Properties

Label 980.2.x.m.67.4
Level $980$
Weight $2$
Character 980.67
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,2,0,0,8,16,0,-4,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.4
Character \(\chi\) \(=\) 980.67
Dual form 980.2.x.m.863.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24267 - 0.675113i) q^{2} +(0.402205 - 0.107770i) q^{3} +(1.08845 + 1.67788i) q^{4} +(2.22809 - 0.188711i) q^{5} +(-0.572564 - 0.137611i) q^{6} +(-0.219816 - 2.81987i) q^{8} +(-2.44792 + 1.41331i) q^{9} +(-2.89618 - 1.26971i) q^{10} +(0.725638 + 0.418947i) q^{11} +(0.618604 + 0.557549i) q^{12} +(1.16367 - 1.16367i) q^{13} +(0.875811 - 0.316023i) q^{15} +(-1.63057 + 3.65256i) q^{16} +(4.94841 - 1.32592i) q^{17} +(3.99610 - 0.103649i) q^{18} +(-2.91741 - 5.05309i) q^{19} +(2.74179 + 3.53307i) q^{20} +(-0.618890 - 1.01050i) q^{22} +(0.896861 - 3.34713i) q^{23} +(-0.392310 - 1.11048i) q^{24} +(4.92878 - 0.840930i) q^{25} +(-2.23166 + 0.660445i) q^{26} +(-1.71555 + 1.71555i) q^{27} -5.00172i q^{29} +(-1.30169 - 0.198560i) q^{30} +(7.03267 + 4.06031i) q^{31} +(4.49215 - 3.43810i) q^{32} +(0.337005 + 0.0903002i) q^{33} +(-7.04437 - 1.69305i) q^{34} +(-5.03579 - 2.56901i) q^{36} +(-0.190621 + 0.711408i) q^{37} +(0.213956 + 8.24889i) q^{38} +(0.342623 - 0.593441i) q^{39} +(-1.02191 - 6.24145i) q^{40} -0.0958388 q^{41} +(4.87975 + 4.87975i) q^{43} +(0.0868733 + 1.67354i) q^{44} +(-5.18749 + 3.61093i) q^{45} +(-3.37419 + 3.55389i) q^{46} +(5.28468 + 1.41603i) q^{47} +(-0.262186 + 1.64481i) q^{48} +(-6.69255 - 2.28248i) q^{50} +(1.84738 - 1.06658i) q^{51} +(3.21908 + 0.685908i) q^{52} +(3.43436 + 12.8172i) q^{53} +(3.29006 - 0.973671i) q^{54} +(1.69585 + 0.796517i) q^{55} +(-1.71797 - 1.71797i) q^{57} +(-3.37672 + 6.21547i) q^{58} +(4.46933 - 7.74111i) q^{59} +(1.48352 + 1.12553i) q^{60} +(-0.919379 - 1.59241i) q^{61} +(-5.99810 - 9.79346i) q^{62} +(-7.90336 + 1.23971i) q^{64} +(2.37316 - 2.81235i) q^{65} +(-0.357822 - 0.339730i) q^{66} +(0.138137 + 0.515535i) q^{67} +(7.61081 + 6.85965i) q^{68} -1.44289i q^{69} +13.6494i q^{71} +(4.52344 + 6.59216i) q^{72} +(-1.55074 - 5.78744i) q^{73} +(0.717160 - 0.755353i) q^{74} +(1.89175 - 0.869402i) q^{75} +(5.30306 - 10.3951i) q^{76} +(-0.826407 + 0.506141i) q^{78} +(-5.30723 - 9.19239i) q^{79} +(-2.94379 + 8.44595i) q^{80} +(3.73481 - 6.46888i) q^{81} +(0.119096 + 0.0647020i) q^{82} +(4.36830 + 4.36830i) q^{83} +(10.7753 - 3.88809i) q^{85} +(-2.76953 - 9.35829i) q^{86} +(-0.539037 - 2.01171i) q^{87} +(1.02187 - 2.13830i) q^{88} +(2.50474 - 1.44611i) q^{89} +(8.88411 - 0.985047i) q^{90} +(6.59227 - 2.13834i) q^{92} +(3.26615 + 0.875163i) q^{93} +(-5.61112 - 5.32740i) q^{94} +(-7.45382 - 10.7082i) q^{95} +(1.43624 - 1.86694i) q^{96} +(-4.24461 - 4.24461i) q^{97} -2.36841 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 2 q^{2} + 8 q^{5} + 16 q^{6} - 4 q^{8} - 2 q^{10} - 10 q^{12} - 28 q^{16} - 4 q^{17} - 20 q^{18} + 56 q^{20} - 16 q^{22} - 16 q^{25} + 4 q^{26} - 32 q^{30} - 38 q^{32} + 64 q^{33} + 16 q^{36} - 4 q^{37}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24267 0.675113i −0.878699 0.477377i
\(3\) 0.402205 0.107770i 0.232213 0.0622213i −0.140836 0.990033i \(-0.544979\pi\)
0.373049 + 0.927812i \(0.378312\pi\)
\(4\) 1.08845 + 1.67788i 0.544223 + 0.838941i
\(5\) 2.22809 0.188711i 0.996432 0.0843941i
\(6\) −0.572564 0.137611i −0.233748 0.0561793i
\(7\) 0 0
\(8\) −0.219816 2.81987i −0.0777167 0.996975i
\(9\) −2.44792 + 1.41331i −0.815974 + 0.471103i
\(10\) −2.89618 1.26971i −0.915852 0.401517i
