Properties

Label 990.2.ba.i.289.4
Level $990$
Weight $2$
Character 990.289
Analytic conductor $7.905$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(289,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.ba (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,8,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 289.4
Character \(\chi\) \(=\) 990.289
Dual form 990.2.ba.i.829.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.587785 - 0.809017i) q^{2} +(-0.309017 + 0.951057i) q^{4} +(1.38390 + 1.75636i) q^{5} +(-3.49179 - 1.13455i) q^{7} +(0.951057 - 0.309017i) q^{8} +(0.607489 - 2.15197i) q^{10} +(-1.59974 + 2.90531i) q^{11} +(-1.31288 - 1.80702i) q^{13} +(1.13455 + 3.49179i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(2.47516 - 3.40676i) q^{17} +(-2.47119 - 7.60555i) q^{19} +(-2.09805 + 0.773425i) q^{20} +(3.29075 - 0.413482i) q^{22} -0.0365882i q^{23} +(-1.16962 + 4.86127i) q^{25} +(-0.690222 + 2.12428i) q^{26} +(2.15805 - 2.97030i) q^{28} +(2.85295 - 8.78048i) q^{29} +(2.97662 - 2.16264i) q^{31} +1.00000i q^{32} -4.21099 q^{34} +(-2.83962 - 7.70297i) q^{35} +(0.824696 + 0.267960i) q^{37} +(-4.70049 + 6.46966i) q^{38} +(1.85892 + 1.24275i) q^{40} +(1.90952 + 5.87689i) q^{41} -9.60194i q^{43} +(-2.26877 - 2.41923i) q^{44} +(-0.0296005 + 0.0215060i) q^{46} +(6.50662 - 2.11413i) q^{47} +(5.24229 + 3.80875i) q^{49} +(4.62034 - 1.91114i) q^{50} +(2.12428 - 0.690222i) q^{52} +(-0.676313 - 0.930864i) q^{53} +(-7.31667 + 1.21095i) q^{55} -3.67149 q^{56} +(-8.78048 + 2.85295i) q^{58} +(3.33245 - 10.2562i) q^{59} +(-1.21498 - 0.882733i) q^{61} +(-3.49923 - 1.13697i) q^{62} +(0.809017 - 0.587785i) q^{64} +(1.35689 - 4.80664i) q^{65} -2.88670i q^{67} +(2.47516 + 3.40676i) q^{68} +(-4.56274 + 6.82499i) q^{70} +(-4.78306 - 3.47509i) q^{71} +(9.70730 + 3.15409i) q^{73} +(-0.267960 - 0.824696i) q^{74} +7.99694 q^{76} +(8.88219 - 8.32976i) q^{77} +(-6.37992 + 4.63528i) q^{79} +(-0.0872378 - 2.23437i) q^{80} +(3.63212 - 4.99918i) q^{82} +(-9.01255 + 12.4047i) q^{83} +(9.40890 - 0.367358i) q^{85} +(-7.76814 + 5.64388i) q^{86} +(-0.623653 + 3.25746i) q^{88} -4.64654 q^{89} +(2.53414 + 7.79928i) q^{91} +(0.0347975 + 0.0113064i) q^{92} +(-5.53486 - 4.02131i) q^{94} +(9.93820 - 14.8657i) q^{95} +(-8.70788 - 11.9854i) q^{97} -6.47983i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{4} + 2 q^{5} + 4 q^{10} - 10 q^{14} - 8 q^{16} + 20 q^{19} - 2 q^{20} + 4 q^{25} + 2 q^{26} - 2 q^{29} - 24 q^{31} - 28 q^{34} - 44 q^{35} - 4 q^{40} + 34 q^{41} + 20 q^{44} - 38 q^{46} + 14 q^{49}+ \cdots + 60 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 0.809017i −0.415627 0.572061i
\(3\) 0 0
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) 1.38390 + 1.75636i 0.618901 + 0.785469i
\(6\) 0 0
\(7\) −3.49179 1.13455i −1.31977 0.428820i −0.437356 0.899288i \(-0.644085\pi\)
−0.882417 + 0.470468i \(0.844085\pi\)
\(8\) 0.951057 0.309017i 0.336249 0.109254i
\(9\) 0 0
\(10\) 0.607489 2.15197i 0.192105 0.680511i
\(11\) −1.59974 + 2.90531i −0.482340 + 0.875984i
\(12\) 0 0
\(13\) −1.31288 1.80702i −0.364127 0.501178i 0.587166 0.809467i \(-0.300244\pi\)
−0.951293 + 0.308289i \(0.900244\pi\)
\(14\) 1.13455 + 3.49179i 0.303222 + 0.933221i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 2.47516 3.40676i 0.600314 0.826262i −0.395423 0.918499i \(-0.629402\pi\)
0.995737 + 0.0922376i \(0.0294019\pi\)
\(18\) 0 0
\(19\) −2.47119 7.60555i −0.566930 1.74483i −0.662146 0.749375i \(-0.730354\pi\)
0.0952153 0.995457i \(-0.469646\pi\)
\(20\) −2.09805 + 0.773425i −0.469138 + 0.172943i
\(21\) 0 0
\(22\) 3.29075 0.413482i 0.701590 0.0881547i
\(23\) 0.0365882i 0.00762918i −0.999993 0.00381459i \(-0.998786\pi\)
0.999993 0.00381459i \(-0.00121422\pi\)
\(24\) 0 0
\(25\) −1.16962 + 4.86127i −0.233924 + 0.972255i
\(26\) −0.690222 + 2.12428i −0.135364 + 0.416606i
\(27\) 0 0
\(28\) 2.15805 2.97030i 0.407832 0.561333i
\(29\) 2.85295 8.78048i 0.529780 1.63049i −0.224887 0.974385i \(-0.572201\pi\)
0.754666 0.656109i \(-0.227799\pi\)
\(30\) 0 0
\(31\) 2.97662 2.16264i 0.534617 0.388422i −0.287465 0.957791i \(-0.592813\pi\)
0.822082 + 0.569369i \(0.192813\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −4.21099 −0.722179
\(35\) −2.83962 7.70297i −0.479984 1.30204i
\(36\) 0 0
\(37\) 0.824696 + 0.267960i 0.135579 + 0.0440523i 0.376021 0.926611i \(-0.377292\pi\)
−0.240441 + 0.970664i \(0.577292\pi\)
\(38\) −4.70049 + 6.46966i −0.762520 + 1.04952i
\(39\) 0 0
\(40\) 1.85892 + 1.24275i 0.293921 + 0.196496i
\(41\) 1.90952 + 5.87689i 0.298217 + 0.917816i 0.982122 + 0.188246i \(0.0602801\pi\)
−0.683905 + 0.729571i \(0.739720\pi\)
\(42\) 0 0
\(43\) 9.60194i 1.46428i −0.681153 0.732141i \(-0.738521\pi\)
0.681153 0.732141i \(-0.261479\pi\)
\(44\) −2.26877 2.41923i −0.342030 0.364713i
\(45\) 0 0
\(46\) −0.0296005 + 0.0215060i −0.00436436 + 0.00317089i
\(47\) 6.50662 2.11413i 0.949089 0.308378i 0.206743 0.978395i \(-0.433713\pi\)
0.742345 + 0.670018i \(0.233713\pi\)
\(48\) 0 0
\(49\) 5.24229 + 3.80875i 0.748898 + 0.544107i
\(50\) 4.62034 1.91114i 0.653415 0.270277i
\(51\) 0 0
\(52\) 2.12428 0.690222i 0.294585 0.0957165i
\(53\) −0.676313 0.930864i −0.0928987 0.127864i 0.760038 0.649879i \(-0.225180\pi\)
−0.852936 + 0.522015i \(0.825180\pi\)
\(54\) 0 0
\(55\) −7.31667 + 1.21095i −0.986579 + 0.163284i
\(56\) −3.67149 −0.490623
\(57\) 0 0
\(58\) −8.78048 + 2.85295i −1.15293 + 0.374611i
\(59\) 3.33245 10.2562i 0.433848 1.33525i −0.460415 0.887704i \(-0.652299\pi\)
0.894263 0.447542i \(-0.147701\pi\)
\(60\) 0 0
\(61\) −1.21498 0.882733i −0.155562 0.113022i 0.507281 0.861780i \(-0.330650\pi\)
−0.662843 + 0.748758i \(0.730650\pi\)
\(62\) −3.49923 1.13697i −0.444402 0.144395i
\(63\) 0 0
\(64\) 0.809017 0.587785i 0.101127 0.0734732i
\(65\) 1.35689 4.80664i 0.168301 0.596190i
\(66\) 0 0
\(67\) 2.88670i 0.352667i −0.984330 0.176334i \(-0.943576\pi\)
0.984330 0.176334i \(-0.0564237\pi\)
\(68\) 2.47516 + 3.40676i 0.300157 + 0.413131i
\(69\) 0 0
\(70\) −4.56274 + 6.82499i −0.545352 + 0.815742i
\(71\) −4.78306 3.47509i −0.567644 0.412418i 0.266604 0.963806i \(-0.414098\pi\)
−0.834249 + 0.551388i \(0.814098\pi\)
\(72\) 0 0
\(73\) 9.70730 + 3.15409i 1.13615 + 0.369159i 0.815911 0.578177i \(-0.196236\pi\)
