Properties

Label 990.2.bh.d.127.4
Level $990$
Weight $2$
Character 990.127
Analytic conductor $7.905$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(73,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.bh (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 127.4
Character \(\chi\) \(=\) 990.127
Dual form 990.2.bh.d.343.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.891007 - 0.453990i) q^{2} +(0.587785 + 0.809017i) q^{4} +(0.320687 - 2.21295i) q^{5} +(-0.171071 + 1.08010i) q^{7} +(-0.156434 - 0.987688i) q^{8} +(-1.29039 + 1.82617i) q^{10} +(3.30854 - 0.231505i) q^{11} +(-1.06061 + 2.08157i) q^{13} +(0.642782 - 0.884714i) q^{14} +(-0.309017 + 0.951057i) q^{16} +(1.51311 + 2.96964i) q^{17} +(4.05531 + 2.94635i) q^{19} +(1.97881 - 1.04130i) q^{20} +(-3.05303 - 1.29577i) q^{22} +(2.67409 - 2.67409i) q^{23} +(-4.79432 - 1.41933i) q^{25} +(1.89002 - 1.37318i) q^{26} +(-0.974375 + 0.496469i) q^{28} +(1.72903 - 1.25621i) q^{29} +(-0.615977 - 1.89578i) q^{31} +(0.707107 - 0.707107i) q^{32} -3.33290i q^{34} +(2.33536 + 0.724947i) q^{35} +(2.47839 + 0.392539i) q^{37} +(-2.27569 - 4.46629i) q^{38} +(-2.23587 + 0.0294436i) q^{40} +(3.67243 - 5.05467i) q^{41} +(-0.876728 - 0.876728i) q^{43} +(2.13200 + 2.54059i) q^{44} +(-3.59664 + 1.16862i) q^{46} +(0.742808 + 4.68990i) q^{47} +(5.52004 + 1.79357i) q^{49} +(3.62741 + 3.44121i) q^{50} +(-2.30744 + 0.365462i) q^{52} +(-6.68555 - 3.40646i) q^{53} +(0.548694 - 7.39587i) q^{55} +1.09357 q^{56} +(-2.11088 + 0.334331i) q^{58} +(-0.531320 - 0.731299i) q^{59} +(6.76905 + 2.19940i) q^{61} +(-0.311828 + 1.96880i) q^{62} +(-0.951057 + 0.309017i) q^{64} +(4.26629 + 3.01462i) q^{65} +(0.578715 + 0.578715i) q^{67} +(-1.51311 + 2.96964i) q^{68} +(-1.75170 - 1.70616i) q^{70} +(5.17298 - 15.9208i) q^{71} +(5.49313 + 0.870026i) q^{73} +(-2.03006 - 1.47492i) q^{74} +5.01264i q^{76} +(-0.315947 + 3.61316i) q^{77} +(-1.22478 - 3.76949i) q^{79} +(2.00555 + 0.988831i) q^{80} +(-5.56693 + 2.83649i) q^{82} +(10.4956 - 5.34777i) q^{83} +(7.05690 - 2.39611i) q^{85} +(0.383144 + 1.17920i) q^{86} +(-0.746223 - 3.23159i) q^{88} +2.76909i q^{89} +(-2.06687 - 1.50167i) q^{91} +(3.73518 + 0.591594i) q^{92} +(1.46733 - 4.51596i) q^{94} +(7.82063 - 8.02935i) q^{95} +(-6.15492 + 12.0797i) q^{97} +(-4.10413 - 4.10413i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 40 q^{7} + 24 q^{16} + 4 q^{22} + 8 q^{25} + 20 q^{28} - 16 q^{31} + 64 q^{37} - 40 q^{46} - 40 q^{52} - 36 q^{55} - 12 q^{58} - 80 q^{61} - 48 q^{67} - 52 q^{70} + 20 q^{73} + 48 q^{82} - 160 q^{85}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.891007 0.453990i −0.630037 0.321020i
\(3\) 0 0
\(4\) 0.587785 + 0.809017i 0.293893 + 0.404508i
\(5\) 0.320687 2.21295i 0.143415 0.989663i
\(6\) 0 0
\(7\) −0.171071 + 1.08010i −0.0646589 + 0.408240i 0.934037 + 0.357178i \(0.116261\pi\)
−0.998695 + 0.0510629i \(0.983739\pi\)
\(8\) −0.156434 0.987688i −0.0553079 0.349201i
\(9\) 0 0
\(10\) −1.29039 + 1.82617i −0.408058 + 0.577485i
\(11\) 3.30854 0.231505i 0.997561 0.0698013i
\(12\) 0 0
\(13\) −1.06061 + 2.08157i −0.294161 + 0.577323i −0.990032 0.140844i \(-0.955019\pi\)
0.695871 + 0.718167i \(0.255019\pi\)
\(14\) 0.642782 0.884714i 0.171791 0.236450i
\(15\) 0 0
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) 1.51311 + 2.96964i 0.366982 + 0.720243i 0.998479 0.0551357i \(-0.0175591\pi\)
−0.631497 + 0.775378i \(0.717559\pi\)
\(18\) 0 0
\(19\) 4.05531 + 2.94635i 0.930352 + 0.675940i 0.946079 0.323936i \(-0.105006\pi\)
−0.0157271 + 0.999876i \(0.505006\pi\)
\(20\) 1.97881 1.04130i 0.442476 0.232842i
\(21\) 0 0
\(22\) −3.05303 1.29577i −0.650908 0.276259i
\(23\) 2.67409 2.67409i 0.557587 0.557587i −0.371033 0.928620i \(-0.620996\pi\)
0.928620 + 0.371033i \(0.120996\pi\)
\(24\) 0 0
\(25\) −4.79432 1.41933i −0.958864 0.283866i
\(26\) 1.89002 1.37318i 0.370664 0.269303i
\(27\) 0 0
\(28\) −0.974375 + 0.496469i −0.184139 + 0.0938238i
\(29\) 1.72903 1.25621i 0.321072 0.233272i −0.415561 0.909565i \(-0.636415\pi\)
0.736633 + 0.676293i \(0.236415\pi\)
\(30\) 0 0
\(31\) −0.615977 1.89578i −0.110633 0.340493i 0.880378 0.474272i \(-0.157289\pi\)
−0.991011 + 0.133779i \(0.957289\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 3.33290i 0.571588i
\(35\) 2.33536 + 0.724947i 0.394747 + 0.122538i
\(36\) 0 0
\(37\) 2.47839 + 0.392539i 0.407446 + 0.0645330i 0.356793 0.934183i \(-0.383870\pi\)
0.0506522 + 0.998716i \(0.483870\pi\)
\(38\) −2.27569 4.46629i −0.369166 0.724528i
\(39\) 0 0
\(40\) −2.23587 + 0.0294436i −0.353523 + 0.00465545i
\(41\) 3.67243 5.05467i 0.573537 0.789406i −0.419431 0.907787i \(-0.637770\pi\)
0.992968 + 0.118381i \(0.0377704\pi\)
\(42\) 0 0
\(43\) −0.876728 0.876728i −0.133700 0.133700i 0.637090 0.770790i \(-0.280138\pi\)
−0.770790 + 0.637090i \(0.780138\pi\)
\(44\) 2.13200 + 2.54059i 0.321411 + 0.383008i
\(45\) 0 0
\(46\) −3.59664 + 1.16862i −0.530296 + 0.172304i
\(47\) 0.742808 + 4.68990i 0.108350 + 0.684093i 0.980745 + 0.195292i \(0.0625655\pi\)
−0.872395 + 0.488801i \(0.837434\pi\)
\(48\) 0 0
\(49\) 5.52004 + 1.79357i 0.788577 + 0.256224i
\(50\) 3.62741 + 3.44121i 0.512993 + 0.486660i
\(51\) 0 0
\(52\) −2.30744 + 0.365462i −0.319984 + 0.0506805i
\(53\) −6.68555 3.40646i −0.918331 0.467913i −0.0701006 0.997540i \(-0.522332\pi\)
−0.848231 + 0.529627i \(0.822332\pi\)
\(54\) 0 0
\(55\) 0.548694 7.39587i 0.0739859 0.997259i
\(56\) 1.09357 0.146134
\(57\) 0 0
\(58\) −2.11088 + 0.334331i −0.277172 + 0.0438998i
\(59\) −0.531320 0.731299i −0.0691720 0.0952071i 0.773029 0.634370i \(-0.218741\pi\)
−0.842201 + 0.539163i \(0.818741\pi\)
\(60\) 0 0
\(61\) 6.76905 + 2.19940i 0.866689 + 0.281604i 0.708419 0.705792i \(-0.249409\pi\)
0.158269 + 0.987396i \(0.449409\pi\)
\(62\) −0.311828 + 1.96880i −0.0396022 + 0.250038i
\(63\) 0 0
\(64\) −0.951057 + 0.309017i −0.118882 + 0.0386271i
\(65\) 4.26629 + 3.01462i 0.529168 + 0.373917i
\(66\) 0 0
\(67\) 0.578715 + 0.578715i 0.0707013 + 0.0707013i 0.741573 0.670872i \(-0.234080\pi\)
−0.670872 + 0.741573i \(0.734080\pi\)
\(68\) −1.51311 + 2.96964i −0.183491 + 0.360121i
\(69\) 0 0
\(70\) −1.75170 1.70616i −0.209368 0.203925i
\(71\) 5.17298 15.9208i 0.613920 1.88945i 0.197411 0.980321i \(-0.436747\pi\)
0.416509 0.909131i \(-0.363253\pi\)
\(72\) 0 0
\(73\) 5.49313 + 0.870026i 0.642922 + 0.101829i 0.469378 0.882997i \(-0.344478\pi\)