\(11\) 0.725638 + 0.418947i 0.218788 + 0.126317i 0.605389 0.795930i \(-0.293018\pi\)
−0.386601 + 0.922247i \(0.626351\pi\)
\(12\) 0.618604 + 0.557549i 0.178575 + 0.160951i
\(13\) 1.16367 1.16367i 0.322743 0.322743i −0.527075 0.849819i \(-0.676711\pi\)
0.849819 + 0.527075i \(0.176711\pi\)
\(14\) 0 0
\(15\) 0.875811 0.316023i 0.226133 0.0815967i
\(16\) −1.63057 + 3.65256i −0.407643 + 0.913141i
\(17\) 4.94841 1.32592i 1.20016 0.321583i 0.397269 0.917702i \(-0.369958\pi\)
0.802896 + 0.596119i \(0.203291\pi\)
\(18\) 3.99610 0.103649i 0.941889 0.0244303i
\(19\) −2.91741 5.05309i −0.669299 1.15926i −0.978101 0.208133i \(-0.933261\pi\)
0.308802 0.951126i \(-0.400072\pi\)
\(20\) 2.74179 + 3.53307i 0.613083 + 0.790019i
\(21\) 0 0
\(22\) −0.618890 1.01050i −0.131948 0.215439i
\(23\) 0.896861 3.34713i 0.187008 0.697925i −0.807183 0.590301i \(-0.799009\pi\)
0.994192 0.107624i \(-0.0343242\pi\)
\(24\) −0.392310 1.11048i −0.0800799 0.226675i
\(25\) 4.92878 0.840930i 0.985755 0.168186i
\(26\) −2.23166 + 0.660445i −0.437664 + 0.129524i
\(27\) −1.71555 + 1.71555i −0.330159 + 0.330159i
\(28\) 0 0
\(29\) 5.00172i 0.928795i −0.885627 0.464398i \(-0.846271\pi\)
0.885627 0.464398i \(-0.153729\pi\)
\(30\) −1.30169 0.198560i −0.237655 0.0362519i
\(31\) 7.03267 + 4.06031i 1.26310 + 0.729254i 0.973674 0.227945i \(-0.0732008\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(32\) 4.49215 3.43810i 0.794108 0.607776i
\(33\) 0.337005 + 0.0903002i 0.0586650 + 0.0157192i
\(34\) −7.04437 1.69305i −1.20810 0.290356i
\(35\) 0 0
\(36\) −5.03579 2.56901i −0.839299 0.428169i
\(37\) −0.190621 + 0.711408i −0.0313379 + 0.116955i −0.979823 0.199867i \(-0.935949\pi\)
0.948485 + 0.316822i \(0.102616\pi\)
\(38\) 0.213956 + 8.24889i 0.0347083 + 1.33815i
\(39\) 0.342623 0.593441i 0.0548637 0.0950266i
\(40\) −1.02191 6.24145i −0.161578 0.986860i
\(41\) −0.0958388 −0.0149675 −0.00748375 0.999972i \(-0.502382\pi\)
−0.00748375 + 0.999972i \(0.502382\pi\)
\(42\) 0 0
\(43\) 4.87975 + 4.87975i 0.744155 + 0.744155i 0.973375 0.229220i \(-0.0736174\pi\)
−0.229220 + 0.973375i \(0.573617\pi\)
\(44\) 0.0868733 + 1.67354i 0.0130966 + 0.252295i
\(45\) −5.18749 + 3.61093i −0.773305 + 0.538286i
\(46\) −3.37419 + 3.55389i −0.497497 + 0.523992i
\(47\) 5.28468 + 1.41603i 0.770850 + 0.206549i 0.622747 0.782423i \(-0.286017\pi\)
0.148103 + 0.988972i \(0.452683\pi\)
\(48\) −0.262186 + 1.64481i −0.0378433 + 0.237407i
\(49\) 0 0
\(50\) −6.69255 2.28248i −0.946470 0.322792i
\(51\) 1.84738 1.06658i 0.258684 0.149352i
\(52\) 3.21908 + 0.685908i 0.446407 + 0.0951183i
\(53\) 3.43436 + 12.8172i 0.471745 + 1.76058i 0.633497 + 0.773745i \(0.281619\pi\)
−0.161752 + 0.986832i \(0.551714\pi\)
\(54\) 3.29006 0.973671i 0.447720 0.132500i
\(55\) 1.69585 + 0.796517i 0.228668 + 0.107402i
\(56\) 0 0
\(57\) −1.71797 1.71797i −0.227550 0.227550i
\(58\) −3.37672 + 6.21547i −0.443385 + 0.816131i
\(59\) 4.46933 7.74111i 0.581858 1.00781i −0.413402 0.910549i \(-0.635659\pi\)
0.995259 0.0972582i \(-0.0310073\pi\)
\(60\) 1.48352 + 1.12553i 0.191522 + 0.145306i
\(61\) −0.919379 1.59241i −0.117714 0.203887i 0.801147 0.598467i \(-0.204223\pi\)
−0.918862 + 0.394580i \(0.870890\pi\)
\(62\) −5.99810 9.79346i −0.761759 1.24377i
\(63\) 0 0
\(64\) −7.90336 + 1.23971i −0.987920 + 0.154963i
\(65\) 2.37316 2.81235i 0.294354 0.348830i
\(66\) −0.357822 0.339730i −0.0440449 0.0418178i
\(67\) 0.138137 + 0.515535i 0.0168761 + 0.0629826i 0.973850 0.227190i \(-0.0729539\pi\)
−0.956974 + 0.290173i \(0.906287\pi\)