0.320242 + 0.947336i \(0.396236\pi\)
\(74\) −0.267960 0.824696i −0.0311497 0.0958689i
\(75\) 0 0
\(76\) 7.99694 0.917312
\(77\) 8.88219 8.32976i 1.01222 0.949264i
\(78\) 0 0
\(79\) −6.37992 + 4.63528i −0.717797 + 0.521510i −0.885680 0.464297i \(-0.846307\pi\)
0.167883 + 0.985807i \(0.446307\pi\)
\(80\) −0.0872378 2.23437i −0.00975349 0.249810i
\(81\) 0 0
\(82\) 3.63212 4.99918i 0.401100 0.552067i
\(83\) −9.01255 + 12.4047i −0.989256 + 1.36159i −0.0575655 + 0.998342i \(0.518334\pi\)
−0.931691 + 0.363253i \(0.881666\pi\)
\(84\) 0 0
\(85\) 9.40890 0.367358i 1.02054 0.0398455i
\(86\) −7.76814 + 5.64388i −0.837660 + 0.608595i
\(87\) 0 0
\(88\) −0.623653 + 3.25746i −0.0664816 + 0.347247i
\(89\) −4.64654 −0.492532 −0.246266 0.969202i \(-0.579204\pi\)
−0.246266 + 0.969202i \(0.579204\pi\)
\(90\) 0 0
\(91\) 2.53414 + 7.79928i 0.265650 + 0.817587i
\(92\) 0.0347975 + 0.0113064i 0.00362789 + 0.00117877i
\(93\) 0 0
\(94\) −5.53486 4.02131i −0.570878 0.414767i
\(95\) 9.93820 14.8657i 1.01964 1.52518i
\(96\) 0 0
\(97\) −8.70788 11.9854i −0.884151 1.21693i −0.975254 0.221088i \(-0.929039\pi\)
0.0911028 0.995841i \(-0.470961\pi\)
\(98\) 6.47983i 0.654561i
\(99\) 0 0
\(100\) −4.26191 2.61459i −0.426191 0.261459i
\(101\) −0.652650 + 0.474178i −0.0649411 + 0.0471825i −0.619782 0.784774i \(-0.712779\pi\)
0.554841 + 0.831956i \(0.312779\pi\)
\(102\) 0 0
\(103\) −10.8222 3.51635i −1.06634 0.346476i −0.277282 0.960789i \(-0.589433\pi\)
−0.789063 + 0.614312i \(0.789433\pi\)
\(104\) −1.80702 1.31288i −0.177193 0.128738i
\(105\) 0 0
\(106\) −0.355559 + 1.09430i −0.0345349 + 0.106287i
\(107\) −18.2784 + 5.93903i −1.76704 + 0.574148i −0.997891 0.0649163i \(-0.979322\pi\)
−0.769154 + 0.639064i \(0.779322\pi\)
\(108\) 0 0
\(109\) −1.84787 −0.176993 −0.0884967 0.996076i \(-0.528206\pi\)
−0.0884967 + 0.996076i \(0.528206\pi\)
\(110\) 5.28031 + 5.20753i 0.503457 + 0.496518i
\(111\) 0 0
\(112\) 2.15805 + 2.97030i 0.203916 + 0.280667i
\(113\) −8.52947 + 2.77139i −0.802385 + 0.260711i −0.681369 0.731940i \(-0.738615\pi\)
−0.121016 + 0.992651i \(0.538615\pi\)
\(114\) 0 0
\(115\) 0.0642622 0.0506346i 0.00599248 0.00472170i
\(116\) 7.46912 + 5.42663i 0.693490 + 0.503850i
\(117\) 0 0
\(118\) −10.2562 + 3.33245i −0.944162 + 0.306777i
\(119\) −12.5079 + 9.08752i −1.14660 + 0.833051i
\(120\) 0 0
\(121\) −5.88166 9.29548i −0.534697 0.845044i
\(122\) 1.50179i 0.135966i
\(123\) 0 0
\(124\) 1.13697 + 3.49923i 0.102103 + 0.314240i
\(125\) −10.1568 + 4.67326i −0.908452 + 0.417989i
\(126\) 0 0
\(127\) −3.88580 + 5.34835i −0.344809 + 0.474589i −0.945838 0.324638i \(-0.894758\pi\)
0.601029 + 0.799227i \(0.294758\pi\)
\(128\) −0.951057 0.309017i −0.0840623 0.0273135i
\(129\) 0 0
\(130\) −4.68621 + 1.72753i −0.411008 + 0.151514i
\(131\) −0.0620230 −0.00541897 −0.00270949 0.999996i \(-0.500862\pi\)
−0.00270949 + 0.999996i \(0.500862\pi\)
\(132\) 0 0
\(133\) 29.3607i 2.54589i
\(134\) −2.33539 + 1.69676i −0.201747 + 0.146578i
\(135\) 0 0
\(136\) 1.30127 4.00489i 0.111583 0.343417i
\(137\) −0.548600 + 0.755084i −0.0468701 + 0.0645112i −0.831809 0.555062i \(-0.812694\pi\)
0.784939 + 0.619573i \(0.212694\pi\)
\(138\) 0 0
\(139\) 1.96364 6.04348i 0.166554 0.512601i −0.832593 0.553885i \(-0.813145\pi\)
0.999147 + 0.0412838i \(0.0131448\pi\)
\(140\) 8.20345 0.320293i 0.693318 0.0270697i
\(141\) 0 0
\(142\) 5.91218i 0.496139i
\(143\) 7.35023 0.923556i 0.614657 0.0772316i
\(144\) 0 0
\(145\) 19.3699 7.14052i 1.60858 0.592988i
\(146\) −3.15409 9.70730i −0.261035 0.803382i
\(147\) 0 0
\(148\) −0.509690 + 0.701528i −0.0418963 + 0.0576653i
\(149\) 9.52264 + 6.91860i 0.780125 + 0.566794i 0.905016 0.425376i \(-0.139858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(150\) 0 0
\(151\) −7.45137 22.9330i −0.606384 1.86626i −0.486984 0.873411i \(-0.661903\pi\)
−0.119400 0.992846i \(-0.538097\pi\)
\(152\) −4.70049 6.46966i −0.381260 0.524759i
\(153\) 0 0
\(154\) −11.9597 2.28973i −0.963743 0.184512i
\(155\) 7.91774 + 2.23514i 0.635968 + 0.179531i
\(156\) 0 0
\(157\) 12.9311 4.20158i 1.03202 0.335323i 0.256430 0.966563i \(-0.417454\pi\)
0.775587 + 0.631240i \(0.217454\pi\)
\(158\) 7.50004 + 2.43691i 0.596671 + 0.193870i
\(159\) 0 0
\(160\) −1.75636 + 1.38390i −0.138853 + 0.109407i
\(161\) −0.0415113 + 0.127759i −0.00327155 + 0.0100688i
\(162\) 0 0
\(163\) 5.95025 + 8.18982i 0.466060 + 0.641476i 0.975752 0.218881i \(-0.0702406\pi\)
−0.509692 + 0.860357i \(0.670241\pi\)
\(164\) −6.17933 −0.482525
\(165\) 0 0
\(166\) 15.3331 1.19008
\(167\) 12.4457 + 17.1301i 0.963080 + 1.32557i 0.945466 + 0.325720i \(0.105607\pi\)
0.0176135 + 0.999845i \(0.494393\pi\)
\(168\) 0 0
\(169\) 2.47554 7.61892i 0.190426 0.586071i
\(170\) −5.82761 7.39603i −0.446957 0.567249i
\(171\) 0 0
\(172\) 9.13199 + 2.96716i 0.696308 + 0.226244i
\(173\) 0.181614 0.0590099i 0.0138078 0.00448644i −0.302105 0.953275i \(-0.597689\pi\)
0.315913 + 0.948788i \(0.397689\pi\)
\(174\) 0 0
\(175\) 9.59944 15.6476i 0.725649 1.18285i
\(176\) 3.00192 1.41014i 0.226278 0.106293i
\(177\) 0 0
\(178\) 2.73117 + 3.75913i 0.204710 + 0.281759i
\(179\) 1.31305 + 4.04116i 0.0981423 + 0.302051i 0.988060 0.154071i \(-0.0492383\pi\)
−0.889918 + 0.456121i \(0.849238\pi\)
\(180\) 0 0
\(181\) 18.4447 + 13.4009i 1.37098 + 0.996078i 0.997660 + 0.0683776i \(0.0217823\pi\)
0.373325 + 0.927701i \(0.378218\pi\)
\(182\) 4.82022 6.63447i 0.357299 0.491779i
\(183\) 0 0
\(184\) −0.0113064 0.0347975i −0.000833518 0.00256530i
\(185\) 0.670665 + 1.81930i 0.0493083 + 0.133757i
\(186\) 0 0
\(187\) 5.93810 + 12.6410i 0.434237 + 0.924405i
\(188\) 6.84147i 0.498965i
\(189\) 0 0
\(190\) −17.8681 + 0.697636i −1.29629 + 0.0506118i
\(191\) 3.20893 9.87607i 0.232190 0.714608i −0.765292 0.643684i \(-0.777405\pi\)
0.997482 0.0709239i \(-0.0225947\pi\)
\(192\) 0 0
\(193\) −3.90867 + 5.37982i −0.281352 + 0.387248i −0.926181 0.377079i \(-0.876929\pi\)
0.644829 + 0.764327i \(0.276929\pi\)
\(194\) −4.57800 + 14.0896i −0.328681 + 1.01158i
\(195\) 0 0
\(196\) −5.24229 + 3.80875i −0.374449 + 0.272053i
\(197\) 11.5464i 0.822650i −0.911489 0.411325i \(-0.865066\pi\)
0.911489 0.411325i \(-0.134934\pi\)
\(198\) 0 0
\(199\) −14.0999 −0.999516 −0.499758 0.866165i \(-0.666578\pi\)