0.173544 + 0.984826i \(0.444478\pi\)
\(74\) −2.03006 1.47492i −0.235989 0.171456i
\(75\) 0 0
\(76\) 5.01264i 0.574989i
\(77\) −0.315947 + 3.61316i −0.0360055 + 0.411758i
\(78\) 0 0
\(79\) −1.22478 3.76949i −0.137799 0.424101i 0.858216 0.513288i \(-0.171573\pi\)
−0.996015 + 0.0891877i \(0.971573\pi\)
\(80\) 2.00555 + 0.988831i 0.224227 + 0.110555i
\(81\) 0 0
\(82\) −5.56693 + 2.83649i −0.614764 + 0.313238i
\(83\) 10.4956 5.34777i 1.15204 0.586994i 0.229657 0.973272i \(-0.426239\pi\)
0.922382 + 0.386278i \(0.126239\pi\)
\(84\) 0 0
\(85\) 7.05690 2.39611i 0.765428 0.259894i
\(86\) 0.383144 + 1.17920i 0.0413155 + 0.127156i
\(87\) 0 0
\(88\) −0.746223 3.23159i −0.0795477 0.344488i
\(89\) 2.76909i 0.293523i 0.989172 + 0.146761i \(0.0468850\pi\)
−0.989172 + 0.146761i \(0.953115\pi\)
\(90\) 0 0
\(91\) −2.06687 1.50167i −0.216666 0.157417i
\(92\) 3.73518 + 0.591594i 0.389419 + 0.0616779i
\(93\) 0 0
\(94\) 1.46733 4.51596i 0.151343 0.465786i
\(95\) 7.82063 8.02935i 0.802380 0.823794i
\(96\) 0 0
\(97\) −6.15492 + 12.0797i −0.624938 + 1.22651i 0.333914 + 0.942604i \(0.391630\pi\)
−0.958852 + 0.283906i \(0.908370\pi\)
\(98\) −4.10413 4.10413i −0.414580 0.414580i
\(99\) 0 0
\(100\) −1.66977 4.71295i −0.166977 0.471295i
\(101\) −10.8280 + 3.51822i −1.07742 + 0.350076i −0.793374 0.608734i \(-0.791678\pi\)
−0.284048 + 0.958810i \(0.591678\pi\)
\(102\) 0 0
\(103\) 1.49279 9.42509i 0.147089 0.928681i −0.798187 0.602409i \(-0.794207\pi\)
0.945276 0.326272i \(-0.105793\pi\)
\(104\) 2.22186 + 0.721925i 0.217871 + 0.0707906i
\(105\) 0 0
\(106\) 4.41037 + 6.07036i 0.428373 + 0.589605i
\(107\) −8.30313 + 1.31509i −0.802694 + 0.127134i −0.544284 0.838901i \(-0.683199\pi\)
−0.258410 + 0.966035i \(0.583199\pi\)
\(108\) 0 0
\(109\) 18.5282 1.77468 0.887339 0.461117i \(-0.152551\pi\)
0.887339 + 0.461117i \(0.152551\pi\)
\(110\) −3.84655 + 6.34067i −0.366754 + 0.604559i
\(111\) 0 0
\(112\) −0.974375 0.496469i −0.0920697 0.0469119i
\(113\) 1.98869 0.314977i 0.187080 0.0296306i −0.0621913 0.998064i \(-0.519809\pi\)
0.249271 + 0.968434i \(0.419809\pi\)
\(114\) 0 0
\(115\) −5.06009 6.77518i −0.471856 0.631789i
\(116\) 2.03259 + 0.660429i 0.188721 + 0.0613193i
\(117\) 0 0
\(118\) 0.141407 + 0.892807i 0.0130175 + 0.0821895i
\(119\) −3.46636 + 1.12629i −0.317761 + 0.103247i
\(120\) 0 0
\(121\) 10.8928 1.53188i 0.990256 0.139262i
\(122\) −5.03276 5.03276i −0.455645 0.455645i
\(123\) 0 0
\(124\) 1.17166 1.61265i 0.105218 0.144820i
\(125\) −4.67838 + 10.1544i −0.418447 + 0.908241i
\(126\) 0 0
\(127\) 5.90124 + 11.5818i 0.523651 + 1.02772i 0.989726 + 0.142977i \(0.0456675\pi\)
−0.466075 + 0.884745i \(0.654332\pi\)
\(128\) 0.987688 + 0.156434i 0.0873001 + 0.0138270i
\(129\) 0 0
\(130\) −2.43268 4.62290i −0.213360 0.405455i
\(131\) 1.20664i 0.105424i −0.998610 0.0527122i \(-0.983213\pi\)
0.998610 0.0527122i \(-0.0167866\pi\)
\(132\) 0 0
\(133\) −3.87611 + 3.87611i −0.336102 + 0.336102i
\(134\) −0.252908 0.778370i −0.0218479 0.0672409i
\(135\) 0 0
\(136\) 2.69637 1.95903i 0.231212 0.167985i
\(137\) 0.702199 0.357788i 0.0599929 0.0305679i −0.423737 0.905785i \(-0.639282\pi\)
0.483730 + 0.875217i \(0.339282\pi\)
\(138\) 0 0
\(139\) 9.52324 6.91904i 0.807750 0.586865i −0.105427 0.994427i \(-0.533621\pi\)
0.913178 + 0.407562i \(0.133621\pi\)
\(140\) 0.786193 + 2.31546i 0.0664454 + 0.195692i
\(141\) 0 0
\(142\) −11.8371 + 11.8371i −0.993344 + 0.993344i
\(143\) −3.02718 + 7.13248i −0.253145 + 0.596448i
\(144\) 0 0
\(145\) −2.22546 4.22910i −0.184814 0.351208i
\(146\) −4.49943 3.26903i −0.372375 0.270546i
\(147\) 0 0
\(148\) 1.13919 + 2.23579i 0.0936411 + 0.183781i
\(149\) 2.80098 8.62053i 0.229465 0.706221i −0.768342 0.640039i \(-0.778918\pi\)
0.997808 0.0661821i \(-0.0210818\pi\)
\(150\) 0 0
\(151\) 7.70864 10.6100i 0.627320 0.863432i −0.370540 0.928817i \(-0.620827\pi\)
0.997860 + 0.0653842i \(0.0208273\pi\)
\(152\) 2.27569 4.46629i 0.184583 0.362264i
\(153\) 0 0
\(154\) 1.92185 3.07591i 0.154867 0.247864i
\(155\) −4.39282 + 0.755177i −0.352839 + 0.0606572i
\(156\) 0 0
\(157\) −2.68914 16.9785i −0.214616 1.35504i −0.825986 0.563690i \(-0.809381\pi\)
0.611370 0.791345i \(-0.290619\pi\)
\(158\) −0.620024 + 3.91468i −0.0493265 + 0.311435i
\(159\) 0 0
\(160\) −1.33803 1.79155i −0.105781 0.141635i
\(161\) 2.43083 + 3.34575i 0.191576 + 0.263682i
\(162\) 0 0
\(163\) −15.7741 8.03732i −1.23553 0.629532i −0.290608 0.956842i \(-0.593858\pi\)
−0.944917 + 0.327310i \(0.893858\pi\)
\(164\) 6.24791 0.487880
\(165\) 0 0
\(166\) −11.7795 −0.914264
\(167\) −11.4161 5.81678i −0.883402 0.450116i −0.0474215 0.998875i \(-0.515100\pi\)
−0.835981 + 0.548759i \(0.815100\pi\)
\(168\) 0 0
\(169\) 4.43318 + 6.10175i 0.341014 + 0.469365i
\(170\) −7.37555 1.06882i −0.565679 0.0819745i
\(171\) 0 0
\(172\) 0.193960 1.22462i 0.0147893 0.0933760i
\(173\) −0.307491 1.94142i −0.0233781 0.147604i 0.973238 0.229799i \(-0.0738069\pi\)
−0.996616 + 0.0821952i \(0.973807\pi\)
\(174\) 0 0
\(175\) 2.35319 4.93555i 0.177885 0.373093i
\(176\) −0.802220 + 3.21814i −0.0604696 + 0.242577i
\(177\) 0 0
\(178\) 1.25714 2.46728i 0.0942266 0.184930i
\(179\) −12.0420 + 16.5744i −0.900061 + 1.23883i 0.0703878 + 0.997520i \(0.477576\pi\)
−0.970449 + 0.241308i \(0.922424\pi\)
\(180\) 0 0
\(181\) −7.71475 + 23.7436i −0.573433 + 1.76485i 0.0680210 + 0.997684i \(0.478331\pi\)
−0.641454 + 0.767161i \(0.721669\pi\)
\(182\) 1.15985 + 2.27633i 0.0859738 + 0.168733i
\(183\) 0 0
\(184\) −3.05949 2.22285i −0.225548 0.163871i
\(185\) 1.66346 5.35869i 0.122300 0.393979i
\(186\) 0 0
\(187\) 5.69365 + 9.47486i 0.416361 + 0.692870i
\(188\) −3.35760 + 3.35760i −0.244878 + 0.244878i
\(189\) 0 0
\(190\) −10.6135 + 3.60371i −0.769983 + 0.261441i
\(191\) −13.6740 + 9.93478i −0.989419 + 0.718855i −0.959794 0.280706i \(-0.909431\pi\)
−0.0296254 + 0.999561i \(0.509431\pi\)
\(192\) 0 0
\(193\) −3.70815 + 1.88940i −0.266918 + 0.136002i −0.582328 0.812954i \(-0.697858\pi\)
0.315410 + 0.948956i \(0.397858\pi\)
\(194\) 10.9682 7.96883i 0.787468 0.572129i
\(195\) 0 0
\(196\) 1.79357 + 5.52004i 0.128112 + 0.394289i
\(197\) −16.2104 + 16.2104i −1.15494 + 1.15494i −0.169397 + 0.985548i \(0.554182\pi\)
−0.985548 + 0.169397i \(0.945818\pi\)
\(198\) 0 0
\(199\) 3.84089i 0.272274i −0.990690 0.136137i \(-0.956531\pi\)
0.990690 0.136137i \(-0.0434687\pi\)