\(68\) 7.61081 + 6.85965i 0.922946 + 0.831855i
\(69\) 1.44289i 0.173703i
\(70\) 0 0
\(71\) 13.6494i 1.61989i 0.586505 + 0.809946i \(0.300503\pi\)
−0.586505 + 0.809946i \(0.699497\pi\)
\(72\) 4.52344 + 6.59216i 0.533093 + 0.776894i
\(73\) −1.55074 5.78744i −0.181500 0.677368i −0.995353 0.0962967i \(-0.969300\pi\)
0.813852 0.581072i \(-0.197366\pi\)
\(74\) 0.717160 0.755353i 0.0833681 0.0878080i
\(75\) 1.89175 0.869402i 0.218440 0.100390i
\(76\) 5.30306 10.3951i 0.608303 1.19240i
\(77\) 0 0
\(78\) −0.826407 + 0.506141i −0.0935721 + 0.0573091i
\(79\) −5.30723 9.19239i −0.597110 1.03422i −0.993245 0.116033i \(-0.962982\pi\)
0.396136 0.918192i \(-0.370351\pi\)
\(80\) −2.94379 + 8.44595i −0.329125 + 0.944286i
\(81\) 3.73481 6.46888i 0.414979 0.718764i
\(82\) 0.119096 + 0.0647020i 0.0131519 + 0.00714514i
\(83\) 4.36830 + 4.36830i 0.479483 + 0.479483i 0.904966 0.425483i \(-0.139896\pi\)
−0.425483 + 0.904966i \(0.639896\pi\)
\(84\) 0 0
\(85\) 10.7753 3.88809i 1.16874 0.421723i
\(86\) −2.76953 9.35829i −0.298646 1.00913i
\(87\) −0.539037 2.01171i −0.0577908 0.215678i
\(88\) 1.02187 2.13830i 0.108932 0.227943i
\(89\) 2.50474 1.44611i 0.265502 0.153288i −0.361340 0.932434i \(-0.617681\pi\)
0.626842 + 0.779147i \(0.284347\pi\)
\(90\) 8.88411 0.985047i 0.936467 0.103833i
\(91\) 0 0
\(92\) 6.59227 2.13834i 0.687292 0.222937i
\(93\) 3.26615 + 0.875163i 0.338684 + 0.0907502i
\(94\) −5.61112 5.32740i −0.578743 0.549480i
\(95\) −7.45382 10.7082i −0.764746 1.09864i
\(96\) 1.43624 1.86694i 0.146586 0.190544i
\(97\) −4.24461 4.24461i −0.430975 0.430975i 0.457985 0.888960i \(-0.348571\pi\)
−0.888960 + 0.457985i \(0.848571\pi\)
\(98\) 0 0
\(99\) −2.36841 −0.238034
\(100\) 6.77569 + 7.35460i 0.677569 + 0.735460i
\(101\) 0.859895 1.48938i 0.0855628 0.148199i −0.820068 0.572266i \(-0.806065\pi\)
0.905631 + 0.424067i \(0.139398\pi\)
\(102\) −3.01574 + 0.0782209i −0.298603 + 0.00774502i
\(103\) 4.06549 15.1726i 0.400584 1.49500i −0.411472 0.911422i \(-0.634985\pi\)
0.812057 0.583579i \(-0.198348\pi\)
\(104\) −3.53719 3.02560i −0.346850 0.296685i
\(105\) 0 0
\(106\) 4.38529 18.2461i 0.425937 1.77222i
\(107\) 13.4365 + 3.60029i 1.29895 + 0.348053i 0.841054 0.540951i \(-0.181936\pi\)
0.457899 + 0.889004i \(0.348602\pi\)
\(108\) −4.74579 1.01121i −0.456663 0.0973038i
\(109\) −9.23440 5.33148i −0.884495 0.510664i −0.0123573 0.999924i \(-0.503934\pi\)
−0.872138 + 0.489260i \(0.837267\pi\)
\(110\) −1.56964 2.13469i −0.149659 0.203535i
\(111\) 0.306675i 0.0291083i
\(112\) 0 0
\(113\) −5.62032 + 5.62032i −0.528715 + 0.528715i −0.920189 0.391474i \(-0.871965\pi\)
0.391474 + 0.920189i \(0.371965\pi\)
\(114\) 0.975040 + 3.29468i 0.0913209 + 0.308575i
\(115\) 1.36665 7.62696i 0.127440 0.711217i
\(116\) 8.39229 5.44409i 0.779204 0.505472i
\(117\) −1.20395 + 4.49319i −0.111305 + 0.415395i
\(118\) −10.7800 + 6.60233i −0.992381 + 0.607793i
\(119\) 0 0
\(120\) −1.08366 2.40021i −0.0989242 0.219108i
\(121\) −5.14897 8.91827i −0.468088 0.810752i
\(122\) 0.0674252 + 2.59952i 0.00610439 + 0.235350i
\(123\) −0.0385468 + 0.0103286i −0.00347565 + 0.000931297i
\(124\) 0.841950 + 16.2194i 0.0756093 + 1.45655i
\(125\) 10.8231 2.80378i 0.968045 0.250778i
\(126\) 0 0
\(127\) 4.54633 4.54633i 0.403421 0.403421i −0.476016 0.879437i \(-0.657919\pi\)
0.879437 + 0.476016i \(0.157919\pi\)
\(128\) 10.6582 + 3.79512i 0.942060 + 0.335444i
\(129\) 2.48855 + 1.43677i 0.219105 + 0.126500i
\(130\) −4.84770 + 1.89267i −0.425172 + 0.165998i