−0.499758 + 0.866165i \(0.666578\pi\)
\(200\) 0.389842 + 4.98478i 0.0275660 + 0.352477i
\(201\) 0 0
\(202\) 0.767236 + 0.249290i 0.0539825 + 0.0175400i
\(203\) −19.9238 + 27.4228i −1.39838 + 1.92470i
\(204\) 0 0
\(205\) −7.67936 + 11.4869i −0.536350 + 0.802277i
\(206\) 3.51635 + 10.8222i 0.244996 + 0.754019i
\(207\) 0 0
\(208\) 2.23360i 0.154873i
\(209\) 26.0497 + 4.98731i 1.80190 + 0.344980i
\(210\) 0 0
\(211\) −0.216945 + 0.157620i −0.0149351 + 0.0108510i −0.595228 0.803557i \(-0.702938\pi\)
0.580293 + 0.814408i \(0.302938\pi\)
\(212\) 1.09430 0.355559i 0.0751566 0.0244199i
\(213\) 0 0
\(214\) 15.5486 + 11.2967i 1.06288 + 0.772227i
\(215\) 16.8645 13.2882i 1.15015 0.906246i
\(216\) 0 0
\(217\) −12.8474 + 4.17436i −0.872136 + 0.283374i
\(218\) 1.08615 + 1.49495i 0.0735632 + 0.101251i
\(219\) 0 0
\(220\) 1.10929 7.33277i 0.0747886 0.494375i
\(221\) −9.40569 −0.632695
\(222\) 0 0
\(223\) 16.8703 5.48149i 1.12972 0.367068i 0.316250 0.948676i \(-0.397576\pi\)
0.813469 + 0.581608i \(0.197576\pi\)
\(224\) 1.13455 3.49179i 0.0758055 0.233305i
\(225\) 0 0
\(226\) 7.25560 + 5.27150i 0.482635 + 0.350655i
\(227\) 18.0822 + 5.87528i 1.20016 + 0.389956i 0.839820 0.542865i \(-0.182660\pi\)
0.360341 + 0.932821i \(0.382660\pi\)
\(228\) 0 0
\(229\) 18.4855 13.4305i 1.22156 0.887513i 0.225329 0.974283i \(-0.427654\pi\)
0.996228 + 0.0867697i \(0.0276544\pi\)
\(230\) −0.0787367 0.0222269i −0.00519174 0.00146560i
\(231\) 0 0
\(232\) 9.23234i 0.606133i
\(233\) −0.360355 0.495986i −0.0236076 0.0324931i 0.797050 0.603913i \(-0.206393\pi\)
−0.820658 + 0.571420i \(0.806393\pi\)
\(234\) 0 0
\(235\) 12.7177 + 8.50224i 0.829613 + 0.554625i
\(236\) 8.72446 + 6.33869i 0.567914 + 0.412614i
\(237\) 0 0
\(238\) 14.7039 + 4.77759i 0.953113 + 0.309685i
\(239\) −5.50559 16.9445i −0.356127 1.09605i −0.955353 0.295466i \(-0.904525\pi\)
0.599226 0.800580i \(-0.295475\pi\)
\(240\) 0 0
\(241\) −20.1522 −1.29812 −0.649059 0.760738i \(-0.724837\pi\)
−0.649059 + 0.760738i \(0.724837\pi\)
\(242\) −4.06305 + 10.2221i −0.261183 + 0.657102i
\(243\) 0 0
\(244\) 1.21498 0.882733i 0.0777810 0.0565112i
\(245\) 0.565286 + 14.4783i 0.0361148 + 0.924985i
\(246\) 0 0
\(247\) −10.4990 + 14.4507i −0.668037 + 0.919474i
\(248\) 2.16264 2.97662i 0.137328 0.189016i
\(249\) 0 0
\(250\) 9.75077 + 5.47015i 0.616693 + 0.345963i
\(251\) −3.30676 + 2.40250i −0.208721 + 0.151645i −0.687235 0.726435i \(-0.741176\pi\)
0.478514 + 0.878080i \(0.341176\pi\)
\(252\) 0 0
\(253\) 0.106300 + 0.0585317i 0.00668304 + 0.00367985i
\(254\) 6.61092 0.414806
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 1.92060 + 0.624042i 0.119804 + 0.0389267i 0.368305 0.929705i \(-0.379938\pi\)
−0.248501 + 0.968632i \(0.579938\pi\)
\(258\) 0 0
\(259\) −2.57565 1.87132i −0.160043 0.116278i
\(260\) 4.15209 + 2.77581i 0.257501 + 0.172149i
\(261\) 0 0
\(262\) 0.0364562 + 0.0501776i 0.00225227 + 0.00309998i
\(263\) 12.2121i 0.753028i 0.926411 + 0.376514i \(0.122877\pi\)
−0.926411 + 0.376514i \(0.877123\pi\)
\(264\) 0 0
\(265\) 0.698984 2.47608i 0.0429382 0.152104i
\(266\) 23.7533 17.2578i 1.45641 1.05814i
\(267\) 0 0
\(268\) 2.74542 + 0.892041i 0.167703 + 0.0544901i
\(269\) 7.45881 + 5.41914i 0.454771 + 0.330411i 0.791477 0.611199i \(-0.209313\pi\)
−0.336705 + 0.941610i \(0.609313\pi\)
\(270\) 0 0
\(271\) −3.93769 + 12.1190i −0.239198 + 0.736175i 0.757339 + 0.653022i \(0.226499\pi\)
−0.996537 + 0.0831529i \(0.973501\pi\)
\(272\) −4.00489 + 1.30127i −0.242832 + 0.0789010i
\(273\) 0 0
\(274\) 0.933335 0.0563848
\(275\) −12.2524 11.1749i −0.738849 0.673871i
\(276\) 0 0
\(277\) −7.81487 10.7563i −0.469550 0.646281i 0.506905 0.862002i \(-0.330790\pi\)
−0.976455 + 0.215722i \(0.930790\pi\)
\(278\) −6.04348 + 1.96364i −0.362464 + 0.117772i
\(279\) 0 0
\(280\) −5.08099 6.44846i −0.303647 0.385369i
\(281\) 1.26883 + 0.921862i 0.0756923 + 0.0549937i 0.624988 0.780634i \(-0.285104\pi\)
−0.549296 + 0.835628i \(0.685104\pi\)
\(282\) 0 0
\(283\) −10.2840 + 3.34148i −0.611321 + 0.198630i −0.598283 0.801285i \(-0.704150\pi\)
−0.0130376 + 0.999915i \(0.504150\pi\)
\(284\) 4.78306 3.47509i 0.283822 0.206209i
\(285\) 0 0
\(286\) −5.06753 5.40361i −0.299649 0.319522i
\(287\) 22.6873i 1.33919i
\(288\) 0 0
\(289\) −0.226340 0.696603i −0.0133141 0.0409767i
\(290\) −17.1622 11.4735i −1.00780 0.673747i
\(291\) 0 0
\(292\) −5.99944 + 8.25753i −0.351091 + 0.483235i
\(293\) 21.2021 + 6.88897i 1.23864 + 0.402458i 0.853836 0.520542i \(-0.174270\pi\)
0.384801 + 0.922999i \(0.374270\pi\)
\(294\) 0 0
\(295\) 22.6254 8.34064i 1.31730 0.485611i
\(296\) 0.867136 0.0504013
\(297\) 0 0
\(298\) 11.7706i 0.681854i
\(299\) −0.0661158 + 0.0480360i −0.00382358 + 0.00277799i
\(300\) 0 0
\(301\) −10.8939 + 33.5280i −0.627914 + 1.93252i
\(302\) −14.1733 + 19.5079i −0.815584 + 1.12256i
\(303\) 0 0
\(304\) −2.47119 + 7.60555i −0.141733 + 0.436208i
\(305\) −0.131013 3.35556i −0.00750180 0.192139i
\(306\) 0 0
\(307\) 7.11124i 0.405860i −0.979193 0.202930i \(-0.934954\pi\)
0.979193 0.202930i \(-0.0650464\pi\)
\(308\) 5.17732 + 11.0215i 0.295005 + 0.628008i
\(309\) 0 0
\(310\) −2.84567 7.71937i −0.161623 0.438431i
\(311\) −5.91086 18.1918i −0.335174 1.03156i −0.966636 0.256153i \(-0.917545\pi\)
0.631462 0.775407i \(-0.282455\pi\)
\(312\) 0 0
\(313\) −17.6306 + 24.2665i −0.996542 + 1.37162i −0.0691190 + 0.997608i \(0.522019\pi\)
−0.927423 + 0.374014i \(0.877981\pi\)
\(314\) −10.9999 7.99188i −0.620759 0.451008i
\(315\) 0 0
\(316\) −2.43691 7.50004i −0.137087 0.421910i
\(317\) −3.88012 5.34053i −0.217929 0.299954i 0.686029 0.727574i \(-0.259352\pi\)
−0.903959 + 0.427620i \(0.859352\pi\)
\(318\) 0 0
\(319\) 20.9460 + 22.3352i 1.17275 + 1.25053i
\(320\) 2.15197 + 0.607489i 0.120299 + 0.0339597i
\(321\) 0 0
\(322\) 0.127759 0.0415113i 0.00711971 0.00231333i
\(323\) −32.0269 10.4062i −1.78202 0.579015i
\(324\) 0 0
\(325\) 10.3200 4.26874i 0.572451 0.236787i
\(326\) 3.12823 9.62771i 0.173257 0.533230i
\(327\) 0 0
\(328\) 3.63212 + 4.99918i 0.200550 + 0.276034i
\(329\) −25.1184 −1.38482
\(330\) 0 0
\(331\) −1.96710 −0.108122 −0.0540608 0.998538i \(-0.517216\pi\)
−0.0540608 + 0.998538i \(0.517216\pi\)
\(332\) −9.01255 12.4047i −0.494628 0.680797i
\(333\) 0 0