\(200\) −0.651858 + 4.95733i −0.0460933 + 0.350536i
\(201\) 0 0
\(202\) 11.2450 + 1.78104i 0.791197 + 0.125313i
\(203\) 1.06105 + 2.08243i 0.0744711 + 0.146158i
\(204\) 0 0
\(205\) −10.0080 9.74788i −0.698992 0.680821i
\(206\) −5.60898 + 7.72010i −0.390796 + 0.537885i
\(207\) 0 0
\(208\) −1.65194 1.65194i −0.114542 0.114542i
\(209\) 14.0992 + 8.80930i 0.975264 + 0.609352i
\(210\) 0 0
\(211\) −20.0607 + 6.51811i −1.38103 + 0.448725i −0.903009 0.429622i \(-0.858647\pi\)
−0.478024 + 0.878347i \(0.658647\pi\)
\(212\) −1.17379 7.41099i −0.0806160 0.508989i
\(213\) 0 0
\(214\) 7.99518 + 2.59779i 0.546540 + 0.177581i
\(215\) −2.22131 + 1.65900i −0.151492 + 0.113143i
\(216\) 0 0
\(217\) 2.15302 0.341004i 0.146156 0.0231489i
\(218\) −16.5087 8.41162i −1.11811 0.569707i
\(219\) 0 0
\(220\) 6.30590 3.90328i 0.425144 0.263159i
\(221\) −7.78632 −0.523765
\(222\) 0 0
\(223\) −25.2053 + 3.99212i −1.68787 + 0.267332i −0.925207 0.379464i \(-0.876108\pi\)
−0.762663 + 0.646796i \(0.776108\pi\)
\(224\) 0.642782 + 0.884714i 0.0429477 + 0.0591124i
\(225\) 0 0
\(226\) −1.91493 0.622199i −0.127379 0.0413881i
\(227\) −1.06657 + 6.73403i −0.0707904 + 0.446953i 0.926679 + 0.375854i \(0.122651\pi\)
−0.997469 + 0.0710991i \(0.977349\pi\)
\(228\) 0 0
\(229\) 17.1075 5.55855i 1.13049 0.367320i 0.316730 0.948516i \(-0.397415\pi\)
0.813763 + 0.581196i \(0.197415\pi\)
\(230\) 1.43271 + 8.33397i 0.0944699 + 0.549525i
\(231\) 0 0
\(232\) −1.51122 1.51122i −0.0992167 0.0992167i
\(233\) −8.99060 + 17.6450i −0.588994 + 1.15597i 0.383610 + 0.923495i \(0.374681\pi\)
−0.972604 + 0.232470i \(0.925319\pi\)
\(234\) 0 0
\(235\) 10.6167 0.139809i 0.692560 0.00912014i
\(236\) 0.279331 0.859694i 0.0181829 0.0559613i
\(237\) 0 0
\(238\) 3.59988 + 0.570164i 0.233345 + 0.0369583i
\(239\) 0.468024 + 0.340039i 0.0302740 + 0.0219953i 0.602819 0.797878i \(-0.294044\pi\)
−0.572545 + 0.819873i \(0.694044\pi\)
\(240\) 0 0
\(241\) 29.7695i 1.91763i 0.284040 + 0.958813i \(0.408325\pi\)
−0.284040 + 0.958813i \(0.591675\pi\)
\(242\) −10.4010 3.58032i −0.668603 0.230151i
\(243\) 0 0
\(244\) 2.19940 + 6.76905i 0.140802 + 0.433344i
\(245\) 5.73929 11.6404i 0.366670 0.743679i
\(246\) 0 0
\(247\) −10.4341 + 5.31646i −0.663909 + 0.338279i
\(248\) −1.77608 + 0.904960i −0.112781 + 0.0574650i
\(249\) 0 0
\(250\) 8.77849 6.92374i 0.555200 0.437895i
\(251\) 3.62089 + 11.1439i 0.228548 + 0.703400i 0.997912 + 0.0645885i \(0.0205735\pi\)
−0.769364 + 0.638811i \(0.779427\pi\)
\(252\) 0 0
\(253\) 8.22826 9.46639i 0.517306 0.595147i
\(254\) 12.9986i 0.815605i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 10.9640 + 1.73653i 0.683918 + 0.108322i 0.488719 0.872441i \(-0.337464\pi\)
0.195200 + 0.980764i \(0.437464\pi\)
\(258\) 0 0
\(259\) −0.847965 + 2.60977i −0.0526900 + 0.162163i
\(260\) 0.0687861 + 5.22345i 0.00426594 + 0.323944i
\(261\) 0 0
\(262\) −0.547802 + 1.07512i −0.0338433 + 0.0664213i
\(263\) 5.16707 + 5.16707i 0.318615 + 0.318615i 0.848235 0.529620i \(-0.177665\pi\)
−0.529620 + 0.848235i \(0.677665\pi\)
\(264\) 0 0
\(265\) −9.68230 + 13.7024i −0.594779 + 0.841732i
\(266\) 5.21336 1.69392i 0.319652 0.103861i
\(267\) 0 0
\(268\) −0.128030 + 0.808351i −0.00782069 + 0.0493779i
\(269\) −16.9878 5.51966i −1.03576 0.336539i −0.258696 0.965959i \(-0.583293\pi\)
−0.777066 + 0.629419i \(0.783293\pi\)
\(270\) 0 0
\(271\) 8.01595 + 11.0330i 0.486934 + 0.670208i 0.979819 0.199887i \(-0.0640575\pi\)
−0.492885 + 0.870095i \(0.664058\pi\)
\(272\) −3.29187 + 0.521381i −0.199599 + 0.0316133i
\(273\) 0 0
\(274\) −0.788097 −0.0476107
\(275\) −16.1908 3.58599i −0.976339 0.216243i
\(276\) 0 0
\(277\) 0.267032 + 0.136060i 0.0160444 + 0.00817504i 0.461994 0.886883i \(-0.347134\pi\)
−0.445950 + 0.895058i \(0.647134\pi\)
\(278\) −11.6264 + 1.84145i −0.697308 + 0.110443i
\(279\) 0 0
\(280\) 0.350692 2.42001i 0.0209579 0.144623i
\(281\) −13.9727 4.54000i −0.833540 0.270834i −0.139004 0.990292i \(-0.544390\pi\)
−0.694536 + 0.719458i \(0.744390\pi\)
\(282\) 0 0
\(283\) −4.95906 31.3103i −0.294786 1.86120i −0.478314 0.878189i \(-0.658752\pi\)
0.183528 0.983014i \(-0.441248\pi\)
\(284\) 15.9208 5.17298i 0.944726 0.306960i
\(285\) 0 0
\(286\) 5.93531 4.98077i 0.350962 0.294519i
\(287\) 4.83131 + 4.83131i 0.285183 + 0.285183i
\(288\) 0 0
\(289\) 3.46309 4.76654i 0.203711 0.280385i
\(290\) 0.0629267 + 4.77849i 0.00369518 + 0.280603i
\(291\) 0 0
\(292\) 2.52491 + 4.95542i 0.147759 + 0.289994i
\(293\) 21.3019 + 3.37389i 1.24447 + 0.197104i 0.743722 0.668489i \(-0.233059\pi\)
0.500747 + 0.865594i \(0.333059\pi\)
\(294\) 0 0
\(295\) −1.78872 + 0.941268i −0.104143 + 0.0548028i
\(296\) 2.50929i 0.145849i
\(297\) 0 0
\(298\) −6.40933 + 6.40933i −0.371282 + 0.371282i
\(299\) 2.73013 + 8.40248i 0.157887 + 0.485928i
\(300\) 0 0
\(301\) 1.09694 0.796973i 0.0632265 0.0459367i
\(302\) −11.6853 + 5.95396i −0.672414 + 0.342612i
\(303\) 0 0
\(304\) −4.05531 + 2.94635i −0.232588 + 0.168985i
\(305\) 7.03791 14.2743i 0.402990 0.817343i
\(306\) 0 0
\(307\) −14.2674 + 14.2674i −0.814282 + 0.814282i −0.985273 0.170991i \(-0.945303\pi\)
0.170991 + 0.985273i \(0.445303\pi\)
\(308\) −3.10882 + 1.86816i −0.177141 + 0.106448i
\(309\) 0 0
\(310\) 4.25687 + 1.32143i 0.241774 + 0.0750521i
\(311\) −9.40697 6.83456i −0.533420 0.387552i 0.288215 0.957566i \(-0.406938\pi\)
−0.821636 + 0.570013i \(0.806938\pi\)
\(312\) 0 0
\(313\) 13.3383 + 26.1779i 0.753926 + 1.47966i 0.873492 + 0.486838i \(0.161850\pi\)
−0.119566 + 0.992826i \(0.538150\pi\)
\(314\) −5.31206 + 16.3488i −0.299777 + 0.922618i
\(315\) 0 0
\(316\) 2.32967 3.20652i 0.131054 0.180381i
\(317\) −4.71621 + 9.25608i −0.264889 + 0.519873i −0.984692 0.174305i \(-0.944232\pi\)
0.719803 + 0.694178i \(0.244232\pi\)
\(318\) 0 0
\(319\) 5.42972 4.55649i 0.304006 0.255115i
\(320\) 0.378849 + 2.20374i 0.0211783 + 0.123193i
\(321\) 0 0
\(322\) −0.646947 4.08466i −0.0360529 0.227629i
\(323\) −2.61349 + 16.5009i −0.145419 + 0.918137i
\(324\) 0 0
\(325\) 8.03934 8.47435i 0.445943 0.470072i
\(326\) 10.4060 + 14.3226i 0.576334 + 0.793256i
\(327\) 0 0
\(328\) −5.56693 2.83649i −0.307382 0.156619i
\(329\) −5.19265 −0.286280
\(330\) 0 0
\(331\) −1.46257 −0.0803901 −0.0401951 0.999192i \(-0.512798\pi\)
−0.0401951 + 0.999192i \(0.512798\pi\)
\(332\) 10.4956 + 5.34777i 0.576020 + 0.293497i
\(333\) 0 0
\(334\) 7.53103 + 10.3656i 0.412080 + 0.567179i
