 yes 96
3.2 odd 2 inner 990.2.bh.d.523.4 yes 96
5.2 odd 4 inner 990.2.bh.d.127.9 yes 96
11.2 odd 10 inner 990.2.bh.d.343.9 yes 96
15.2 even 4 inner 990.2.bh.d.127.4 96
33.2 even 10 inner 990.2.bh.d.343.4 yes 96
55.2 even 20 inner 990.2.bh.d.937.9 yes 96
165.2 odd 20 inner 990.2.bh.d.937.4 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.bh.d.127.4 96 15.2 even 4 inner
990.2.bh.d.127.9 yes 96 5.2 odd 4 inner
990.2.bh.d.343.4 yes 96 33.2 even 10 inner
990.2.bh.d.343.9 yes 96 11.2 odd 10 inner
990.2.bh.d.523.4 yes 96 3.2 odd 2 inner
990.2.bh.d.523.9 yes 96 1.1 even 1 trivial
990.2.bh.d.937.4 yes 96 165.2 odd 20 inner
990.2.bh.d.937.9 yes 96 55.2 even 20 inner