\(131\) −11.9545 + 6.90194i −1.04447 + 0.603025i −0.921096 0.389335i \(-0.872705\pi\)
−0.123374 + 0.992360i \(0.539371\pi\)
\(132\) 0.215298 + 0.663741i 0.0187393 + 0.0577713i
\(133\) 0 0
\(134\) 0.176386 0.733896i 0.0152374 0.0633990i
\(135\) −3.49867 + 4.14616i −0.301117 + 0.356844i
\(136\) −4.82667 13.6624i −0.413884 1.17154i
\(137\) −13.8922 + 3.72240i −1.18689 + 0.318026i −0.797656 0.603112i \(-0.793927\pi\)
−0.389235 + 0.921139i \(0.627260\pi\)
\(138\) −0.974111 + 1.79303i −0.0829218 + 0.152633i
\(139\) −1.45615 −0.123509 −0.0617544 0.998091i \(-0.519670\pi\)
−0.0617544 + 0.998091i \(0.519670\pi\)
\(140\) 0 0
\(141\) 2.27813 0.191853
\(142\) 9.21492 16.9617i 0.773299 1.42340i
\(143\) 1.33192 0.356886i 0.111380 0.0298443i
\(144\) −1.17068 11.2457i −0.0975569 0.937142i
\(145\) −0.943879 11.1443i −0.0783849 0.925482i
\(146\) −1.98012 + 8.23879i −0.163876 + 0.681847i
\(147\) 0 0
\(148\) −1.40114 + 0.454489i −0.115173 + 0.0373588i
\(149\) −10.0147 + 5.78197i −0.820433 + 0.473677i −0.850566 0.525869i \(-0.823740\pi\)
0.0301327 + 0.999546i \(0.490407\pi\)
\(150\) −2.93776 0.196766i −0.239867 0.0160659i
\(151\) 4.17078 + 2.40800i 0.339414 + 0.195961i 0.660013 0.751254i \(-0.270551\pi\)
−0.320599 + 0.947215i \(0.603884\pi\)
\(152\) −13.6078 + 9.33746i −1.10374 + 0.757368i
\(153\) −10.2394 + 10.2394i −0.827805 + 0.827805i
\(154\) 0 0
\(155\) 16.4356 + 7.71960i 1.32014 + 0.620053i
\(156\) 1.36865 0.0710467i 0.109580 0.00568829i
\(157\) −4.12149 + 1.10435i −0.328931 + 0.0881368i −0.419505 0.907753i \(-0.637796\pi\)
0.0905743 + 0.995890i \(0.471130\pi\)
\(158\) 0.389220 + 15.0061i 0.0309647 + 1.19382i
\(159\) 2.76263 + 4.78501i 0.219091 + 0.379476i
\(160\) 9.36012 8.50812i 0.739982 0.672626i
\(161\) 0 0
\(162\) −9.00835 + 5.51725i −0.707763 + 0.433476i
\(163\) 2.10452 7.85417i 0.164839 0.615186i −0.833222 0.552938i \(-0.813506\pi\)
0.998061 0.0622476i \(-0.0198268\pi\)
\(164\) −0.104315 0.160806i −0.00814566 0.0125569i
\(165\) 0.767918 + 0.137600i 0.0597824 + 0.0107122i
\(166\) −2.47925 8.37743i −0.192427 0.650215i
\(167\) 5.50649 5.50649i 0.426105 0.426105i −0.461194 0.887299i \(-0.652579\pi\)
0.887299 + 0.461194i \(0.152579\pi\)
\(168\) 0 0
\(169\) 10.2918i 0.791674i
\(170\) −16.0150 2.44293i −1.22829 0.187364i
\(171\) 14.2832 + 8.24639i 1.09226 + 0.630617i
\(172\) −2.87630 + 13.4990i −0.219316 + 1.02929i
\(173\) −3.02430 0.810358i −0.229933 0.0616104i 0.142013 0.989865i \(-0.454643\pi\)
−0.371946 + 0.928254i \(0.621309\pi\)
\(174\) −0.688290 + 2.86380i −0.0521791 + 0.217104i
\(175\) 0 0
\(176\) −2.71344 + 1.96732i −0.204533 + 0.148292i
\(177\) 0.963323 3.59517i 0.0724078 0.270230i
\(178\) −4.08885 + 0.106055i −0.306472 + 0.00794914i
\(179\) −8.05255 + 13.9474i −0.601876 + 1.04248i 0.390661 + 0.920535i \(0.372246\pi\)
−0.992537 + 0.121945i \(0.961087\pi\)
\(180\) −11.7050 4.77369i −0.872440 0.355810i
\(181\) 3.83256 0.284872 0.142436 0.989804i \(-0.454507\pi\)
0.142436 + 0.989804i \(0.454507\pi\)
\(182\) 0 0
\(183\) −0.541393 0.541393i −0.0400209 0.0400209i
\(184\) −9.63562 1.79328i −0.710348 0.132202i
\(185\) −0.290471 + 1.62105i −0.0213558 + 0.119182i
\(186\) −3.46791 3.29256i −0.254279 0.241422i
\(187\) 4.14624 + 1.11098i 0.303203 + 0.0812431i
\(188\) 3.37616 + 10.4083i 0.246232 + 0.759106i
\(189\) 0 0
\(190\) 2.03337 + 18.3389i 0.147516 + 1.33044i
\(191\) 2.42531 1.40025i 0.175489 0.101319i −0.409682 0.912228i \(-0.634360\pi\)
0.585172 + 0.810909i \(0.301027\pi\)
\(192\) −3.04516 + 1.35036i −0.219766 + 0.0974541i
\(193\) −2.23839 8.35378i −0.161123 0.601318i −0.998503 0.0546973i \(-0.982581\pi\)