\(335\) 1.46626 1.09508i 0.0801101 0.0598308i
\(336\) 0 0
\(337\) −3.03213 + 19.1441i −0.165171 + 1.04285i 0.756251 + 0.654282i \(0.227029\pi\)
−0.921421 + 0.388565i \(0.872971\pi\)
\(338\) −1.17986 7.44932i −0.0641757 0.405190i
\(339\) 0 0
\(340\) 6.08643 + 4.30075i 0.330083 + 0.233241i
\(341\) −2.47687 6.12967i −0.134130 0.331940i
\(342\) 0 0
\(343\) −6.35684 + 12.4760i −0.343237 + 0.673641i
\(344\) −0.728783 + 1.00308i −0.0392934 + 0.0540827i
\(345\) 0 0
\(346\) −0.607411 + 1.86942i −0.0326546 + 0.100501i
\(347\) −16.2337 31.8605i −0.871473 1.71036i −0.685853 0.727741i \(-0.740571\pi\)
−0.185620 0.982622i \(-0.559429\pi\)
\(348\) 0 0
\(349\) 9.79945 + 7.11972i 0.524553 + 0.381110i 0.818316 0.574768i \(-0.194908\pi\)
−0.293763 + 0.955878i \(0.594908\pi\)
\(350\) −4.33740 + 3.32928i −0.231844 + 0.177958i
\(351\) 0 0
\(352\) 2.17579 2.50319i 0.115970 0.133420i
\(353\) 23.1648 23.1648i 1.23294 1.23294i 0.270108 0.962830i \(-0.412941\pi\)
0.962830 0.270108i \(-0.0870593\pi\)
\(354\) 0 0
\(355\) −33.5731 16.5532i −1.78187 0.878550i
\(356\) −2.24024 + 1.62763i −0.118732 + 0.0862642i
\(357\) 0 0
\(358\) 18.2541 9.30093i 0.964760 0.491570i
\(359\) 1.78802 1.29907i 0.0943681 0.0685624i −0.539601 0.841921i \(-0.681425\pi\)
0.633969 + 0.773359i \(0.281425\pi\)
\(360\) 0 0
\(361\) 1.89321 + 5.82669i 0.0996424 + 0.306668i
\(362\) 17.6532 17.6532i 0.927834 0.927834i
\(363\) 0 0
\(364\) 2.55479i 0.133907i
\(365\) 3.68690 11.8770i 0.192981 0.621672i
\(366\) 0 0
\(367\) −21.5188 3.40825i −1.12327 0.177909i −0.432955 0.901415i \(-0.642529\pi\)
−0.690318 + 0.723506i \(0.742529\pi\)
\(368\) 1.71687 + 3.36955i 0.0894981 + 0.175650i
\(369\) 0 0
\(370\) −3.91495 + 4.01943i −0.203528 + 0.208960i
\(371\) 4.82303 6.63834i 0.250399 0.344645i
\(372\) 0 0
\(373\) 5.83919 + 5.83919i 0.302342 + 0.302342i 0.841929 0.539588i \(-0.181420\pi\)
−0.539588 + 0.841929i \(0.681420\pi\)
\(374\) −0.771582 11.0270i −0.0398976 0.570194i
\(375\) 0 0
\(376\) 4.51596 1.46733i 0.232893 0.0756715i
\(377\) 0.781063 + 4.93144i 0.0402268 + 0.253982i
\(378\) 0 0
\(379\) −19.7939 6.43143i −1.01675 0.330361i −0.247208 0.968962i \(-0.579513\pi\)
−0.769537 + 0.638602i \(0.779513\pi\)
\(380\) 11.0927 + 1.60749i 0.569045 + 0.0824623i
\(381\) 0 0
\(382\) 16.6940 2.64406i 0.854137 0.135282i
\(383\) 20.3110 + 10.3490i 1.03784 + 0.528807i 0.887972 0.459898i \(-0.152114\pi\)
0.149871 + 0.988706i \(0.452114\pi\)
\(384\) 0 0
\(385\) 7.89444 + 1.85787i 0.402338 + 0.0946857i
\(386\) 4.16175 0.211828
\(387\) 0 0
\(388\) −13.3905 + 2.12084i −0.679798 + 0.107669i
\(389\) −14.8071 20.3802i −0.750750 1.03332i −0.997928 0.0643483i \(-0.979503\pi\)
0.247178 0.968970i \(-0.420497\pi\)
\(390\) 0 0
\(391\) 11.9873 + 3.89490i 0.606222 + 0.196973i
\(392\) 0.907963 5.73265i 0.0458591 0.289543i
\(393\) 0 0
\(394\) 21.8030 7.08421i 1.09842 0.356898i
\(395\) −8.73447 + 1.50156i −0.439479 + 0.0755516i
\(396\) 0 0
\(397\) −16.8124 16.8124i −0.843788 0.843788i 0.145561 0.989349i \(-0.453501\pi\)
−0.989349 + 0.145561i \(0.953501\pi\)
\(398\) −1.74373 + 3.42226i −0.0874052 + 0.171542i
\(399\) 0 0
\(400\) 2.83139 4.12107i 0.141569 0.206054i
\(401\) 0.686588 2.11310i 0.0342865 0.105523i −0.932449 0.361303i \(-0.882332\pi\)
0.966735 + 0.255780i \(0.0823321\pi\)
\(402\) 0 0
\(403\) 4.59952 + 0.728492i 0.229118 + 0.0362888i
\(404\) −9.21082 6.69205i −0.458255 0.332942i
\(405\) 0 0
\(406\) 2.33716i 0.115991i
\(407\) 8.29073 + 0.724970i 0.410956 + 0.0359354i
\(408\) 0 0
\(409\) −5.22226 16.0725i −0.258224 0.794732i −0.993177 0.116614i \(-0.962796\pi\)
0.734953 0.678118i \(-0.237204\pi\)
\(410\) 4.49178 + 13.2290i 0.221833 + 0.653333i
\(411\) 0 0
\(412\) 8.50249 4.33224i 0.418888 0.213434i
\(413\) 0.880772 0.448776i 0.0433400 0.0220828i
\(414\) 0 0
\(415\) −8.46856 24.9412i −0.415705 1.22431i
\(416\) 0.721925 + 2.22186i 0.0353953 + 0.108935i
\(417\) 0 0
\(418\) −8.56317 14.2501i −0.418838 0.696993i
\(419\) 2.38744i 0.116634i −0.998298 0.0583169i \(-0.981427\pi\)
0.998298 0.0583169i \(-0.0185734\pi\)
\(420\) 0 0
\(421\) −20.8060 15.1165i −1.01402 0.736732i −0.0489752 0.998800i \(-0.515596\pi\)
−0.965049 + 0.262068i \(0.915596\pi\)
\(422\) 20.8333 + 3.29968i 1.01415 + 0.160626i
\(423\) 0 0
\(424\) −2.31867 + 7.13613i −0.112605 + 0.346561i
\(425\) −3.03942 16.3850i −0.147434 0.794788i
\(426\) 0 0
\(427\) −3.53357 + 6.93502i −0.171001 + 0.335609i
\(428\) −5.94439 5.94439i −0.287333 0.287333i
\(429\) 0 0
\(430\) 2.73237 0.469727i 0.131767 0.0226523i
\(431\) 16.8034 5.45976i 0.809393 0.262988i 0.125052 0.992150i \(-0.460090\pi\)
0.684341 + 0.729163i \(0.260090\pi\)
\(432\) 0 0
\(433\) 3.87082 24.4394i 0.186020 1.17448i −0.701142 0.713022i \(-0.747326\pi\)
0.887161 0.461459i \(-0.152674\pi\)
\(434\) −2.07316 0.673612i −0.0995151 0.0323344i
\(435\) 0 0
\(436\) 10.8906 + 14.9896i 0.521565 + 0.717873i
\(437\) 18.7231 2.96545i 0.895647 0.141857i
\(438\) 0 0
\(439\) −1.55255 −0.0740992 −0.0370496 0.999313i \(-0.511796\pi\)
−0.0370496 + 0.999313i \(0.511796\pi\)
\(440\) −7.39065 + 0.615031i −0.352336 + 0.0293204i
\(441\) 0 0
\(442\) 6.93766 + 3.53492i 0.329991 + 0.168139i
\(443\) 13.0929 2.07371i 0.622063 0.0985252i 0.162556 0.986699i \(-0.448026\pi\)
0.459507 + 0.888174i \(0.348026\pi\)
\(444\) 0 0
\(445\) 6.12786 + 0.888010i 0.290489 + 0.0420957i
\(446\) 24.2704 + 7.88594i 1.14924 + 0.373410i
\(447\) 0 0
\(448\) −0.171071 1.08010i −0.00808237 0.0510300i
\(449\) −32.3129 + 10.4991i −1.52494 + 0.495483i −0.947174 0.320719i \(-0.896076\pi\)
−0.577766 + 0.816202i \(0.696076\pi\)
\(450\) 0 0
\(451\) 10.9802 17.5737i 0.517037 0.827514i
\(452\) 1.42374 + 1.42374i 0.0669673 + 0.0669673i
\(453\) 0 0
\(454\) 4.00750 5.51585i 0.188081 0.258872i
\(455\) −3.98593 + 4.09231i −0.186863 + 0.191851i
\(456\) 0 0
\(457\) 3.83053 + 7.51784i 0.179185 + 0.351670i 0.963077 0.269228i \(-0.0867684\pi\)
−0.783892 + 0.620897i \(0.786768\pi\)
\(458\) −17.7664 2.81392i −0.830169 0.131486i
\(459\) 0 0
\(460\) 2.50699 8.07605i 0.116889 0.376548i
\(461\) 22.5506i 1.05028i −0.851014 0.525142i \(-0.824012\pi\)
0.851014 0.525142i \(-0.175988\pi\)
\(462\) 0 0
\(463\) −4.94536 + 4.94536i −0.229830 + 0.229830i −0.812622 0.582792i \(-0.801960\pi\)
0.582792 + 0.812622i \(0.301960\pi\)
\(464\) 0.660429 + 2.03259i 0.0306596 + 0.0943607i
\(465\) 0 0
\(466\) 16.0214 11.6402i 0.742175 0.539222i
