Newspace parameters
Level: | \( N \) | \(=\) | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 990.bh (of order \(20\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.90518980011\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
73.1 | −0.156434 | − | 0.987688i | 0 | −0.951057 | + | 0.309017i | −2.20829 | − | 0.351353i | 0 | −0.320682 | + | 0.629375i | 0.453990 | + | 0.891007i | 0 | −0.00157399 | + | 2.23607i | ||||||
73.2 | −0.156434 | − | 0.987688i | 0 | −0.951057 | + | 0.309017i | −1.30314 | + | 1.81709i | 0 | −0.794006 | + | 1.55833i | 0.453990 | + | 0.891007i | 0 | 1.99858 | + | 1.00284i | ||||||
73.3 | −0.156434 | − | 0.987688i | 0 | −0.951057 | + | 0.309017i | −1.24280 | − | 1.85888i | 0 | 0.999017 | − | 1.96068i | 0.453990 | + | 0.891007i | 0 | −1.64158 | + | 1.51830i | ||||||
73.4 | −0.156434 | − | 0.987688i | 0 | −0.951057 | + | 0.309017i | 0.235568 | + | 2.22362i | 0 | −0.307021 | + | 0.602562i | 0.453990 | + | 0.891007i | 0 | 2.15940 | − | 0.580519i | ||||||
73.5 | −0.156434 | − | 0.987688i | 0 | −0.951057 | + | 0.309017i | 0.405031 | − | 2.19908i | 0 | −2.37763 | + | 4.66637i | 0.453990 | + | 0.891007i | 0 | −2.23537 | − | 0.0560326i | ||||||
73.6 | −0.156434 | − | 0.987688i | 0 | −0.951057 | + | 0.309017i | 2.23494 | + | 0.0710376i | 0 | 1.11262 | − | 2.18365i | 0.453990 | + | 0.891007i | 0 | −0.279459 | − | 2.21854i | ||||||
73.7 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | −2.23494 | − | 0.0710376i | 0 | 1.11262 | − | 2.18365i | −0.453990 | − | 0.891007i | 0 | −0.279459 | − | 2.21854i | ||||||
73.8 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | −0.405031 | + | 2.19908i | 0 | −2.37763 | + | 4.66637i | −0.453990 | − | 0.891007i | 0 | −2.23537 | − | 0.0560326i | ||||||
73.9 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | −0.235568 | − | 2.22362i | 0 | −0.307021 | + | 0.602562i | −0.453990 | − | 0.891007i | 0 | 2.15940 | − | 0.580519i | ||||||
73.10 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | 1.24280 | + | 1.85888i | 0 | 0.999017 | − | 1.96068i | −0.453990 | − | 0.891007i | 0 | −1.64158 | + | 1.51830i | ||||||
73.11 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | 1.30314 | − | 1.81709i | 0 | −0.794006 | + | 1.55833i | −0.453990 | − | 0.891007i | 0 | 1.99858 | + | 1.00284i | ||||||
73.12 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | 2.20829 | + | 0.351353i | 0 | −0.320682 | + | 0.629375i | −0.453990 | − | 0.891007i | 0 | −0.00157399 | + | 2.23607i | ||||||
127.1 | −0.891007 | − | 0.453990i | 0 | 0.587785 | + | 0.809017i | −2.20499 | − | 0.371538i | 0 | −0.564879 | + | 3.56651i | −0.156434 | − | 0.987688i | 0 | 1.79598 | + | 1.33209i | ||||||
127.2 | −0.891007 | − | 0.453990i | 0 | 0.587785 | + | 0.809017i | −1.88505 | + | 1.20273i | 0 | 0.433371 | − | 2.73620i | −0.156434 | − | 0.987688i | 0 | 2.22563 | − | 0.215847i | ||||||
127.3 | −0.891007 | − | 0.453990i | 0 | 0.587785 | + | 0.809017i | −0.169731 | − | 2.22962i | 0 | 0.743917 | − | 4.69691i | −0.156434 | − | 0.987688i | 0 | −0.860994 | + | 2.06366i | ||||||
127.4 | −0.891007 | − | 0.453990i | 0 | 0.587785 | + | 0.809017i | 0.320687 | − | 2.21295i | 0 | −0.171071 | + | 1.08010i | −0.156434 | − | 0.987688i | 0 | −1.29039 | + | 1.82617i | ||||||
127.5 | −0.891007 | − | 0.453990i | 0 | 0.587785 | + | 0.809017i | 1.29590 | + | 1.82226i | 0 | 0.522655 | − | 3.29991i | −0.156434 | − | 0.987688i | 0 | −0.327367 | − | 2.21197i | ||||||
127.6 | −0.891007 | − | 0.453990i | 0 | 0.587785 | + | 0.809017i | 2.10948 | + | 0.741671i | 0 | −0.0230381 | + | 0.145457i | −0.156434 | − | 0.987688i | 0 | −1.54285 | − | 1.61852i | ||||||
127.7 | 0.891007 | + | 0.453990i | 0 | 0.587785 | + | 0.809017i | −2.10948 | − | 0.741671i | 0 | −0.0230381 | + | 0.145457i | 0.156434 | + | 0.987688i | 0 | −1.54285 | − | 1.61852i | ||||||
127.8 | 0.891007 | + | 0.453990i | 0 | 0.587785 | + | 0.809017i | −1.29590 | − | 1.82226i | 0 | 0.522655 | − | 3.29991i | 0.156434 | + | 0.987688i | 0 | −0.327367 | − | 2.21197i | ||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
11.d | odd | 10 | 1 | inner |
15.e | even | 4 | 1 | inner |
33.f | even | 10 | 1 | inner |
55.l | even | 20 | 1 | inner |
165.u | odd | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 990.2.bh.d | ✓ | 96 |
3.b | odd | 2 | 1 | inner | 990.2.bh.d | ✓ | 96 |
5.c | odd | 4 | 1 | inner | 990.2.bh.d | ✓ | 96 |
11.d | odd | 10 | 1 | inner | 990.2.bh.d | ✓ | 96 |
15.e | even | 4 | 1 | inner | 990.2.bh.d | ✓ | 96 |
33.f | even | 10 | 1 | inner | 990.2.bh.d | ✓ | 96 |
55.l | even | 20 | 1 | inner | 990.2.bh.d | ✓ | 96 |
165.u | odd | 20 | 1 | inner | 990.2.bh.d | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
990.2.bh.d | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
990.2.bh.d | ✓ | 96 | 3.b | odd | 2 | 1 | inner |
990.2.bh.d | ✓ | 96 | 5.c | odd | 4 | 1 | inner |
990.2.bh.d | ✓ | 96 | 11.d | odd | 10 | 1 | inner |
990.2.bh.d | ✓ | 96 | 15.e | even | 4 | 1 | inner |
990.2.bh.d | ✓ | 96 | 33.f | even | 10 | 1 | inner |
990.2.bh.d | ✓ | 96 | 55.l | even | 20 | 1 | inner |
990.2.bh.d | ✓ | 96 | 165.u | odd | 20 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{48} + 20 T_{7}^{47} + 200 T_{7}^{46} + 1370 T_{7}^{45} + 6953 T_{7}^{44} + 25060 T_{7}^{43} + \cdots + 133090713856 \)
acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\).