\(334\) 6.54311 20.1376i 0.358023 1.10188i
\(335\) 5.07010 3.99492i 0.277009 0.218266i
\(336\) 0 0
\(337\) 8.89720 + 2.89088i 0.484661 + 0.157476i 0.541148 0.840927i \(-0.317990\pi\)
−0.0564867 + 0.998403i \(0.517990\pi\)
\(338\) −7.61892 + 2.47554i −0.414415 + 0.134652i
\(339\) 0 0
\(340\) −2.55813 + 9.06191i −0.138734 + 0.491451i
\(341\) 1.52133 + 12.1077i 0.0823845 + 0.655667i
\(342\) 0 0
\(343\) 1.12256 + 1.54507i 0.0606125 + 0.0834260i
\(344\) −2.96716 9.13199i −0.159979 0.492364i
\(345\) 0 0
\(346\) −0.154490 0.112243i −0.00830542 0.00603424i
\(347\) 11.9401 16.4342i 0.640979 0.882232i −0.357688 0.933841i \(-0.616435\pi\)
0.998667 + 0.0516090i \(0.0164350\pi\)
\(348\) 0 0
\(349\) −5.08169 15.6398i −0.272017 0.837181i −0.989993 0.141114i \(-0.954932\pi\)
0.717977 0.696067i \(-0.245068\pi\)
\(350\) −18.3016 + 1.43130i −0.978259 + 0.0765063i
\(351\) 0 0
\(352\) −2.90531 1.59974i −0.154854 0.0852664i
\(353\) 26.1300i 1.39076i −0.718643 0.695379i \(-0.755237\pi\)
0.718643 0.695379i \(-0.244763\pi\)
\(354\) 0 0
\(355\) −0.515766 13.2100i −0.0273740 0.701113i
\(356\) 1.43586 4.41912i 0.0761004 0.234213i
\(357\) 0 0
\(358\) 2.49758 3.43762i 0.132001 0.181684i
\(359\) 1.86004 5.72461i 0.0981692 0.302134i −0.889897 0.456161i \(-0.849224\pi\)
0.988067 + 0.154027i \(0.0492243\pi\)
\(360\) 0 0
\(361\) −36.3662 + 26.4216i −1.91401 + 1.39061i
\(362\) 22.7989i 1.19828i
\(363\) 0 0
\(364\) −8.20065 −0.429831
\(365\) 7.89424 + 21.4145i 0.413204 + 1.12089i
\(366\) 0 0
\(367\) 2.85905 + 0.928961i 0.149241 + 0.0484914i 0.382685 0.923879i \(-0.374999\pi\)
−0.233444 + 0.972370i \(0.574999\pi\)
\(368\) −0.0215060 + 0.0296005i −0.00112108 + 0.00154303i
\(369\) 0 0
\(370\) 1.07763 1.61193i 0.0560235 0.0838005i
\(371\) 1.30543 + 4.01770i 0.0677745 + 0.208588i
\(372\) 0 0
\(373\) 16.1368i 0.835532i 0.908555 + 0.417766i \(0.137187\pi\)
−0.908555 + 0.417766i \(0.862813\pi\)
\(374\) 6.73649 12.2342i 0.348336 0.632618i
\(375\) 0 0
\(376\) 5.53486 4.02131i 0.285439 0.207383i
\(377\) −19.6121 + 6.37236i −1.01008 + 0.328193i
\(378\) 0 0
\(379\) 20.4244 + 14.8392i 1.04913 + 0.762238i 0.972047 0.234786i \(-0.0754390\pi\)
0.0770842 + 0.997025i \(0.475439\pi\)
\(380\) 11.0670 + 14.0455i 0.567725 + 0.720521i
\(381\) 0 0
\(382\) −9.87607 + 3.20893i −0.505304 + 0.164183i
\(383\) 20.6742 + 28.4557i 1.05640 + 1.45402i 0.883122 + 0.469144i \(0.155438\pi\)
0.173283 + 0.984872i \(0.444562\pi\)
\(384\) 0 0
\(385\) 26.9222 + 4.07276i 1.37208 + 0.207567i
\(386\) 6.64983 0.338467
\(387\) 0 0
\(388\) 14.0896 4.57800i 0.715293 0.232413i
\(389\) −0.697918 + 2.14797i −0.0353859 + 0.108907i −0.967189 0.254057i \(-0.918235\pi\)
0.931803 + 0.362963i \(0.118235\pi\)
\(390\) 0 0
\(391\) −0.124648 0.0905617i −0.00630370 0.00457990i
\(392\) 6.16268 + 2.00238i 0.311262 + 0.101135i
\(393\) 0 0
\(394\) −9.34127 + 6.78683i −0.470606 + 0.341915i
\(395\) −16.9704 4.79066i −0.853875 0.241044i
\(396\) 0 0
\(397\) 18.6869i 0.937868i −0.883233 0.468934i \(-0.844638\pi\)
0.883233 0.468934i \(-0.155362\pi\)
\(398\) 8.28772 + 11.4071i 0.415426 + 0.571784i
\(399\) 0 0
\(400\) 3.80363 3.24537i 0.190181 0.162268i
\(401\) 12.4245 + 9.02694i 0.620451 + 0.450784i 0.853079 0.521782i \(-0.174732\pi\)
−0.232628 + 0.972566i \(0.574732\pi\)
\(402\) 0 0
\(403\) −7.81589 2.53954i −0.389337 0.126503i
\(404\) −0.249290 0.767236i −0.0124026 0.0381714i
\(405\) 0 0
\(406\) 33.8964 1.68225
\(407\) −2.09781 + 1.96733i −0.103984 + 0.0975170i
\(408\) 0 0
\(409\) −2.59071 + 1.88226i −0.128103 + 0.0930719i −0.649991 0.759942i \(-0.725228\pi\)
0.521889 + 0.853013i \(0.325228\pi\)
\(410\) 13.8069 0.539071i 0.681873 0.0266228i
\(411\) 0 0
\(412\) 6.68850 9.20592i 0.329519 0.453543i
\(413\) −23.2724 + 32.0318i −1.14516 + 1.57618i
\(414\) 0 0
\(415\) −34.2597 + 1.33762i −1.68174 + 0.0656614i
\(416\) 1.80702 1.31288i 0.0885966 0.0643692i
\(417\) 0 0
\(418\) −11.2768 24.0062i −0.551568 1.17418i
\(419\) 0.122299 0.00597471 0.00298736 0.999996i \(-0.499049\pi\)
0.00298736 + 0.999996i \(0.499049\pi\)
\(420\) 0 0
\(421\) 0.661002 + 2.03436i 0.0322153 + 0.0991485i 0.965871 0.259023i \(-0.0834004\pi\)
−0.933656 + 0.358171i \(0.883400\pi\)
\(422\) 0.255034 + 0.0828655i 0.0124149 + 0.00403383i
\(423\) 0 0
\(424\) −0.930864 0.676313i −0.0452068 0.0328446i
\(425\) 13.6662 + 16.0170i 0.662909 + 0.776941i
\(426\) 0 0
\(427\) 3.24094 + 4.46078i 0.156840 + 0.215872i
\(428\) 19.2191i 0.928990i
\(429\) 0 0
\(430\) −20.6631 5.83307i −0.996461 0.281296i
\(431\) 24.3875 17.7186i 1.17471 0.853474i 0.183141 0.983087i \(-0.441373\pi\)
0.991565 + 0.129613i \(0.0413735\pi\)
\(432\) 0 0
\(433\) −25.2902 8.21727i −1.21537 0.394897i −0.369975 0.929042i \(-0.620634\pi\)
−0.845393 + 0.534145i \(0.820634\pi\)
\(434\) 10.9286 + 7.94011i 0.524591 + 0.381138i
\(435\) 0 0
\(436\) 0.571022 1.75742i 0.0273470 0.0841654i
\(437\) −0.278274 + 0.0904166i −0.0133116 + 0.00432521i
\(438\) 0 0
\(439\) −9.60080 −0.458221 −0.229111 0.973400i \(-0.573582\pi\)
−0.229111 + 0.973400i \(0.573582\pi\)
\(440\) −6.58436 + 3.41265i −0.313897 + 0.162692i
\(441\) 0 0
\(442\) 5.52853 + 7.60936i 0.262965 + 0.361941i
\(443\) 13.3652 4.34263i 0.635001 0.206324i 0.0262121 0.999656i \(-0.491655\pi\)
0.608789 + 0.793332i \(0.291655\pi\)
\(444\) 0 0
\(445\) −6.43036 8.16101i −0.304829 0.386869i
\(446\) −14.3507 10.4264i −0.679527 0.493705i
\(447\) 0 0
\(448\) −3.49179 + 1.13455i −0.164972 + 0.0536026i
\(449\) −23.0363 + 16.7369i −1.08715 + 0.789862i −0.978916 0.204263i \(-0.934520\pi\)
−0.108236 + 0.994125i \(0.534520\pi\)
\(450\) 0 0
\(451\) −20.1289 3.85376i −0.947834 0.181466i
\(452\) 8.96841i 0.421839i
\(453\) 0 0
\(454\) −5.87528 18.0822i −0.275740 0.848642i
\(455\) −10.1914 + 15.2443i −0.477778 + 0.714665i
\(456\) 0 0
\(457\) 17.1007 23.5372i 0.799939 1.10102i −0.192859 0.981226i \(-0.561776\pi\)
0.992799 0.119795i \(-0.0382239\pi\)
\(458\) −21.7310 7.06084i −1.01542 0.329931i
\(459\) 0 0
\(460\) 0.0282983 + 0.0767640i 0.00131941 + 0.00357914i
\(461\) −14.5472 −0.677533 −0.338766 0.940871i \(-0.610010\pi\)
−0.338766 + 0.940871i \(0.610010\pi\)
\(462\) 0 0
\(463\) 26.5659i 1.23462i −0.786719 0.617311i \(-0.788222\pi\)
0.786719 0.617311i \(-0.211778\pi\)
\(464\) −7.46912 + 5.42663i −0.346745 + 0.251925i