\(467\) 21.7833 11.0991i 1.00801 0.513606i 0.129626 0.991563i \(-0.458622\pi\)
0.878383 + 0.477957i \(0.158622\pi\)
\(468\) 0 0
\(469\) −0.724073 + 0.526070i −0.0334346 + 0.0242917i
\(470\) −9.52306 4.69533i −0.439266 0.216579i
\(471\) 0 0
\(472\) −0.639179 + 0.639179i −0.0294206 + 0.0294206i
\(473\) −3.10365 2.69772i −0.142706 0.124041i
\(474\) 0 0
\(475\) −15.2606 19.8816i −0.700205 0.912230i
\(476\) −2.94866 2.14233i −0.135152 0.0981935i
\(477\) 0 0
\(478\) −0.262638 0.515456i −0.0120128 0.0235764i
\(479\) −7.00499 + 21.5591i −0.320066 + 0.985062i 0.653553 + 0.756881i \(0.273278\pi\)
−0.973619 + 0.228181i \(0.926722\pi\)
\(480\) 0 0
\(481\) −3.44571 + 4.74262i −0.157111 + 0.216245i
\(482\) 13.5151 26.5249i 0.615596 1.20817i
\(483\) 0 0
\(484\) 7.64195 + 7.91205i 0.347361 + 0.359639i
\(485\) 24.7580 + 17.4944i 1.12421 + 0.794378i
\(486\) 0 0
\(487\) −5.29802 33.4504i −0.240076 1.51578i −0.753387 0.657578i \(-0.771581\pi\)
0.513310 0.858203i \(-0.328419\pi\)
\(488\) 1.11341 7.02978i 0.0504016 0.318223i
\(489\) 0 0
\(490\) −10.3984 + 7.76610i −0.469751 + 0.350837i
\(491\) 16.2581 + 22.3774i 0.733718 + 1.00988i 0.998956 + 0.0456935i \(0.0145498\pi\)
−0.265237 + 0.964183i \(0.585450\pi\)
\(492\) 0 0
\(493\) 6.34669 + 3.23380i 0.285840 + 0.145643i
\(494\) 11.7105 0.526881
\(495\) 0 0
\(496\) 1.99334 0.0895038
\(497\) 16.3112 + 8.31095i 0.731655 + 0.372797i
\(498\) 0 0
\(499\) −9.04686 12.4519i −0.404993 0.557425i 0.556995 0.830516i \(-0.311954\pi\)
−0.961988 + 0.273090i \(0.911954\pi\)
\(500\) −10.9650 + 2.18374i −0.490370 + 0.0976599i
\(501\) 0 0
\(502\) 1.83301 11.5732i 0.0818113 0.516536i
\(503\) −2.87522 18.1534i −0.128200 0.809421i −0.965065 0.262011i \(-0.915614\pi\)
0.836865 0.547409i \(-0.184386\pi\)
\(504\) 0 0
\(505\) 4.31327 + 25.0900i 0.191938 + 1.11649i
\(506\) −11.6291 + 4.69906i −0.516976 + 0.208899i
\(507\) 0 0
\(508\) −5.90124 + 11.5818i −0.261825 + 0.513861i
\(509\) −2.72418 + 3.74951i −0.120747 + 0.166194i −0.865112 0.501579i \(-0.832753\pi\)
0.744364 + 0.667774i \(0.232753\pi\)
\(510\) 0 0
\(511\) −1.87943 + 5.78430i −0.0831413 + 0.255882i
\(512\) 0.453990 + 0.891007i 0.0200637 + 0.0393773i
\(513\) 0 0
\(514\) −8.98066 6.52484i −0.396120 0.287798i
\(515\) −20.3786 6.32597i −0.897986 0.278755i
\(516\) 0 0
\(517\) 3.54334 + 15.3448i 0.155836 + 0.674861i
\(518\) 1.94035 1.94035i 0.0852542 0.0852542i
\(519\) 0 0
\(520\) 2.31011 4.68535i 0.101305 0.205466i
\(521\) 19.0400 13.8333i 0.834156 0.606050i −0.0865764 0.996245i \(-0.527593\pi\)
0.920732 + 0.390196i \(0.127593\pi\)
\(522\) 0 0
\(523\) 28.5865 14.5656i 1.25000 0.636907i 0.301435 0.953487i \(-0.402534\pi\)
0.948566 + 0.316579i \(0.102534\pi\)
\(524\) 0.976190 0.709244i 0.0426451 0.0309835i
\(525\) 0 0
\(526\) −2.25809 6.94970i −0.0984576 0.303021i
\(527\) 4.69775 4.69775i 0.204637 0.204637i
\(528\) 0 0
\(529\) 8.69847i 0.378195i
\(530\) 14.8478 7.81326i 0.644945 0.339386i
\(531\) 0 0
\(532\) −5.41416 0.857519i −0.234734 0.0371782i
\(533\) 6.62661 + 13.0055i 0.287030 + 0.563329i
\(534\) 0 0
\(535\) 0.247522 + 18.7962i 0.0107013 + 0.812630i
\(536\) 0.481059 0.662121i 0.0207786 0.0285993i
\(537\) 0 0
\(538\) 12.6303 + 12.6303i 0.544532 + 0.544532i
\(539\) 18.6785 + 4.65617i 0.804538 + 0.200556i
\(540\) 0 0
\(541\) −21.0951 + 6.85421i −0.906949 + 0.294686i −0.725102 0.688641i \(-0.758208\pi\)
−0.181847 + 0.983327i \(0.558208\pi\)
\(542\) −2.13338 13.4696i −0.0916366 0.578571i
\(543\) 0 0
\(544\) 3.16978 + 1.02992i 0.135903 + 0.0441576i
\(545\) 5.94174 41.0020i 0.254516 1.75633i
\(546\) 0 0
\(547\) 19.3633 3.06685i 0.827915 0.131129i 0.271926 0.962318i \(-0.412339\pi\)
0.555989 + 0.831189i \(0.312339\pi\)
\(548\) 0.702199 + 0.357788i 0.0299965 + 0.0152840i
\(549\) 0 0
\(550\) 12.7981 + 10.5456i 0.545711 + 0.449666i
\(551\) 10.7130 0.456388
\(552\) 0 0
\(553\) 4.28096 0.678038i 0.182045 0.0288331i
\(554\) −0.176158 0.242460i −0.00748423 0.0103012i
\(555\) 0 0
\(556\) 11.1952 + 3.63755i 0.474784 + 0.154267i
\(557\) −3.83502 + 24.2134i −0.162495 + 1.02595i 0.762781 + 0.646657i \(0.223834\pi\)
−0.925276 + 0.379296i \(0.876166\pi\)
\(558\) 0 0
\(559\) 2.75484 0.895101i 0.116517 0.0378587i
\(560\) −1.41113 + 1.99703i −0.0596312 + 0.0843901i
\(561\) 0 0
\(562\) 10.3886 + 10.3886i 0.438218 + 0.438218i
\(563\) 16.5145 32.4116i 0.696004 1.36598i −0.224200 0.974543i \(-0.571977\pi\)
0.920203 0.391441i \(-0.128023\pi\)
\(564\) 0 0
\(565\) −0.0592841 4.50188i −0.00249410 0.189396i
\(566\) −9.79602 + 30.1490i −0.411757 + 1.26726i
\(567\) 0 0
\(568\) −16.5340 2.61873i −0.693752 0.109880i
\(569\) 12.4610 + 9.05343i 0.522391 + 0.379540i 0.817504 0.575923i \(-0.195357\pi\)
−0.295113 + 0.955462i \(0.595357\pi\)
\(570\) 0 0
\(571\) 22.4382i 0.939010i 0.882930 + 0.469505i \(0.155568\pi\)
−0.882930 + 0.469505i \(0.844432\pi\)
\(572\) −7.54963 + 1.74333i −0.315666 + 0.0728921i
\(573\) 0 0
\(574\) −2.11136 6.49810i −0.0881264 0.271225i
\(575\) −16.6159 + 9.02503i −0.692929 + 0.376370i
\(576\) 0 0
\(577\) −23.9453 + 12.2008i −0.996858 + 0.507924i −0.874741 0.484591i \(-0.838968\pi\)
−0.122117 + 0.992516i \(0.538968\pi\)
\(578\) −5.24960 + 2.67481i −0.218355 + 0.111257i
\(579\) 0 0
\(580\) 2.11332 4.28624i 0.0877510 0.177976i
\(581\) 3.98064 + 12.2512i 0.165145 + 0.508264i
\(582\) 0 0
\(583\) −22.9080 9.72266i −0.948752 0.402671i
\(584\) 5.56160i 0.230141i
\(585\) 0 0
\(586\) −17.4484 12.6770i −0.720787 0.523682i
\(587\) 16.7923 + 2.65963i 0.693091 + 0.109775i 0.493035 0.870010i \(-0.335888\pi\)
0.200056 + 0.979784i \(0.435888\pi\)
\(588\) 0 0
\(589\) 3.08767 9.50288i 0.127225 0.391559i
\(590\) 2.02109 0.0266151i 0.0832068 0.00109573i
\(591\) 0 0
\(592\) −1.13919 + 2.23579i −0.0468205 + 0.0918905i
\(593\) 9.90575 + 9.90575i 0.406781 + 0.406781i 0.880614 0.473834i \(-0.157130\pi\)
−0.473834 + 0.880614i \(0.657130\pi\)
\(594\) 0 0
\(595\) 1.38081 + 8.03208i 0.0566076 + 0.329283i
\(596\) 8.62053 2.80098i 0.353111 0.114733i
\(597\) 0 0
\(598\) 1.38208 8.72611i 0.0565175 0.356837i
\(599\) −12.7899 4.15568i −0.522580 0.169796i 0.0358361 0.999358i \(-0.488591\pi\)
−0.558416 + 0.829561i \(0.688591\pi\)
\(600\) 0 0
\(601\) 3.15713 + 4.34542i 0.128782 + 0.177253i 0.868539 0.495621i \(-0.165059\pi\)
−0.739757 + 0.672874i \(0.765059\pi\)
\(602\) −1.33920 + 0.212108i −0.0545816 + 0.00864488i
\(603\) 0 0
\(604\) 13.1147 0.533631