0.837380 0.546621i \(-0.184086\pi\)
\(194\) 2.40905 + 8.14024i 0.172960 + 0.584435i
\(195\) 0.651407 1.38690i 0.0466482 0.0993178i
\(196\) 0 0
\(197\) −4.90073 4.90073i −0.349162 0.349162i 0.510635 0.859798i \(-0.329410\pi\)
−0.859798 + 0.510635i \(0.829410\pi\)
\(198\) 2.94314 + 1.59894i 0.209160 + 0.113632i
\(199\) −6.19859 + 10.7363i −0.439406 + 0.761074i −0.997644 0.0686071i \(-0.978145\pi\)
0.558237 + 0.829681i \(0.311478\pi\)
\(200\) −3.45474 13.7137i −0.244287 0.969703i
\(201\) 0.111119 + 0.192463i 0.00783771 + 0.0135753i
\(202\) −2.07406 + 1.27028i −0.145931 + 0.0893766i
\(203\) 0 0
\(204\) 3.80037 + 1.93876i 0.266079 + 0.135740i
\(205\) −0.213538 + 0.0180858i −0.0149141 + 0.00126317i
\(206\) −15.2953 + 16.1098i −1.06567 + 1.12243i
\(207\) 2.53508 + 9.46105i 0.176200 + 0.657589i
\(208\) 2.35293 + 6.14782i 0.163146 + 0.426274i
\(209\) 4.88896i 0.338176i
\(210\) 0 0
\(211\) 0.877438i 0.0604053i −0.999544 0.0302027i \(-0.990385\pi\)
0.999544 0.0302027i \(-0.00961527\pi\)
\(212\) −17.7676 + 19.7133i −1.22029 + 1.35391i
\(213\) 1.47101 + 5.48987i 0.100792 + 0.376160i
\(214\) −14.2665 13.5451i −0.975235 0.925924i
\(215\) 11.7934 + 9.95166i 0.804302 + 0.678698i
\(216\) 5.21475 + 4.46054i 0.354819 + 0.303501i
\(217\) 0 0
\(218\) 7.87594 + 12.8595i 0.533426 + 0.870957i
\(219\) −1.24743 2.16061i −0.0842934 0.146000i
\(220\) 0.509376 + 3.71240i 0.0343421 + 0.250290i
\(221\) 4.21537 7.30123i 0.283556 0.491134i
\(222\) 0.207040 0.381095i 0.0138956 0.0255774i
\(223\) 12.6059 + 12.6059i 0.844153 + 0.844153i 0.989396 0.145243i \(-0.0463963\pi\)
−0.145243 + 0.989396i \(0.546396\pi\)
\(224\) 0 0
\(225\) −10.8768 + 9.02441i −0.725118 + 0.601628i
\(226\) 10.7785 3.18984i 0.716978 0.212185i
\(227\) 2.71787 + 10.1432i 0.180392 + 0.673230i 0.995570 + 0.0940208i \(0.0299720\pi\)
−0.815179 + 0.579210i \(0.803361\pi\)
\(228\) 1.01263 4.75246i 0.0670632 0.314739i
\(229\) −23.5981 + 13.6244i −1.55941 + 0.900324i −0.562094 + 0.827073i \(0.690004\pi\)
−0.997314 + 0.0732513i \(0.976662\pi\)
\(230\) −6.84734 + 8.55513i −0.451500 + 0.564109i
\(231\) 0 0
\(232\) −14.1042 + 1.09946i −0.925986 + 0.0721830i
\(233\) 12.6865 + 3.39933i 0.831118 + 0.222697i 0.649201 0.760617i \(-0.275103\pi\)
0.181917 + 0.983314i \(0.441770\pi\)
\(234\) 4.52951 4.77074i 0.296104 0.311873i
\(235\) 12.0420 + 2.15776i 0.785531 + 0.140756i
\(236\) 17.8533 0.926765i 1.16215 0.0603272i
\(237\) −3.12526 3.12526i −0.203007 0.203007i
\(238\) 0 0
\(239\) −10.7078 −0.692631 −0.346315 0.938118i \(-0.612567\pi\)
−0.346315 + 0.938118i \(0.612567\pi\)
\(240\) −0.273781 + 3.71425i −0.0176725 + 0.239754i
\(241\) 6.28701 10.8894i 0.404982 0.701449i −0.589337 0.807887i \(-0.700611\pi\)
0.994319 + 0.106438i \(0.0339445\pi\)
\(242\) 0.377614 + 14.5586i 0.0242739 + 0.935861i
\(243\) 2.68881 10.0348i 0.172487 0.643732i
\(244\) 1.67118 3.27586i 0.106987 0.209716i
\(245\) 0 0
\(246\) 0.0548738 + 0.0131884i 0.00349863 + 0.000840864i
\(247\) −9.27501 2.48523i −0.590155 0.158132i
\(248\) 9.90367 20.7237i 0.628884 1.31596i
\(249\) 2.22772 + 1.28618i 0.141176 + 0.0815080i
\(250\) −15.3423 3.82262i −0.970335 0.241764i
\(251\) 14.8357i 0.936420i −0.883617 0.468210i \(-0.844899\pi\)
0.883617 0.468210i \(-0.155101\pi\)
\(252\) 0 0
\(253\) 2.05307 2.05307i 0.129075 0.129075i
\(254\) −8.71886 + 2.58029i −0.547070 + 0.161902i
\(255\) 3.91485 2.72506i 0.245157 0.170650i
\(256\) −10.6825 11.9116i −0.667654 0.744472i
\(257\) −3.93031 + 14.6681i −0.245166 + 0.914972i 0.728134 + 0.685435i \(0.240388\pi\)