\(465\) 0 0
\(466\) −0.189450 + 0.583066i −0.00877609 + 0.0270100i
\(467\) −3.38974 + 4.66558i −0.156858 + 0.215897i −0.880212 0.474581i \(-0.842600\pi\)
0.723354 + 0.690478i \(0.242600\pi\)
\(468\) 0 0
\(469\) −3.27512 + 10.0798i −0.151231 + 0.465441i
\(470\) −0.596835 15.2863i −0.0275299 0.705106i
\(471\) 0 0
\(472\) 10.7840i 0.496375i
\(473\) 27.8966 + 15.3606i 1.28269 + 0.706282i
\(474\) 0 0
\(475\) 39.8630 3.11755i 1.82904 0.143043i
\(476\) −4.77759 14.7039i −0.218980 0.673953i
\(477\) 0 0
\(478\) −10.4723 + 14.4138i −0.478990 + 0.659273i
\(479\) −9.85916 7.16310i −0.450477 0.327291i 0.339307 0.940676i \(-0.389807\pi\)
−0.789784 + 0.613385i \(0.789807\pi\)
\(480\) 0 0
\(481\) −0.598516 1.84204i −0.0272900 0.0839900i
\(482\) 11.8452 + 16.3035i 0.539533 + 0.742603i
\(483\) 0 0
\(484\) 10.6581 2.72133i 0.484457 0.123697i
\(485\) 8.99978 31.8808i 0.408659 1.44763i
\(486\) 0 0
\(487\) −5.66556 + 1.84085i −0.256731 + 0.0834170i −0.434555 0.900645i \(-0.643094\pi\)
0.177824 + 0.984062i \(0.443094\pi\)
\(488\) −1.42829 0.464080i −0.0646557 0.0210079i
\(489\) 0 0
\(490\) 11.3809 8.96746i 0.514138 0.405108i
\(491\) −8.86786 + 27.2925i −0.400201 + 1.23169i 0.524635 + 0.851327i \(0.324202\pi\)
−0.924836 + 0.380365i \(0.875798\pi\)
\(492\) 0 0
\(493\) −22.8515 31.4524i −1.02918 1.41654i
\(494\) 17.8620 0.803650
\(495\) 0 0
\(496\) −3.67931 −0.165206
\(497\) 12.7588 + 17.5609i 0.572309 + 0.787715i
\(498\) 0 0
\(499\) 3.05089 9.38968i 0.136577 0.420340i −0.859255 0.511547i \(-0.829073\pi\)
0.995832 + 0.0912073i \(0.0290726\pi\)
\(500\) −1.30591 11.1038i −0.0584021 0.496577i
\(501\) 0 0
\(502\) 3.88733 + 1.26307i 0.173500 + 0.0563736i
\(503\) −20.5152 + 6.66581i −0.914730 + 0.297214i −0.728303 0.685255i \(-0.759691\pi\)
−0.186427 + 0.982469i \(0.559691\pi\)
\(504\) 0 0
\(505\) −1.73603 0.490073i −0.0772525 0.0218080i
\(506\) −0.0151286 0.120403i −0.000672548 0.00535255i
\(507\) 0 0
\(508\) −3.88580 5.34835i −0.172405 0.237294i
\(509\) 6.13785 + 18.8904i 0.272056 + 0.837301i 0.989983 + 0.141183i \(0.0450907\pi\)
−0.717928 + 0.696118i \(0.754909\pi\)
\(510\) 0 0
\(511\) −30.3174 22.0269i −1.34116 0.974412i
\(512\) 0.587785 0.809017i 0.0259767 0.0357538i
\(513\) 0 0
\(514\) −0.624042 1.92060i −0.0275253 0.0847142i
\(515\) −8.80092 23.8740i −0.387815 1.05202i
\(516\) 0 0
\(517\) −4.26670 + 22.2858i −0.187649 + 0.980129i
\(518\) 3.18368i 0.139883i
\(519\) 0 0
\(520\) −0.194855 4.99069i −0.00854495 0.218856i
\(521\) −3.34006 + 10.2796i −0.146331 + 0.450359i −0.997180 0.0750508i \(-0.976088\pi\)
0.850849 + 0.525410i \(0.176088\pi\)
\(522\) 0 0
\(523\) 11.3088 15.5652i 0.494499 0.680620i −0.486711 0.873563i \(-0.661803\pi\)
0.981210 + 0.192944i \(0.0618034\pi\)
\(524\) 0.0191661 0.0589873i 0.000837277 0.00257687i
\(525\) 0 0
\(526\) 9.87976 7.17807i 0.430778 0.312979i
\(527\) 15.4935i 0.674909i
\(528\) 0 0
\(529\) 22.9987 0.999942
\(530\) −2.41404 + 0.889912i −0.104859 + 0.0386553i
\(531\) 0 0
\(532\) −27.9237 9.07295i −1.21064 0.393362i
\(533\) 8.11272 11.1662i 0.351401 0.483662i
\(534\) 0 0
\(535\) −35.7267 23.8845i −1.54460 1.03262i
\(536\) −0.892041 2.74542i −0.0385303 0.118584i
\(537\) 0 0
\(538\) 9.21959i 0.397485i
\(539\) −19.4519 + 9.13748i −0.837852 + 0.393579i
\(540\) 0 0
\(541\) −6.18481 + 4.49353i −0.265906 + 0.193192i −0.712747 0.701422i \(-0.752549\pi\)
0.446841 + 0.894614i \(0.352549\pi\)
\(542\) 12.1190 3.93769i 0.520554 0.169138i
\(543\) 0 0
\(544\) 3.40676 + 2.47516i 0.146064 + 0.106122i
\(545\) −2.55727 3.24552i −0.109541 0.139023i
\(546\) 0 0
\(547\) 15.8930 5.16394i 0.679534 0.220794i 0.0511426 0.998691i \(-0.483714\pi\)
0.628391 + 0.777897i \(0.283714\pi\)
\(548\) −0.548600 0.755084i −0.0234351 0.0322556i
\(549\) 0 0
\(550\) −1.83887 + 16.4809i −0.0784098 + 0.702746i
\(551\) −73.8305 −3.14529
\(552\) 0 0
\(553\) 27.5363 8.94709i 1.17096 0.380469i
\(554\) −4.10852 + 12.6447i −0.174554 + 0.537223i
\(555\) 0 0
\(556\) 5.14089 + 3.73507i 0.218022 + 0.158402i
\(557\) 6.20631 + 2.01655i 0.262970 + 0.0854441i 0.437534 0.899202i \(-0.355852\pi\)
−0.174565 + 0.984646i \(0.555852\pi\)
\(558\) 0 0
\(559\) −17.3509 + 12.6062i −0.733867 + 0.533185i
\(560\) −2.23039 + 7.90092i −0.0942511 + 0.333875i
\(561\) 0 0
\(562\) 1.56837i 0.0661575i
\(563\) −11.4827 15.8046i −0.483940 0.666086i 0.495316 0.868713i \(-0.335052\pi\)
−0.979256 + 0.202627i \(0.935052\pi\)
\(564\) 0 0
\(565\) −16.6715 11.1455i −0.701377 0.468895i
\(566\) 8.74810 + 6.35586i 0.367710 + 0.267157i
\(567\) 0 0
\(568\) −5.62282 1.82696i −0.235928 0.0766577i
\(569\) −3.39217 10.4400i −0.142207 0.437669i 0.854434 0.519560i \(-0.173904\pi\)
−0.996641 + 0.0818909i \(0.973904\pi\)
\(570\) 0 0
\(571\) −30.0076 −1.25578 −0.627889 0.778303i \(-0.716081\pi\)
−0.627889 + 0.778303i \(0.716081\pi\)
\(572\) −1.39299 + 7.27588i −0.0582440 + 0.304220i
\(573\) 0 0
\(574\) −18.3544 + 13.3353i −0.766100 + 0.556604i
\(575\) 0.177865 + 0.0427943i 0.00741750 + 0.00178465i
\(576\) 0 0
\(577\) 14.2539 19.6188i 0.593398 0.816742i −0.401686 0.915777i \(-0.631576\pi\)
0.995084 + 0.0990355i \(0.0315757\pi\)
\(578\) −0.430524 + 0.592566i −0.0179075 + 0.0246475i
\(579\) 0 0
\(580\) 0.805409 + 20.6284i 0.0334428 + 0.856549i
\(581\) 45.5438 33.0895i 1.88947 1.37278i
\(582\) 0 0
\(583\) 3.78637 0.475757i 0.156816 0.0197039i
\(584\) 10.2069 0.422363
\(585\) 0 0
\(586\) −6.88897 21.2021i −0.284581 0.875849i
\(587\) −27.6188 8.97388i −1.13995 0.370392i −0.322600 0.946535i \(-0.604557\pi\)
−0.817348 + 0.576144i \(0.804557\pi\)
\(588\) 0 0
\(589\) −23.8039 17.2945i −0.980821 0.712608i
\(590\) −20.0466 13.4019i −0.825306 0.551746i
\(591\) 0 0
\(592\) −0.509690 0.701528i −0.0209481 0.0288326i
\(593\) 38.5708i 1.58391i −0.610579 0.791956i \(-0.709063\pi\)
0.610579 0.791956i \(-0.290937\pi\)
\(594\) 0 0
\(595\) −33.2707 9.39215i −1.36397 0.385040i
\(596\) −9.52264 + 6.91860i −0.390062 + 0.283397i
\(597\) 0 0
\(598\) 0.0777238 + 0.0252540i 0.00317836 + 0.00103271i
\(599\) 35.4633 + 25.7656i 1.44899 + 1.05275i 0.986066 + 0.166356i \(0.0532000\pi\)
0.462925 + 0.886398i \(0.346800\pi\)
\(600\) 0 0
\(601\) 11.9756 36.8572i 0.488497 1.50344i −0.338355 0.941019i \(-0.609870\pi\)
0.826852 0.562420i \(-0.190130\pi\)