\(605\) 0.103195 24.5965i 0.00419547 0.999991i
\(606\) 0 0
\(607\) 20.9848 + 10.6923i 0.851747 + 0.433987i 0.824648 0.565646i \(-0.191373\pi\)
0.0270990 + 0.999633i \(0.491373\pi\)
\(608\) 4.95092 0.784149i 0.200787 0.0318015i
\(609\) 0 0
\(610\) −12.7512 + 9.52333i −0.516281 + 0.385588i
\(611\) −10.5502 3.42796i −0.426815 0.138681i
\(612\) 0 0
\(613\) 1.92172 + 12.1333i 0.0776176 + 0.490058i 0.995621 + 0.0934849i \(0.0298007\pi\)
−0.918003 + 0.396573i \(0.870199\pi\)
\(614\) 19.1896 6.23507i 0.774428 0.251627i
\(615\) 0 0
\(616\) 3.61810 0.253166i 0.145777 0.0102003i
\(617\) 22.4668 + 22.4668i 0.904481 + 0.904481i 0.995820 0.0913392i \(-0.0291147\pi\)
−0.0913392 + 0.995820i \(0.529115\pi\)
\(618\) 0 0
\(619\) −20.8674 + 28.7215i −0.838730 + 1.15441i 0.147505 + 0.989061i \(0.452876\pi\)
−0.986235 + 0.165351i \(0.947124\pi\)
\(620\) −3.19298 3.10998i −0.128233 0.124900i
\(621\) 0 0
\(622\) 5.27884 + 10.3603i 0.211662 + 0.415411i
\(623\) −2.99090 0.473712i −0.119828 0.0189789i
\(624\) 0 0
\(625\) 20.9710 + 13.6094i 0.838840 + 0.544377i
\(626\) 29.3802i 1.17427i
\(627\) 0 0
\(628\) 12.1553 12.1553i 0.485049 0.485049i
\(629\) 2.58437 + 7.95389i 0.103046 + 0.317142i
\(630\) 0 0
\(631\) 24.8174 18.0309i 0.987967 0.717800i 0.0284919 0.999594i \(-0.490930\pi\)
0.959475 + 0.281794i \(0.0909295\pi\)
\(632\) −3.53148 + 1.79938i −0.140475 + 0.0715755i
\(633\) 0 0
\(634\) 8.40435 6.10612i 0.333779 0.242505i
\(635\) 27.5225 9.34503i 1.09220 0.370846i
\(636\) 0 0
\(637\) −9.58806 + 9.58806i −0.379893 + 0.379893i
\(638\) −6.90652 + 1.59482i −0.273432 + 0.0631397i
\(639\) 0 0
\(640\) 0.662921 2.13554i 0.0262042 0.0844147i
\(641\) −7.95986 5.78318i −0.314396 0.228422i 0.419385 0.907809i \(-0.362246\pi\)
−0.733780 + 0.679387i \(0.762246\pi\)
\(642\) 0 0
\(643\) 0.813166 + 1.59593i 0.0320681 + 0.0629373i 0.906485 0.422239i \(-0.138756\pi\)
−0.874417 + 0.485176i \(0.838756\pi\)
\(644\) −1.27796 + 3.93317i −0.0503588 + 0.154989i
\(645\) 0 0
\(646\) 9.81991 13.5159i 0.386359 0.531778i
\(647\) −14.8634 + 29.1710i −0.584339 + 1.14683i 0.389804 + 0.920898i \(0.372543\pi\)
−0.974143 + 0.225933i \(0.927457\pi\)
\(648\) 0 0
\(649\) −1.92719 2.29653i −0.0756488 0.0901466i
\(650\) −11.0104 + 3.90091i −0.431863 + 0.153006i
\(651\) 0 0
\(652\) −2.76947 17.4858i −0.108461 0.684795i
\(653\) −3.53698 + 22.3316i −0.138413 + 0.873903i 0.816571 + 0.577245i \(0.195872\pi\)
−0.954984 + 0.296658i \(0.904128\pi\)
\(654\) 0 0
\(655\) −2.67023 0.386953i −0.104335 0.0151195i
\(656\) 3.67243 + 5.05467i 0.143384 + 0.197352i
\(657\) 0 0
\(658\) 4.62669 + 2.35741i 0.180367 + 0.0919016i
\(659\) −24.8542 −0.968181 −0.484090 0.875018i \(-0.660849\pi\)
−0.484090 + 0.875018i \(0.660849\pi\)
\(660\) 0 0
\(661\) −7.73442 −0.300834 −0.150417 0.988623i \(-0.548062\pi\)
−0.150417 + 0.988623i \(0.548062\pi\)
\(662\) 1.30316 + 0.663993i 0.0506487 + 0.0258068i
\(663\) 0 0
\(664\) −6.92380 9.52979i −0.268695 0.369828i
\(665\) 7.33464 + 9.82067i 0.284425 + 0.380829i
\(666\) 0 0
\(667\) 1.26435 7.98279i 0.0489558 0.309095i
\(668\) −2.00433 12.6548i −0.0775497 0.489629i
\(669\) 0 0
\(670\) −1.80360 + 0.310060i −0.0696792 + 0.0119787i
\(671\) 22.9048 + 5.70972i 0.884231 + 0.220421i
\(672\) 0 0
\(673\) −18.3046 + 35.9248i −0.705591 + 1.38480i 0.207985 + 0.978132i \(0.433309\pi\)
−0.913576 + 0.406668i \(0.866691\pi\)
\(674\) 11.3929 15.6810i 0.438838 0.604009i
\(675\) 0 0
\(676\) −2.33066 + 7.17304i −0.0896408 + 0.275886i
\(677\) −13.6728 26.8343i −0.525487 1.03133i −0.989369 0.145430i \(-0.953544\pi\)
0.463881 0.885897i \(-0.346456\pi\)
\(678\) 0 0
\(679\) −11.9944 8.71444i −0.460303 0.334430i
\(680\) −3.47055 6.59518i −0.133090 0.252914i
\(681\) 0 0
\(682\) −0.575906 + 6.58605i −0.0220526 + 0.252193i
\(683\) 1.26442 1.26442i 0.0483815 0.0483815i −0.682502 0.730884i \(-0.739108\pi\)
0.730884 + 0.682502i \(0.239108\pi\)
\(684\) 0 0
\(685\) −0.566583 1.66867i −0.0216480 0.0637567i
\(686\) 11.3280 8.23025i 0.432504 0.314233i
\(687\) 0 0
\(688\) 1.10474 0.562894i 0.0421179 0.0214601i
\(689\) 14.1816 10.3035i 0.540274 0.392532i
\(690\) 0 0
\(691\) −11.1192 34.2213i −0.422994 1.30184i −0.904902 0.425619i \(-0.860056\pi\)
0.481909 0.876222i \(-0.339944\pi\)
\(692\) 1.38991 1.38991i 0.0528363 0.0528363i
\(693\) 0 0
\(694\) 35.7579i 1.35735i
\(695\) −12.2575 23.2933i −0.464954 0.883566i
\(696\) 0 0
\(697\) 20.5673 + 3.25754i 0.779042 + 0.123388i
\(698\) −5.49909 10.7926i −0.208144 0.408505i
\(699\) 0 0
\(700\) 5.37612 0.997272i 0.203198 0.0376933i
\(701\) −24.1969 + 33.3041i −0.913902 + 1.25788i 0.0519138 + 0.998652i \(0.483468\pi\)
−0.965816 + 0.259227i \(0.916532\pi\)
\(702\) 0 0
\(703\) 8.89410 + 8.89410i 0.335447 + 0.335447i
\(704\) −3.07507 + 1.24257i −0.115896 + 0.0468310i
\(705\) 0 0
\(706\) −31.1566 + 10.1234i −1.17259 + 0.380999i
\(707\) −1.94768 12.2972i −0.0732501 0.462483i
\(708\) 0 0
\(709\) 22.3270 + 7.25447i 0.838507 + 0.272447i 0.696624 0.717436i \(-0.254685\pi\)
0.141882 + 0.989884i \(0.454685\pi\)
\(710\) 22.3989 + 29.9908i 0.840614 + 1.12554i
\(711\) 0 0
\(712\) 2.73500 0.433181i 0.102498 0.0162341i
\(713\) −6.71668 3.42232i −0.251542 0.128167i
\(714\) 0 0
\(715\) 14.8131 + 8.98630i 0.553977 + 0.336068i
\(716\) −20.4871 −0.765637
\(717\) 0 0
\(718\) −2.18290 + 0.345738i −0.0814652 + 0.0129028i
\(719\) −24.1755 33.2748i −0.901595 1.24094i −0.969957 0.243278i \(-0.921777\pi\)
0.0683616 0.997661i \(-0.478223\pi\)
\(720\) 0 0
\(721\) 9.92469 + 3.22473i 0.369615 + 0.120095i
\(722\) 0.958403 6.05112i 0.0356680 0.225199i
\(723\) 0 0
\(724\) −23.7436 + 7.71475i −0.882423 + 0.286717i
\(725\) −10.0725 + 3.56862i −0.374082 + 0.132535i
\(726\) 0 0
\(727\) −25.5963 25.5963i −0.949313 0.949313i 0.0494633 0.998776i \(-0.484249\pi\)
−0.998776 + 0.0494633i \(0.984249\pi\)
\(728\) −1.15985 + 2.27633i −0.0429869 + 0.0843665i
\(729\) 0 0
\(730\) −8.67711 + 8.90869i −0.321154 + 0.329725i
\(731\) 1.27698 3.93014i 0.0472309 0.145362i
\(732\) 0 0
\(733\) 5.28127 + 0.836472i 0.195068 + 0.0308958i 0.253204 0.967413i \(-0.418516\pi\)
−0.0581357 + 0.998309i \(0.518516\pi\)
\(734\) 17.6261 + 12.8061i 0.650591 + 0.472682i
\(735\) 0 0
\(736\) 3.78174i 0.139397i
\(737\) 2.04867 + 1.78072i 0.0754639 + 0.0655938i
\(738\) 0 0
\(739\) 10.8738 + 33.4662i 0.400000 + 1.23107i 0.924999 + 0.379970i \(0.124066\pi\)