−0.973300 + 0.229537i \(0.926279\pi\)
\(258\) −2.12246 3.46547i −0.132139 0.215751i
\(259\) 0 0
\(260\) 7.30185 + 0.920788i 0.452842 + 0.0571049i
\(261\) 7.06897 + 12.2438i 0.437558 + 0.757873i
\(262\) 19.5151 0.506173i 1.20564 0.0312715i
\(263\) −11.3208 + 3.03340i −0.698072 + 0.187048i −0.590367 0.807135i \(-0.701017\pi\)
−0.107705 + 0.994183i \(0.534350\pi\)
\(264\) 0.180556 0.970160i 0.0111124 0.0597092i
\(265\) 10.0708 + 27.9098i 0.618645 + 1.71448i
\(266\) 0 0
\(267\) 0.851570 0.851570i 0.0521153 0.0521153i
\(268\) −0.714651 + 0.792909i −0.0436543 + 0.0484346i
\(269\) −17.9195 10.3458i −1.09257 0.630797i −0.158313 0.987389i \(-0.550605\pi\)
−0.934260 + 0.356592i \(0.883939\pi\)
\(270\) 7.14680 2.79030i 0.434941 0.169812i
\(271\) −18.2735 + 10.5502i −1.11003 + 0.640878i −0.938838 0.344359i \(-0.888096\pi\)
−0.171195 + 0.985237i \(0.554763\pi\)
\(272\) −3.22573 + 20.2364i −0.195588 + 1.22701i
\(273\) 0 0
\(274\) 19.7764 + 4.75309i 1.19474 + 0.287145i
\(275\) 3.92881 + 1.45469i 0.236916 + 0.0877209i
\(276\) 2.42099 1.57050i 0.145727 0.0945331i
\(277\) 3.15920 0.846505i 0.189818 0.0508616i −0.162658 0.986683i \(-0.552007\pi\)
0.352476 + 0.935821i \(0.385340\pi\)
\(278\) 1.80951 + 0.983064i 0.108527 + 0.0589603i
\(279\) −22.9539 −1.37421
\(280\) 0 0
\(281\) 2.60091 0.155157 0.0775787 0.996986i \(-0.475281\pi\)
0.0775787 + 0.996986i \(0.475281\pi\)
\(282\) −2.83095 1.53799i −0.168581 0.0915861i
\(283\) −26.7711 + 7.17330i −1.59138 + 0.426409i −0.942424 0.334419i \(-0.891460\pi\)
−0.648954 + 0.760828i \(0.724793\pi\)
\(284\) −22.9022 + 14.8567i −1.35899 + 0.881582i
\(285\) −4.15199 3.50359i −0.245942 0.207535i
\(286\) −1.89607 0.455703i −0.112117 0.0269463i
\(287\) 0 0
\(288\) −6.13735 + 14.7650i −0.361647 + 0.870036i
\(289\) 8.00623 4.62240i 0.470955 0.271906i
\(290\) −6.35072 + 14.4859i −0.372927 + 0.850639i
\(291\) −2.16465 1.24976i −0.126894 0.0732622i
\(292\) 8.02274 8.90127i 0.469495 0.520907i
\(293\) −11.9223 + 11.9223i −0.696506 + 0.696506i −0.963655 0.267149i \(-0.913918\pi\)
0.267149 + 0.963655i \(0.413918\pi\)
\(294\) 0 0
\(295\) 8.49725 18.0913i 0.494729 1.05332i
\(296\) 2.04798 + 0.381149i 0.119037 + 0.0221538i
\(297\) −1.96360 + 0.526145i −0.113940 + 0.0305300i
\(298\) 16.3484 0.424037i 0.947036 0.0245638i
\(299\) −2.85130 4.93859i −0.164895 0.285606i
\(300\) 3.51782 + 2.22783i 0.203101 + 0.128624i
\(301\) 0 0
\(302\) −3.55722 5.80810i −0.204695 0.334218i
\(303\) 0.185342 0.691707i 0.0106476 0.0397376i
\(304\) 23.2138 2.41657i 1.33140 0.138600i
\(305\) −2.34897 3.37454i −0.134501 0.193226i
\(306\) 19.6369 5.81141i 1.12257 0.332216i
\(307\) −13.0364 + 13.0364i −0.744028 + 0.744028i −0.973350 0.229323i \(-0.926349\pi\)
0.229323 + 0.973350i \(0.426349\pi\)
\(308\) 0 0
\(309\) 6.54063i 0.372083i
\(310\) −15.2124 20.6888i −0.864009 1.17505i
\(311\) −10.1447 5.85707i −0.575255 0.332124i 0.183990 0.982928i \(-0.441099\pi\)
−0.759246 + 0.650804i \(0.774432\pi\)
\(312\) −1.74874 0.835706i −0.0990031 0.0473126i
\(313\) 18.4473 + 4.94295i 1.04270 + 0.279392i 0.739234 0.673449i \(-0.235188\pi\)
0.303471 + 0.952841i \(0.401855\pi\)
\(314\) 5.86721 + 1.41013i 0.331106 + 0.0795783i
\(315\) 0 0
\(316\) 9.64711 18.9103i 0.542693 1.06379i
\(317\) −0.747448 + 2.78952i −0.0419809 + 0.156675i −0.983734 0.179629i \(-0.942510\pi\)
0.941754 + 0.336304i \(0.109177\pi\)
\(318\) −0.202605 7.81126i −0.0113615 0.438034i
\(319\) 2.09546 3.62944i 0.117323 0.203209i
\(320\) −17.3755 + 4.25363i −0.971318 + 0.237785i