\(602\) 33.5280 10.8939i 1.36650 0.444003i
\(603\) 0 0
\(604\) 24.1131 0.981150
\(605\) 8.18658 23.1944i 0.332832 0.942986i
\(606\) 0 0
\(607\) 14.8661 + 20.4614i 0.603396 + 0.830503i 0.996014 0.0891983i \(-0.0284305\pi\)
−0.392618 + 0.919702i \(0.628430\pi\)
\(608\) 7.60555 2.47119i 0.308446 0.100220i
\(609\) 0 0
\(610\) −2.63770 + 2.07834i −0.106797 + 0.0841495i
\(611\) −12.3627 8.98203i −0.500141 0.363374i
\(612\) 0 0
\(613\) 26.0537 8.46535i 1.05230 0.341912i 0.268728 0.963216i \(-0.413397\pi\)
0.783570 + 0.621304i \(0.213397\pi\)
\(614\) −5.75312 + 4.17988i −0.232177 + 0.168686i
\(615\) 0 0
\(616\) 5.87343 10.6668i 0.236647 0.429778i
\(617\) 15.5982i 0.627961i 0.949429 + 0.313981i \(0.101663\pi\)
−0.949429 + 0.313981i \(0.898337\pi\)
\(618\) 0 0
\(619\) 6.43523 + 19.8056i 0.258654 + 0.796054i 0.993088 + 0.117374i \(0.0374476\pi\)
−0.734434 + 0.678680i \(0.762552\pi\)
\(620\) −4.57246 + 6.83952i −0.183634 + 0.274682i
\(621\) 0 0
\(622\) −11.2431 + 15.4748i −0.450808 + 0.620484i
\(623\) 16.2248 + 5.27174i 0.650031 + 0.211208i
\(624\) 0 0
\(625\) −22.2640 11.3717i −0.890559 0.454867i
\(626\) 29.9950 1.19884
\(627\) 0 0
\(628\) 13.5966i 0.542563i
\(629\) 2.95413 2.14630i 0.117789 0.0855786i
\(630\) 0 0
\(631\) 6.58817 20.2763i 0.262271 0.807187i −0.730039 0.683406i \(-0.760498\pi\)
0.992310 0.123781i \(-0.0395020\pi\)
\(632\) −4.63528 + 6.37992i −0.184382 + 0.253779i
\(633\) 0 0
\(634\) −2.03990 + 6.27817i −0.0810148 + 0.249338i
\(635\) −14.7712 + 0.576722i −0.586178 + 0.0228865i
\(636\) 0 0
\(637\) 14.4734i 0.573456i
\(638\) 5.75777 30.0740i 0.227952 1.19064i
\(639\) 0 0
\(640\) −0.773425 2.09805i −0.0305723 0.0829327i
\(641\) 1.35758 + 4.17819i 0.0536211 + 0.165029i 0.974281 0.225337i \(-0.0723484\pi\)
−0.920660 + 0.390366i \(0.872348\pi\)
\(642\) 0 0
\(643\) −10.9094 + 15.0155i −0.430226 + 0.592155i −0.968005 0.250931i \(-0.919263\pi\)
0.537779 + 0.843086i \(0.319263\pi\)
\(644\) −0.108678 0.0789591i −0.00428251 0.00311143i
\(645\) 0 0
\(646\) 10.4062 + 32.0269i 0.409425 + 1.26008i
\(647\) −22.4440 30.8915i −0.882364 1.21447i −0.975761 0.218841i \(-0.929772\pi\)
0.0933967 0.995629i \(-0.470228\pi\)
\(648\) 0 0
\(649\) 24.4665 + 26.0891i 0.960393 + 1.02409i
\(650\) −9.51943 5.83996i −0.373383 0.229062i
\(651\) 0 0
\(652\) −9.62771 + 3.12823i −0.377050 + 0.122511i
\(653\) −8.58380 2.78905i −0.335910 0.109144i 0.136205 0.990681i \(-0.456509\pi\)
−0.472115 + 0.881537i \(0.656509\pi\)
\(654\) 0 0
\(655\) −0.0858338 0.108935i −0.00335380 0.00425643i
\(656\) 1.90952 5.87689i 0.0745542 0.229454i
\(657\) 0 0
\(658\) 14.7642 + 20.3212i 0.575569 + 0.792202i
\(659\) −3.25065 −0.126627 −0.0633137 0.997994i \(-0.520167\pi\)
−0.0633137 + 0.997994i \(0.520167\pi\)
\(660\) 0 0
\(661\) 32.7128 1.27238 0.636190 0.771532i \(-0.280509\pi\)
0.636190 + 0.771532i \(0.280509\pi\)
\(662\) 1.15623 + 1.59142i 0.0449382 + 0.0618522i
\(663\) 0 0
\(664\) −4.73818 + 14.5826i −0.183877 + 0.565915i
\(665\) −51.5680 + 40.6324i −1.99972 + 1.57566i
\(666\) 0 0
\(667\) −0.321262 0.104384i −0.0124393 0.00404178i
\(668\) −20.1376 + 6.54311i −0.779148 + 0.253160i
\(669\) 0 0
\(670\) −6.21209 1.75364i −0.239994 0.0677490i
\(671\) 4.50826 2.11774i 0.174040 0.0817546i
\(672\) 0 0
\(673\) −0.454434 0.625475i −0.0175171 0.0241103i 0.800169 0.599775i \(-0.204743\pi\)
−0.817686 + 0.575665i \(0.804743\pi\)
\(674\) −2.89088 8.89720i −0.111352 0.342707i
\(675\) 0 0
\(676\) 6.48104 + 4.70875i 0.249271 + 0.181106i
\(677\) −21.8005 + 30.0058i −0.837861 + 1.15322i 0.148548 + 0.988905i \(0.452540\pi\)
−0.986409 + 0.164311i \(0.947460\pi\)
\(678\) 0 0
\(679\) 16.8081 + 51.7300i 0.645035 + 1.98521i
\(680\) 8.83487 3.25689i 0.338802 0.124896i
\(681\) 0 0
\(682\) 8.90110 8.34749i 0.340841 0.319642i
\(683\) 22.7377i 0.870034i −0.900422 0.435017i \(-0.856742\pi\)
0.900422 0.435017i \(-0.143258\pi\)
\(684\) 0 0
\(685\) −2.08541 + 0.0814221i −0.0796795 + 0.00311098i
\(686\) 0.590165 1.81634i 0.0225326 0.0693482i
\(687\) 0 0
\(688\) −5.64388 + 7.76814i −0.215171 + 0.296157i
\(689\) −0.794177 + 2.44423i −0.0302557 + 0.0931176i
\(690\) 0 0
\(691\) 1.36479 0.991577i 0.0519190 0.0377214i −0.561523 0.827461i \(-0.689784\pi\)
0.613442 + 0.789740i \(0.289784\pi\)
\(692\) 0.190960i 0.00725921i
\(693\) 0 0
\(694\) −20.3137 −0.771099
\(695\) 13.3320 4.91472i 0.505713 0.186426i
\(696\) 0 0
\(697\) 24.7475 + 8.04097i 0.937380 + 0.304573i
\(698\) −9.66595 + 13.3040i −0.365862 + 0.503565i
\(699\) 0 0
\(700\) 11.9153 + 13.9650i 0.450357 + 0.527826i
\(701\) 12.4806 + 38.4112i 0.471384 + 1.45077i 0.850773 + 0.525534i \(0.176134\pi\)
−0.379388 + 0.925238i \(0.623866\pi\)
\(702\) 0 0
\(703\) 6.93444i 0.261537i
\(704\) 0.413482 + 3.29075i 0.0155837 + 0.124025i
\(705\) 0 0
\(706\) −21.1396 + 15.3588i −0.795599 + 0.578036i
\(707\) 2.81690 0.915266i 0.105940 0.0344221i
\(708\) 0 0
\(709\) −9.28629 6.74688i −0.348754 0.253384i 0.399592 0.916693i \(-0.369152\pi\)
−0.748346 + 0.663309i \(0.769152\pi\)
\(710\) −10.3839 + 8.18189i −0.389702 + 0.307061i
\(711\) 0 0
\(712\) −4.41912 + 1.43586i −0.165614 + 0.0538111i
\(713\) −0.0791273 0.108909i −0.00296334 0.00407869i
\(714\) 0 0
\(715\) 11.7941 + 11.6316i 0.441075 + 0.434996i
\(716\) −4.24913 −0.158797
\(717\) 0 0
\(718\) −5.72461 + 1.86004i −0.213641 + 0.0694161i
\(719\) −13.7386 + 42.2830i −0.512363 + 1.57689i 0.275667 + 0.961253i \(0.411101\pi\)
−0.788030 + 0.615637i \(0.788899\pi\)
\(720\) 0 0
\(721\) 33.7994 + 24.5567i 1.25876 + 0.914541i
\(722\) 42.7511 + 13.8907i 1.59103 + 0.516957i
\(723\) 0 0
\(724\) −18.4447 + 13.4009i −0.685492 + 0.498039i
\(725\) 39.3474 + 24.1388i 1.46133 + 0.896492i
\(726\) 0 0
\(727\) 24.5763i 0.911484i −0.890112 0.455742i \(-0.849374\pi\)
0.890112 0.455742i \(-0.150626\pi\)
\(728\) 4.82022 + 6.63447i 0.178649 + 0.245890i
\(729\) 0 0
\(730\) 12.6846 18.9737i 0.469477 0.702248i
\(731\) −32.7116 23.7663i −1.20988 0.879030i
\(732\) 0 0
\(733\) 24.2238 + 7.87080i 0.894728 + 0.290715i 0.720059 0.693913i \(-0.244115\pi\)
0.174668 + 0.984627i \(0.444115\pi\)
\(734\) −0.928961 2.85905i −0.0342886 0.105529i
\(735\) 0 0
\(736\) 0.0365882 0.00134866
\(737\) 8.38677 + 4.61798i 0.308931 + 0.170105i
\(738\) 0 0