−0.524999 + 0.851103i \(0.675934\pi\)
\(740\) 5.31303 1.80399i 0.195311 0.0663161i
\(741\) 0 0
\(742\) −7.31110 + 3.72519i −0.268399 + 0.136756i
\(743\) 1.11770 0.569495i 0.0410043 0.0208927i −0.433368 0.901217i \(-0.642675\pi\)
0.474372 + 0.880324i \(0.342675\pi\)
\(744\) 0 0
\(745\) −18.1786 8.96292i −0.666012 0.328376i
\(746\) −2.55182 7.85370i −0.0934288 0.287544i
\(747\) 0 0
\(748\) −4.31868 + 10.1754i −0.157907 + 0.372051i
\(749\) 9.19321i 0.335913i
\(750\) 0 0
\(751\) −29.3251 21.3060i −1.07009 0.777466i −0.0941612 0.995557i \(-0.530017\pi\)
−0.975928 + 0.218091i \(0.930017\pi\)
\(752\) −4.68990 0.742808i −0.171023 0.0270874i
\(753\) 0 0
\(754\) 1.54289 4.74854i 0.0561889 0.172932i
\(755\) −21.0074 20.4614i −0.764539 0.744665i
\(756\) 0 0
\(757\) 14.8508 29.1464i 0.539763 1.05934i −0.446596 0.894736i \(-0.647364\pi\)
0.986359 0.164608i \(-0.0526360\pi\)
\(758\) 14.7167 + 14.7167i 0.534535 + 0.534535i
\(759\) 0 0
\(760\) −9.15391 6.46828i −0.332047 0.234629i
\(761\) −36.9434 + 12.0036i −1.33920 + 0.435131i −0.889045 0.457821i \(-0.848630\pi\)
−0.450152 + 0.892952i \(0.648630\pi\)
\(762\) 0 0
\(763\) −3.16964 + 20.0123i −0.114749 + 0.724495i
\(764\) −16.0748 5.22302i −0.581566 0.188962i
\(765\) 0 0
\(766\) −13.3989 18.4420i −0.484121 0.666336i
\(767\) 2.08577 0.330354i 0.0753129 0.0119284i
\(768\) 0 0
\(769\) −26.4586 −0.954122 −0.477061 0.878870i \(-0.658298\pi\)
−0.477061 + 0.878870i \(0.658298\pi\)
\(770\) −6.19054 5.23937i −0.223092 0.188814i
\(771\) 0 0
\(772\) −3.70815 1.88940i −0.133459 0.0680009i
\(773\) 0.569135 0.0901421i 0.0204704 0.00324219i −0.146191 0.989256i \(-0.546701\pi\)
0.166661 + 0.986014i \(0.446701\pi\)
\(774\) 0 0
\(775\) 0.262453 + 9.96327i 0.00942758 + 0.357891i
\(776\) 12.8938 + 4.18946i 0.462862 + 0.150393i
\(777\) 0 0
\(778\) 3.94079 + 24.8812i 0.141284 + 0.892034i
\(779\) 29.7857 9.67795i 1.06718 0.346749i
\(780\) 0 0
\(781\) 13.4293 53.8721i 0.480537 1.92770i
\(782\) −8.91248 8.91248i −0.318710 0.318710i
\(783\) 0 0
\(784\) −3.41157 + 4.69563i −0.121842 + 0.167701i
\(785\) −38.4351 + 0.506141i −1.37181 + 0.0180650i
\(786\) 0 0
\(787\) −7.80519 15.3186i −0.278225 0.546047i 0.709033 0.705175i \(-0.249132\pi\)
−0.987258 + 0.159128i \(0.949132\pi\)
\(788\) −22.6428 3.58626i −0.806615 0.127755i
\(789\) 0 0
\(790\) 8.46417 + 2.62747i 0.301142 + 0.0934812i
\(791\) 2.20187i 0.0782895i
\(792\) 0 0
\(793\) −11.7575 + 11.7575i −0.417522 + 0.417522i
\(794\) 7.34727 + 22.6126i 0.260745 + 0.802490i
\(795\) 0 0
\(796\) 3.10735 2.25762i 0.110137 0.0800192i
\(797\) 16.3500 8.33074i 0.579147 0.295090i −0.139772 0.990184i \(-0.544637\pi\)
0.718919 + 0.695094i \(0.244637\pi\)
\(798\) 0 0
\(799\) −12.8034 + 9.30219i −0.452951 + 0.329088i
\(800\) −4.39371 + 2.38648i −0.155341 + 0.0843748i
\(801\) 0 0
\(802\) −1.57108 + 1.57108i −0.0554768 + 0.0554768i
\(803\) 18.3756 + 1.60683i 0.648461 + 0.0567037i
\(804\) 0 0
\(805\) 8.18353 4.30638i 0.288431 0.151780i
\(806\) −3.76747 2.73723i −0.132703 0.0964147i
\(807\) 0 0
\(808\) 5.16877 + 10.1443i 0.181837 + 0.356875i
\(809\) −8.39216 + 25.8284i −0.295053 + 0.908079i 0.688151 + 0.725567i \(0.258423\pi\)
−0.983204 + 0.182511i \(0.941577\pi\)
\(810\) 0 0
\(811\) 3.71141 5.10832i 0.130325 0.179377i −0.738868 0.673851i \(-0.764639\pi\)
0.869193 + 0.494473i \(0.164639\pi\)
\(812\) −1.06105 + 2.08243i −0.0372355 + 0.0730788i
\(813\) 0 0
\(814\) −7.05797 4.40987i −0.247382 0.154566i
\(815\) −22.8448 + 32.3299i −0.800217 + 1.13247i
\(816\) 0 0
\(817\) −0.972251 6.13855i −0.0340148 0.214761i
\(818\) −2.64368 + 16.6915i −0.0924341 + 0.583606i
\(819\) 0 0
\(820\) 2.00362 13.8263i 0.0699695 0.482836i
\(821\) −0.638412 0.878699i −0.0222807 0.0306668i 0.797731 0.603013i \(-0.206033\pi\)
−0.820012 + 0.572346i \(0.806033\pi\)
\(822\) 0 0
\(823\) −1.79897 0.916619i −0.0627080 0.0319513i 0.422355 0.906430i \(-0.361203\pi\)
−0.485063 + 0.874479i \(0.661203\pi\)
\(824\) −9.54257 −0.332431
\(825\) 0 0
\(826\) −0.988513 −0.0343948
\(827\) −39.9126 20.3365i −1.38790 0.707169i −0.409194 0.912447i \(-0.634190\pi\)
−0.978704 + 0.205278i \(0.934190\pi\)
\(828\) 0 0
\(829\) 1.13270 + 1.55903i 0.0393402 + 0.0541472i 0.828234 0.560382i \(-0.189346\pi\)
−0.788894 + 0.614530i \(0.789346\pi\)
\(830\) −3.77752 + 26.0674i −0.131120 + 0.904813i
\(831\) 0 0
\(832\) 0.365462 2.30744i 0.0126701 0.0799960i
\(833\) 3.02615 + 19.1064i 0.104850 + 0.661997i
\(834\) 0 0
\(835\) −16.5332 + 23.3979i −0.572156 + 0.809716i
\(836\) 1.16045 + 16.5845i 0.0401350 + 0.573587i
\(837\) 0 0
\(838\) −1.08387 + 2.12722i −0.0374418 + 0.0734836i
\(839\) −13.0989 + 18.0291i −0.452224 + 0.622433i −0.972874 0.231337i \(-0.925690\pi\)
0.520649 + 0.853771i \(0.325690\pi\)
\(840\) 0 0
\(841\) −7.55003 + 23.2366i −0.260346 + 0.801262i
\(842\) 11.6756 + 22.9146i 0.402367 + 0.789690i
\(843\) 0 0
\(844\) −17.0646 12.3982i −0.587389 0.426763i
\(845\) 14.9245 7.85367i 0.513420 0.270174i
\(846\) 0 0
\(847\) −0.208858 + 12.0274i −0.00717646 + 0.413267i
\(848\) 5.30569 5.30569i 0.182198 0.182198i
\(849\) 0 0
\(850\) −4.73048 + 15.9790i −0.162254 + 0.548075i
\(851\) 7.67714 5.57777i 0.263169 0.191203i
\(852\) 0 0
\(853\) −19.6630 + 10.0188i −0.673247 + 0.343037i −0.756967 0.653453i \(-0.773320\pi\)
0.0837200 + 0.996489i \(0.473320\pi\)
\(854\) 6.29686 4.57494i 0.215474 0.156551i
\(855\) 0 0
\(856\) 2.59779 + 7.99518i 0.0887907 + 0.273270i
\(857\) −5.52754 + 5.52754i −0.188817 + 0.188817i −0.795185 0.606367i \(-0.792626\pi\)
0.606367 + 0.795185i \(0.292626\pi\)
\(858\) 0 0
\(859\) 13.0239i 0.444368i −0.975005 0.222184i \(-0.928681\pi\)
0.975005 0.222184i \(-0.0713186\pi\)
\(860\) −2.64782 0.821942i −0.0902898 0.0280280i
\(861\) 0 0
\(862\) −17.4506 2.76391i −0.594371 0.0941392i
\(863\) 10.2778 + 20.1714i 0.349862 + 0.686643i 0.997137 0.0756136i \(-0.0240915\pi\)
−0.647275 + 0.762256i \(0.724092\pi\)
\(864\) 0 0
\(865\) −4.39489 + 0.0578751i −0.149431 + 0.00196781i
\(866\) −14.5442 + 20.0183i −0.494231 + 0.680250i
\(867\) 0 0
\(868\) 1.54139 + 1.54139i 0.0523182 + 0.0523182i
\(869\) −4.92489 12.1879i −0.167065 0.413448i
\(870\) 0 0
\(871\) −1.81843 + 0.590843i −0.0616151 + 0.0200199i
\(872\) −2.89845 18.3001i −0.0981538 0.619719i
\(873\) 0 0
\(874\) −18.0287 5.85787i −0.609829 0.198145i
\(875\) −10.1675 6.79027i −0.343724 0.229553i
\(876\) 0 0