\(321\) 5.79221 0.323290
\(322\) 0 0
\(323\) −21.1365 21.1365i −1.17607 1.17607i
\(324\) 14.9191 0.774453i 0.828841 0.0430252i
\(325\) 4.75689 6.71402i 0.263865 0.372427i
\(326\) −7.91767 + 8.33933i −0.438519 + 0.461873i
\(327\) −4.28869 1.14915i −0.237165 0.0635482i
\(328\) 0.0210669 + 0.270253i 0.00116323 + 0.0149222i
\(329\) 0 0
\(330\) −0.861371 0.689423i −0.0474169 0.0379515i
\(331\) −30.1984 + 17.4351i −1.65986 + 0.958318i −0.687075 + 0.726586i \(0.741106\pi\)
−0.972780 + 0.231732i \(0.925561\pi\)
\(332\) −2.57483 + 12.0841i −0.141312 + 0.663203i
\(333\) −0.538813 2.01088i −0.0295268 0.110195i
\(334\) −10.5602 + 3.12523i −0.577831 + 0.171005i
\(335\) 0.405069 + 1.12259i 0.0221313 + 0.0613336i
\(336\) 0 0
\(337\) 15.8847 + 15.8847i 0.865292 + 0.865292i 0.991947 0.126655i \(-0.0404240\pi\)
−0.126655 + 0.991947i \(0.540424\pi\)
\(338\) 6.94810 12.7892i 0.377927 0.695642i
\(339\) −1.65481 + 2.86622i −0.0898771 + 0.155672i
\(340\) 18.2521 + 13.8477i 0.989857 + 0.750996i
\(341\) 3.40211 + 5.89263i 0.184235 + 0.319104i
\(342\) −12.1820 19.8903i −0.658726 1.07554i
\(343\) 0 0
\(344\) 12.6876 14.8329i 0.684071 0.799738i
\(345\) −0.272288 3.21488i −0.0146595 0.173083i
\(346\) 3.21111 + 3.04875i 0.172630 + 0.163902i
\(347\) −6.21524 23.1956i −0.333651 1.24520i −0.905324 0.424722i \(-0.860372\pi\)
0.571673 0.820482i \(-0.306295\pi\)
\(348\) 2.78870 3.09408i 0.149490 0.165860i
\(349\) 20.0084i 1.07102i −0.844528 0.535512i \(-0.820119\pi\)
0.844528 0.535512i \(-0.179881\pi\)
\(350\) 0 0
\(351\) 3.99267i 0.213113i
\(352\) 4.70006 0.612842i 0.250514 0.0326646i
\(353\) 6.06381 + 22.6305i 0.322744 + 1.20450i 0.916560 + 0.399897i \(0.130954\pi\)
−0.593816 + 0.804601i \(0.702379\pi\)
\(354\) −3.62424 + 3.81725i −0.192626 + 0.202885i
\(355\) 2.57580 + 30.4122i 0.136709 + 1.61411i
\(356\) 5.15268 + 2.62865i 0.273092 + 0.139318i
\(357\) 0 0
\(358\) 19.4227 11.8956i 1.02652 0.628704i
\(359\) 13.4523 + 23.3000i 0.709984 + 1.22973i 0.964862 + 0.262756i \(0.0846313\pi\)
−0.254878 + 0.966973i \(0.582035\pi\)
\(360\) 11.3227 + 13.8343i 0.596756 + 0.729132i
\(361\) −7.52251 + 13.0294i −0.395922 + 0.685756i
\(362\) −4.76260 2.58741i −0.250317 0.135991i
\(363\) −3.03206 3.03206i −0.159142 0.159142i
\(364\) 0 0
\(365\) −4.54734 12.6023i −0.238019 0.659634i
\(366\) 0.307270 + 1.03827i 0.0160613 + 0.0542714i
\(367\) −7.09214 26.4682i −0.370207 1.38163i −0.860223 0.509917i \(-0.829676\pi\)
0.490017 0.871713i \(-0.336991\pi\)
\(368\) 10.7632 + 8.73358i 0.561071 + 0.455270i
\(369\) 0.234606 0.135450i 0.0122131 0.00705123i
\(370\) 1.45535 1.81833i 0.0756602 0.0945305i
\(371\) 0 0
\(372\) 2.08661 + 6.43278i 0.108186 + 0.333524i
\(373\) −21.1806 5.67531i −1.09669 0.293857i −0.335272 0.942121i \(-0.608828\pi\)
−0.761415 + 0.648265i \(0.775495\pi\)
\(374\) −4.40236 4.17976i −0.227641 0.216130i
\(375\) 4.05092 2.29410i 0.209189 0.118467i
\(376\) 2.83135 15.2134i 0.146016 0.784570i
\(377\) −5.82033 5.82033i −0.299762 0.299762i
\(378\) 0 0
\(379\) −20.4602 −1.05097 −0.525484 0.850803i \(-0.676116\pi\)
−0.525484 + 0.850803i \(0.676116\pi\)
\(380\) 9.85403 24.1619i 0.505501 1.23948i
\(381\) 1.33859 2.31851i 0.0685783 0.118781i
\(382\) −3.95918 + 0.102691i −0.202569 + 0.00525415i
\(383\) 1.88076 7.01910i 0.0961024 0.358659i −0.901082 0.433649i \(-0.857226\pi\)
0.997184 + 0.0749899i \(0.0238925\pi\)
\(384\) 4.69577 + 0.377776i 0.239630 + 0.0192783i
\(385\) 0 0
\(386\) −2.85817 + 11.8921i −0.145477 + 0.605294i
\(387\) −18.8418 5.04866i −0.957785 0.256638i