\(739\) 24.0114 17.4453i 0.883273 0.641735i −0.0508427 0.998707i \(-0.516191\pi\)
0.934115 + 0.356972i \(0.116191\pi\)
\(740\) −1.93750 + 0.0756471i −0.0712239 + 0.00278084i
\(741\) 0 0
\(742\) 2.48307 3.41766i 0.0911565 0.125466i
\(743\) 23.2228 31.9634i 0.851962 1.17262i −0.131465 0.991321i \(-0.541968\pi\)
0.983427 0.181304i \(-0.0580319\pi\)
\(744\) 0 0
\(745\) 1.02684 + 26.2999i 0.0376207 + 0.963553i
\(746\) 13.0549 9.48497i 0.477975 0.347269i
\(747\) 0 0
\(748\) −13.8573 + 1.74117i −0.506674 + 0.0636635i
\(749\) 70.5627 2.57830
\(750\) 0 0
\(751\) 16.4756 + 50.7066i 0.601202 + 1.85031i 0.521050 + 0.853526i \(0.325541\pi\)
0.0801523 + 0.996783i \(0.474459\pi\)
\(752\) −6.50662 2.11413i −0.237272 0.0770944i
\(753\) 0 0
\(754\) 16.6831 + 12.1210i 0.607561 + 0.441419i
\(755\) 29.9666 44.8243i 1.09060 1.63132i
\(756\) 0 0
\(757\) −3.98396 5.48346i −0.144800 0.199300i 0.730457 0.682959i \(-0.239307\pi\)
−0.875256 + 0.483660i \(0.839307\pi\)
\(758\) 25.2460i 0.916974i
\(759\) 0 0
\(760\) 4.85805 17.2092i 0.176220 0.624242i
\(761\) −19.8050 + 14.3891i −0.717929 + 0.521606i −0.885722 0.464216i \(-0.846336\pi\)
0.167793 + 0.985822i \(0.446336\pi\)
\(762\) 0 0
\(763\) 6.45237 + 2.09650i 0.233591 + 0.0758984i
\(764\) 8.40109 + 6.10375i 0.303941 + 0.220826i
\(765\) 0 0
\(766\) 10.8691 33.4516i 0.392716 1.20866i
\(767\) −22.9083 + 7.44337i −0.827172 + 0.268765i
\(768\) 0 0
\(769\) −21.1893 −0.764104 −0.382052 0.924141i \(-0.624783\pi\)
−0.382052 + 0.924141i \(0.624783\pi\)
\(770\) −12.5295 24.1744i −0.451533 0.871185i
\(771\) 0 0
\(772\) −3.90867 5.37982i −0.140676 0.193624i
\(773\) 39.9082 12.9670i 1.43540 0.466389i 0.514938 0.857227i \(-0.327815\pi\)
0.920459 + 0.390838i \(0.127815\pi\)
\(774\) 0 0
\(775\) 7.03168 + 16.9996i 0.252585 + 0.610645i
\(776\) −11.9854 8.70788i −0.430250 0.312595i
\(777\) 0 0
\(778\) 2.14797 0.697918i 0.0770085 0.0250216i
\(779\) 39.9782 29.0459i 1.43237 1.04068i
\(780\) 0 0
\(781\) 17.7479 8.33702i 0.635069 0.298322i
\(782\) 0.154073i 0.00550963i
\(783\) 0 0
\(784\) −2.00238 6.16268i −0.0715134 0.220096i
\(785\) 25.2749 + 16.8972i 0.902102 + 0.603086i
\(786\) 0 0
\(787\) −13.2891 + 18.2909i −0.473706 + 0.652001i −0.977280 0.211951i \(-0.932018\pi\)
0.503574 + 0.863952i \(0.332018\pi\)
\(788\) 10.9813 + 3.56805i 0.391193 + 0.127106i
\(789\) 0 0
\(790\) 6.09924 + 16.5452i 0.217001 + 0.588653i
\(791\) 32.9274 1.17076
\(792\) 0 0
\(793\) 3.35442i 0.119119i
\(794\) −15.1180 + 10.9839i −0.536518 + 0.389803i
\(795\) 0 0
\(796\) 4.35711 13.4098i 0.154434 0.475298i
\(797\) 3.69554 5.08647i 0.130903 0.180172i −0.738534 0.674216i \(-0.764482\pi\)
0.869437 + 0.494044i \(0.164482\pi\)
\(798\) 0 0
\(799\) 8.90258 27.3993i 0.314951 0.969319i
\(800\) −4.86127 1.16962i −0.171872 0.0413523i
\(801\) 0 0
\(802\) 15.3576i 0.542294i
\(803\) −24.6928 + 23.1570i −0.871389 + 0.817193i
\(804\) 0 0
\(805\) −0.281838 + 0.103897i −0.00993348 + 0.00366188i
\(806\) 2.53954 + 7.81589i 0.0894514 + 0.275303i
\(807\) 0 0
\(808\) −0.474178 + 0.652650i −0.0166815 + 0.0229601i
\(809\) −21.4826 15.6081i −0.755290 0.548750i 0.142172 0.989842i \(-0.454591\pi\)
−0.897462 + 0.441092i \(0.854591\pi\)
\(810\) 0 0
\(811\) −8.04230 24.7517i −0.282403 0.869148i −0.987165 0.159704i \(-0.948946\pi\)
0.704761 0.709444i \(-0.251054\pi\)
\(812\) −19.9238 27.4228i −0.699189 0.962351i
\(813\) 0 0
\(814\) 2.82466 + 0.540792i 0.0990044 + 0.0189547i
\(815\) −6.14971 + 21.7847i −0.215415 + 0.763086i
\(816\) 0 0
\(817\) −73.0280 + 23.7282i −2.55493 + 0.830146i
\(818\) 3.04557 + 0.989564i 0.106486 + 0.0345993i
\(819\) 0 0
\(820\) −8.55160 10.8531i −0.298635 0.379008i
\(821\) 0.0728207 0.224119i 0.00254146 0.00782181i −0.949778 0.312925i \(-0.898691\pi\)
0.952319 + 0.305103i \(0.0986911\pi\)
\(822\) 0 0
\(823\) 22.3456 + 30.7561i 0.778919 + 1.07209i 0.995400 + 0.0958037i \(0.0305421\pi\)
−0.216481 + 0.976287i \(0.569458\pi\)
\(824\) −11.3791 −0.396411
\(825\) 0 0
\(826\) 39.5934 1.37763
\(827\) 12.7394 + 17.5343i 0.442992 + 0.609726i 0.970874 0.239592i \(-0.0770136\pi\)
−0.527882 + 0.849318i \(0.677014\pi\)
\(828\) 0 0
\(829\) −5.68287 + 17.4901i −0.197374 + 0.607455i 0.802567 + 0.596563i \(0.203467\pi\)
−0.999941 + 0.0108924i \(0.996533\pi\)
\(830\) 21.2195 + 26.9304i 0.736540 + 0.934769i
\(831\) 0 0
\(832\) −2.12428 0.690222i −0.0736463 0.0239291i
\(833\) 25.9510 8.43199i 0.899149 0.292151i
\(834\) 0 0
\(835\) −12.8629 + 45.5656i −0.445140 + 1.57686i
\(836\) −12.7930 + 23.2336i −0.442456 + 0.803551i
\(837\) 0 0
\(838\) −0.0718858 0.0989423i −0.00248325 0.00341790i
\(839\) −4.43832 13.6598i −0.153228 0.471587i 0.844749 0.535163i \(-0.179750\pi\)
−0.997977 + 0.0635754i \(0.979750\pi\)
\(840\) 0 0
\(841\) −45.4960 33.0548i −1.56883 1.13982i
\(842\) 1.25730 1.73053i 0.0433295 0.0596379i
\(843\) 0 0
\(844\) −0.0828655 0.255034i −0.00285235 0.00877863i
\(845\) 16.8075 6.19592i 0.578196 0.213146i
\(846\) 0 0
\(847\) 9.99134 + 39.1310i 0.343307 + 1.34456i
\(848\) 1.15061i 0.0395122i
\(849\) 0 0
\(850\) 4.92526 20.4708i 0.168935 0.702142i
\(851\) 0.00980418 0.0301742i 0.000336083 0.00103436i
\(852\) 0 0
\(853\) −22.3924 + 30.8205i −0.766702 + 1.05528i 0.229924 + 0.973208i \(0.426152\pi\)
−0.996627 + 0.0820669i \(0.973848\pi\)
\(854\) 1.70386 5.24396i 0.0583051 0.179445i
\(855\) 0 0
\(856\) −15.5486 + 11.2967i −0.531439 + 0.386113i
\(857\) 11.0195i 0.376420i 0.982129 + 0.188210i \(0.0602686\pi\)
−0.982129 + 0.188210i \(0.939731\pi\)
\(858\) 0 0
\(859\) −24.5275 −0.836866 −0.418433 0.908248i \(-0.637420\pi\)
−0.418433 + 0.908248i \(0.637420\pi\)
\(860\) 7.42638 + 20.1454i 0.253238 + 0.686951i
\(861\) 0 0
\(862\) −28.6693 9.31521i −0.976479 0.317277i
\(863\) −3.99242 + 5.49509i −0.135904 + 0.187055i −0.871544 0.490317i \(-0.836881\pi\)
0.735641 + 0.677372i \(0.236881\pi\)
\(864\) 0 0
\(865\) 0.354979 + 0.237315i 0.0120696 + 0.00806897i
\(866\) 8.21727 + 25.2902i 0.279234 + 0.859395i
\(867\) 0 0
\(868\) 13.5085i 0.458509i
\(869\) −3.26073 25.9509i −0.110613 0.880324i
\(870\) 0 0
\(871\) −5.21634 + 3.78990i −0.176749 + 0.128416i
\(872\) −1.75742 + 0.571022i −0.0595139 + 0.0193372i
\(873\) 0 0
\(874\) 0.236714 + 0.171983i 0.00800696 + 0.00581740i
\(875\) 40.7675 4.79464i 1.37819 0.162088i