\(877\) 40.6927 6.44509i 1.37409 0.217635i 0.574661 0.818391i \(-0.305134\pi\)
0.799432 + 0.600756i \(0.205134\pi\)
\(878\) 1.38333 + 0.704843i 0.0466852 + 0.0237873i
\(879\) 0 0
\(880\) 6.86434 + 2.80729i 0.231397 + 0.0946337i
\(881\) −15.9880 −0.538648 −0.269324 0.963050i \(-0.586800\pi\)
−0.269324 + 0.963050i \(0.586800\pi\)
\(882\) 0 0
\(883\) 26.3472 4.17298i 0.886653 0.140432i 0.303536 0.952820i \(-0.401833\pi\)
0.583117 + 0.812388i \(0.301833\pi\)
\(884\) −4.57668 6.29926i −0.153931 0.211867i
\(885\) 0 0
\(886\) −12.6073 4.09637i −0.423551 0.137620i
\(887\) 3.37666 21.3194i 0.113377 0.715836i −0.863867 0.503719i \(-0.831965\pi\)
0.977244 0.212116i \(-0.0680355\pi\)
\(888\) 0 0
\(889\) −13.5191 + 4.39262i −0.453416 + 0.147324i
\(890\) −5.05682 3.57321i −0.169505 0.119774i
\(891\) 0 0
\(892\) −18.0450 18.0450i −0.604191 0.604191i
\(893\) −10.8058 + 21.2076i −0.361603 + 0.709685i
\(894\) 0 0
\(895\) 32.8166 + 31.9635i 1.09694 + 1.06842i
\(896\) −0.337931 + 1.04004i −0.0112895 + 0.0347454i
\(897\) 0 0
\(898\) 33.5575 + 5.31499i 1.11983 + 0.177363i
\(899\) −3.44654 2.50406i −0.114949 0.0835151i
\(900\) 0 0
\(901\) 25.0080i 0.833137i
\(902\) −17.7617 + 10.6734i −0.591401 + 0.355385i
\(903\) 0 0
\(904\) −0.622199 1.91493i −0.0206940 0.0636897i
\(905\) 50.0694 + 24.6866i 1.66436 + 0.820611i
\(906\) 0 0
\(907\) 43.6380 22.2347i 1.44897 0.738290i 0.460216 0.887807i \(-0.347772\pi\)
0.988759 + 0.149518i \(0.0477720\pi\)
\(908\) −6.07486 + 3.09529i −0.201601 + 0.102721i
\(909\) 0 0
\(910\) 5.40936 1.83670i 0.179319 0.0608861i
\(911\) 9.70739 + 29.8763i 0.321620 + 0.989845i 0.972943 + 0.231044i \(0.0742143\pi\)
−0.651323 + 0.758801i \(0.725786\pi\)
\(912\) 0 0
\(913\) 33.4870 20.1231i 1.10826 0.665976i
\(914\) 8.43747i 0.279087i
\(915\) 0 0
\(916\) 14.5525 + 10.5730i 0.480828 + 0.349342i
\(917\) 1.30329 + 0.206421i 0.0430385 + 0.00681663i
\(918\) 0 0
\(919\) 1.01757 3.13176i 0.0335665 0.103307i −0.932870 0.360214i \(-0.882704\pi\)
0.966436 + 0.256907i \(0.0827035\pi\)
\(920\) −5.90020 + 6.05767i −0.194524 + 0.199715i
\(921\) 0 0
\(922\) −10.2377 + 20.0927i −0.337162 + 0.661718i
\(923\) 27.6537 + 27.6537i 0.910233 + 0.910233i
\(924\) 0 0
\(925\) −11.3251 5.39962i −0.372366 0.177538i
\(926\) 6.65149 2.16120i 0.218581 0.0710214i
\(927\) 0 0
\(928\) 0.334331 2.11088i 0.0109749 0.0692931i
\(929\) 34.7596 + 11.2941i 1.14043 + 0.370547i 0.817530 0.575887i \(-0.195343\pi\)
0.322898 + 0.946434i \(0.395343\pi\)
\(930\) 0 0
\(931\) 17.1010 + 23.5375i 0.560462 + 0.771410i
\(932\) −19.5597 + 3.09795i −0.640699 + 0.101477i
\(933\) 0 0
\(934\) −24.4479 −0.799961
\(935\) 22.7933 9.56131i 0.745420 0.312688i
\(936\) 0 0
\(937\) 42.9456 + 21.8819i 1.40297 + 0.714850i 0.981405 0.191948i \(-0.0614805\pi\)
0.421566 + 0.906798i \(0.361480\pi\)
\(938\) 0.883985 0.140009i 0.0288631 0.00457147i
\(939\) 0 0
\(940\) 6.35348 + 8.50695i 0.207228 + 0.277466i
\(941\) −48.9385 15.9011i −1.59535 0.518360i −0.629398 0.777083i \(-0.716698\pi\)
−0.965952 + 0.258723i \(0.916698\pi\)
\(942\) 0 0
\(943\) −3.69622 23.3370i −0.120366 0.759959i
\(944\) 0.859694 0.279331i 0.0279807 0.00909147i
\(945\) 0 0
\(946\) 1.54064 + 3.81271i 0.0500904 + 0.123962i
\(947\) −16.9938 16.9938i −0.552226 0.552226i 0.374857 0.927083i \(-0.377692\pi\)
−0.927083 + 0.374857i \(0.877692\pi\)
\(948\) 0 0
\(949\) −7.63709 + 10.5116i −0.247911 + 0.341220i
\(950\) 4.57125 + 24.6428i 0.148311 + 0.799518i
\(951\) 0 0
\(952\) 1.65468 + 3.24749i 0.0536285 + 0.105252i
\(953\) −57.7544 9.14740i −1.87085 0.296313i −0.885211 0.465190i \(-0.845986\pi\)
−0.985637 + 0.168877i \(0.945986\pi\)
\(954\) 0 0
\(955\) 17.6001 + 33.4460i 0.569526 + 1.08229i
\(956\) 0.578510i 0.0187103i
\(957\) 0 0
\(958\) 16.0291 16.0291i 0.517878 0.517878i
\(959\) 0.266322 + 0.819655i 0.00859998 + 0.0264680i
\(960\) 0 0
\(961\) 21.8650 15.8858i 0.705321 0.512446i
\(962\) 5.22325 2.66138i 0.168404 0.0858064i
\(963\) 0 0
\(964\) −24.0841 + 17.4981i −0.775696 + 0.563576i
\(965\) 2.99199 + 8.81186i 0.0963156 + 0.283664i
\(966\) 0 0
\(967\) −5.32123 + 5.32123i −0.171119 + 0.171119i −0.787471 0.616352i \(-0.788610\pi\)
0.616352 + 0.787471i \(0.288610\pi\)
\(968\) −3.21703 10.5191i −0.103399 0.338096i
\(969\) 0 0
\(970\) −14.1173 26.8275i −0.453279 0.861379i
\(971\) −1.30297 0.946661i −0.0418142 0.0303798i 0.566682 0.823937i \(-0.308227\pi\)
−0.608496 + 0.793557i \(0.708227\pi\)
\(972\) 0 0
\(973\) 5.84411 + 11.4697i 0.187354 + 0.367702i
\(974\) −10.4656 + 32.2097i −0.335339 + 1.03207i
\(975\) 0 0
\(976\) −4.18351 + 5.75810i −0.133911 + 0.184312i
\(977\) −17.7034 + 34.7450i −0.566383 + 1.11159i 0.413217 + 0.910633i \(0.364405\pi\)
−0.979600 + 0.200957i \(0.935595\pi\)
\(978\) 0 0
\(979\) 0.641057 + 9.16163i 0.0204883 + 0.292807i
\(980\) 12.7908 2.19888i 0.408586 0.0702407i
\(981\) 0 0
\(982\) −4.32697 27.3194i −0.138079 0.871798i
\(983\) 2.00832 12.6800i 0.0640554 0.404430i −0.934739 0.355336i \(-0.884367\pi\)
0.998794 0.0490940i \(-0.0156334\pi\)
\(984\) 0 0
\(985\) 30.6744 + 41.0714i 0.977369 + 1.30864i
\(986\) −4.18683 5.76267i −0.133336 0.183521i
\(987\) 0 0
\(988\) −10.4341 5.31646i −0.331954 0.169139i
\(989\) −4.68890 −0.149098
\(990\) 0 0
\(991\) 13.9933 0.444511 0.222256 0.974988i \(-0.428658\pi\)
0.222256 + 0.974988i \(0.428658\pi\)
\(992\) −1.77608 0.904960i −0.0563907 0.0287325i
\(993\) 0 0
\(994\) −10.7603 14.8102i −0.341295 0.469752i
\(995\) −8.49971 1.23172i −0.269459 0.0390482i
\(996\) 0 0
\(997\) 5.34338 33.7368i 0.169227 1.06845i −0.746127 0.665804i \(-0.768089\pi\)
0.915354 0.402651i \(-0.131911\pi\)
\(998\) 2.40775 + 15.2019i 0.0762161 + 0.481209i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.bh.d.127.4 96
3.2 odd 2 inner 990.2.bh.d.127.9 yes 96
5.3 odd 4 inner 990.2.bh.d.523.4 yes 96
11.2 odd 10 inner 990.2.bh.d.937.4 yes 96
15.8 even 4 inner 990.2.bh.d.523.9 yes 96
33.2 even 10 inner 990.2.bh.d.937.9 yes 96
55.13 even 20 inner 990.2.bh.d.343.4 yes 96
165.68 odd 20 inner 990.2.bh.d.343.9 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.bh.d.127.4 96 1.1 even 1 trivial
990.2.bh.d.127.9 yes 96 3.2 odd 2 inner
990.2.bh.d.343.4 yes 96 55.13 even 20 inner
990.2.bh.d.343.9 yes 96 165.68 odd 20 inner
990.2.bh.d.523.4 yes 96 5.3 odd 4 inner
990.2.bh.d.523.9 yes 96 15.8 even 4 inner
990.2.bh.d.937.4 yes 96 11.2 odd 10 inner
990.2.bh.d.937.9 yes 96 33.2 even 10 inner