\(876\) 0 0
\(877\) 14.7567 4.79474i 0.498298 0.161907i −0.0490757 0.998795i \(-0.515628\pi\)
0.547374 + 0.836888i \(0.315628\pi\)
\(878\) 5.64321 + 7.76721i 0.190449 + 0.262131i
\(879\) 0 0
\(880\) 6.63108 + 3.32095i 0.223534 + 0.111949i
\(881\) −39.0509 −1.31566 −0.657829 0.753167i \(-0.728525\pi\)
−0.657829 + 0.753167i \(0.728525\pi\)
\(882\) 0 0
\(883\) 44.3327 14.4046i 1.49192 0.484753i 0.554267 0.832339i \(-0.312999\pi\)
0.937648 + 0.347586i \(0.112999\pi\)
\(884\) 2.90652 8.94534i 0.0977568 0.300864i
\(885\) 0 0
\(886\) −11.3691 8.26017i −0.381954 0.277506i
\(887\) 7.41261 + 2.40850i 0.248891 + 0.0808696i 0.430806 0.902445i \(-0.358229\pi\)
−0.181915 + 0.983314i \(0.558229\pi\)
\(888\) 0 0
\(889\) 19.6364 14.2667i 0.658583 0.478489i
\(890\) −2.82272 + 9.99919i −0.0946178 + 0.335174i
\(891\) 0 0
\(892\) 17.7385i 0.593928i
\(893\) −32.1582 44.2620i −1.07613 1.48117i
\(894\) 0 0
\(895\) −5.28061 + 7.89878i −0.176511 + 0.264027i
\(896\) 2.97030 + 2.15805i 0.0992306 + 0.0720953i
\(897\) 0 0
\(898\) 27.0808 + 8.79910i 0.903699 + 0.293630i
\(899\) −10.4969 32.3061i −0.350090 1.07747i
\(900\) 0 0
\(901\) −4.84522 −0.161418
\(902\) 8.71374 + 18.5498i 0.290136 + 0.617642i
\(903\) 0 0
\(904\) −7.25560 + 5.27150i −0.241318 + 0.175327i
\(905\) 1.98893 + 50.9411i 0.0661142 + 1.69334i
\(906\) 0 0
\(907\) −3.44121 + 4.73642i −0.114263 + 0.157270i −0.862318 0.506367i \(-0.830988\pi\)
0.748055 + 0.663637i \(0.230988\pi\)
\(908\) −11.1754 + 15.3817i −0.370870 + 0.510459i
\(909\) 0 0
\(910\) 18.3233 0.715407i 0.607410 0.0237155i
\(911\) 4.55243 3.30753i 0.150829 0.109583i −0.509812 0.860286i \(-0.670285\pi\)
0.660640 + 0.750703i \(0.270285\pi\)
\(912\) 0 0
\(913\) −21.6218 46.0286i −0.715578 1.52332i
\(914\) −29.0935 −0.962328
\(915\) 0 0
\(916\) 7.06084 + 21.7310i 0.233297 + 0.718013i
\(917\) 0.216571 + 0.0703683i 0.00715181 + 0.00232377i
\(918\) 0 0
\(919\) 10.3086 + 7.48964i 0.340050 + 0.247061i 0.744683 0.667419i \(-0.232601\pi\)
−0.404633 + 0.914479i \(0.632601\pi\)
\(920\) 0.0454700 0.0680145i 0.00149910 0.00224237i
\(921\) 0 0
\(922\) 8.55065 + 11.7690i 0.281601 + 0.387590i
\(923\) 13.2055i 0.434664i
\(924\) 0 0
\(925\) −2.26721 + 3.69566i −0.0745453 + 0.121513i
\(926\) −21.4923 + 15.6150i −0.706279 + 0.513142i
\(927\) 0 0
\(928\) 8.78048 + 2.85295i 0.288233 + 0.0936527i
\(929\) −14.5778 10.5914i −0.478281 0.347492i 0.322379 0.946611i \(-0.395518\pi\)
−0.800660 + 0.599119i \(0.795518\pi\)
\(930\) 0 0
\(931\) 16.0129 49.2826i 0.524801 1.61517i
\(932\) 0.583066 0.189450i 0.0190990 0.00620563i
\(933\) 0 0
\(934\) 5.76697 0.188701
\(935\) −13.9845 + 27.9234i −0.457342 + 0.913194i
\(936\) 0 0
\(937\) 15.4767 + 21.3018i 0.505602 + 0.695901i 0.983170 0.182694i \(-0.0584816\pi\)
−0.477568 + 0.878595i \(0.658482\pi\)
\(938\) 10.0798 3.27512i 0.329116 0.106936i
\(939\) 0 0
\(940\) −12.0161 + 9.46794i −0.391922 + 0.308810i
\(941\) 9.66039 + 7.01869i 0.314920 + 0.228803i 0.734005 0.679144i \(-0.237649\pi\)
−0.419085 + 0.907947i \(0.637649\pi\)
\(942\) 0 0
\(943\) 0.215025 0.0698659i 0.00700218 0.00227515i
\(944\) −8.72446 + 6.33869i −0.283957 + 0.206307i
\(945\) 0 0
\(946\) −3.97023 31.5976i −0.129083 1.02733i
\(947\) 37.4189i 1.21595i 0.793956 + 0.607976i \(0.208018\pi\)
−0.793956 + 0.607976i \(0.791982\pi\)
\(948\) 0 0
\(949\) −7.04500 21.6823i −0.228690 0.703837i
\(950\) −25.9530 30.4174i −0.842028 0.986871i
\(951\) 0 0
\(952\) −9.08752 + 12.5079i −0.294528 + 0.405383i
\(953\) 3.68410 + 1.19704i 0.119340 + 0.0387759i 0.368078 0.929795i \(-0.380016\pi\)
−0.248738 + 0.968571i \(0.580016\pi\)
\(954\) 0 0
\(955\) 21.7868 8.03149i 0.705005 0.259893i
\(956\) 17.8165 0.576225
\(957\) 0 0
\(958\) 12.1866i 0.393731i
\(959\) 2.77228 2.01418i 0.0895216 0.0650413i
\(960\) 0 0
\(961\) −5.39627 + 16.6080i −0.174073 + 0.535743i
\(962\) −1.13845 + 1.56694i −0.0367050 + 0.0505201i
\(963\) 0 0
\(964\) 6.22738 19.1659i 0.200570 0.617292i
\(965\) −14.8581 + 0.580117i −0.478301 + 0.0186746i
\(966\) 0 0
\(967\) 0.516048i 0.0165950i 0.999966 + 0.00829749i \(0.00264120\pi\)
−0.999966 + 0.00829749i \(0.997359\pi\)
\(968\) −8.46626 7.02300i −0.272116 0.225728i
\(969\) 0 0
\(970\) −31.0820 + 11.4581i −0.997984 + 0.367897i
\(971\) 15.4723 + 47.6190i 0.496531 + 1.52817i 0.814557 + 0.580084i \(0.196980\pi\)
−0.318026 + 0.948082i \(0.603020\pi\)
\(972\) 0 0
\(973\) −13.7133 + 18.8747i −0.439628 + 0.605096i
\(974\) 4.81942 + 3.50151i 0.154424 + 0.112196i
\(975\) 0 0
\(976\) 0.464080 + 1.42829i 0.0148548 + 0.0457185i
\(977\) −14.0956 19.4010i −0.450960 0.620693i 0.521644 0.853163i \(-0.325319\pi\)
−0.972603 + 0.232471i \(0.925319\pi\)
\(978\) 0 0
\(979\) 7.43325 13.4996i 0.237568 0.431450i
\(980\) −13.9444 3.93642i −0.445436 0.125744i
\(981\) 0 0
\(982\) 27.2925 8.86786i 0.870938 0.282985i
\(983\) 35.0687 + 11.3945i 1.11852 + 0.363428i 0.809202 0.587531i \(-0.199900\pi\)
0.309316 + 0.950959i \(0.399900\pi\)
\(984\) 0 0
\(985\) 20.2797 15.9792i 0.646166 0.509139i
\(986\) −12.0137 + 36.9745i −0.382596 + 1.17751i
\(987\) 0 0
\(988\) −10.4990 14.4507i −0.334019 0.459737i
\(989\) −0.351318 −0.0111713
\(990\) 0 0
\(991\) 8.01942 0.254745 0.127373 0.991855i \(-0.459346\pi\)
0.127373 + 0.991855i \(0.459346\pi\)
\(992\) 2.16264 + 2.97662i 0.0686639 + 0.0945078i
\(993\) 0 0
\(994\) 6.70768 20.6441i 0.212755 0.654791i
\(995\) −19.5129 24.7645i −0.618601 0.785089i
\(996\) 0 0
\(997\) 40.4649 + 13.1479i 1.28154 + 0.416397i 0.869121 0.494599i \(-0.164685\pi\)
0.412416 + 0.910996i \(0.364685\pi\)
\(998\) −9.38968 + 3.05089i −0.297225 + 0.0965743i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.ba.i.289.4 32
3.2 odd 2 330.2.s.c.289.5 yes 32
5.4 even 2 inner 990.2.ba.i.289.7 32
11.4 even 5 inner 990.2.ba.i.829.7 32
15.14 odd 2 330.2.s.c.289.2 yes 32
33.26 odd 10 330.2.s.c.169.2 32
55.4 even 10 inner 990.2.ba.i.829.4 32
165.59 odd 10 330.2.s.c.169.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.s.c.169.2 32 33.26 odd 10
330.2.s.c.169.5 yes 32 165.59 odd 10
330.2.s.c.289.2 yes 32 15.14 odd 2
330.2.s.c.289.5 yes 32 3.2 odd 2
990.2.ba.i.289.4 32 1.1 even 1 trivial
990.2.ba.i.289.7 32 5.4 even 2 inner
990.2.ba.i.829.4 32 55.4 even 10 inner
990.2.ba.i.829.7 32 11.4 even 5 inner