\(388\) 2.50193 11.7420i 0.127016 0.596109i
\(389\) 4.81003 + 2.77707i 0.243878 + 0.140803i 0.616958 0.786996i \(-0.288365\pi\)
−0.373080 + 0.927799i \(0.621698\pi\)
\(390\) −1.74579 + 1.28368i −0.0884018 + 0.0650016i
\(391\) 17.7521i 0.897764i
\(392\) 0 0
\(393\) −4.06433 + 4.06433i −0.205018 + 0.205018i
\(394\) 2.78143 + 9.39852i 0.140126 + 0.473491i
\(395\) −13.5597 19.4799i −0.682262 0.980142i
\(396\) −2.57788 3.97391i −0.129543 0.199696i
\(397\) 7.78865 29.0677i 0.390901 1.45886i −0.437749 0.899097i \(-0.644224\pi\)
0.828650 0.559766i \(-0.189109\pi\)
\(398\) 14.9510 9.15687i 0.749425 0.458992i
\(399\) 0 0
\(400\) −4.96518 + 19.3739i −0.248259 + 0.968694i
\(401\) 2.31962 + 4.01770i 0.115836 + 0.200634i 0.918114 0.396317i \(-0.129712\pi\)
−0.802277 + 0.596951i \(0.796379\pi\)
\(402\) −0.00814920 0.314185i −0.000406445 0.0156701i
\(403\) 12.9085 3.45883i 0.643020 0.172297i
\(404\) 3.43496 0.178309i 0.170895 0.00887118i
\(405\) 7.10074 15.1180i 0.352839 0.751222i
\(406\) 0 0
\(407\) −0.436364 + 0.436364i −0.0216298 + 0.0216298i
\(408\) −3.41371 4.97491i −0.169004 0.246295i
\(409\) 30.0868 + 17.3706i 1.48770 + 0.858922i 0.999901 0.0140366i \(-0.00446813\pi\)
0.487795 + 0.872958i \(0.337801\pi\)
\(410\) 0.277566 + 0.121687i 0.0137080 + 0.00600970i
\(411\) −5.18634 + 2.99434i −0.255823 + 0.147700i
\(412\) 29.8829 9.69314i 1.47222 0.477547i
\(413\) 0 0
\(414\) 3.23702 13.4684i 0.159091 0.661936i
\(415\) 10.5573 + 8.90861i 0.518238 + 0.437307i
\(416\) 1.22657 9.22818i 0.0601374 0.452449i
\(417\) −0.585669 + 0.156930i −0.0286803 + 0.00768487i
\(418\) −3.30060 + 6.07535i −0.161437 + 0.297155i
\(419\) 28.1311 1.37429 0.687147 0.726518i \(-0.258863\pi\)
0.687147 + 0.726518i \(0.258863\pi\)
\(420\) 0 0
\(421\) 3.94616 0.192324 0.0961621 0.995366i \(-0.469343\pi\)
0.0961621 + 0.995366i \(0.469343\pi\)
\(422\) −0.592370 + 1.09036i −0.0288361 + 0.0530781i
\(423\) −14.9378 + 4.00256i −0.726299 + 0.194611i
\(424\) 35.3879 12.5019i 1.71859 0.607145i
\(425\) 23.2746 10.6964i 1.12898 0.518853i
\(426\) 1.87831 7.81518i 0.0910044 0.378647i
\(427\) 0 0
\(428\) 8.58400 + 26.4635i 0.414923 + 1.27916i
\(429\) 0.497241 0.287082i 0.0240070 0.0138605i
\(430\) −7.93677 20.3285i −0.382745 0.980326i
\(431\) 12.1350 + 7.00616i 0.584523 + 0.337475i 0.762929 0.646482i \(-0.223761\pi\)
−0.178406 + 0.983957i \(0.557094\pi\)
\(432\) −3.46884 9.06351i −0.166894 0.436069i
\(433\) 2.21951 2.21951i 0.106663 0.106663i −0.651761 0.758424i \(-0.725970\pi\)
0.758424 + 0.651761i \(0.225970\pi\)
\(434\) 0 0
\(435\) −1.58066 4.38056i −0.0757866 0.210032i
\(436\) −1.10554 21.2973i −0.0529458 1.01995i
\(437\) −19.5299 + 5.23301i −0.934240 + 0.250329i
\(438\) 0.0914837 + 3.52707i 0.00437126 + 0.168530i
\(439\) −12.5163 21.6788i −0.597369 1.03467i −0.993208 0.116354i \(-0.962879\pi\)
0.395839 0.918320i \(-0.370454\pi\)
\(440\) 1.87330 4.95716i 0.0893061 0.236323i
\(441\) 0 0
\(442\) −10.1675 + 6.22715i −0.483617 + 0.296196i
\(443\) −1.13949 + 4.25262i −0.0541386 + 0.202048i −0.987698 0.156376i \(-0.950019\pi\)
0.933559 + 0.358424i \(0.116686\pi\)
\(444\) −0.514564 + 0.333799i −0.0244201 + 0.0158414i
\(445\) 5.30789 3.69474i 0.251618 0.175148i
\(446\) −7.15454 24.1753i −0.338777 1.14474i
\(447\) −3.40482 + 3.40482i −0.161042 + 0.161042i
\(448\) 0 0
\(449\) 24.2255i 1.14327i 0.820507 + 0.571636i \(0.193691\pi\)
−0.820507 + 0.571636i \(0.806309\pi\)
\(450\) 19.6087 3.87130i 0.924363 0.182495i
\(451\) −0.0695443 0.0401514i −0.00327471 0.00189066i
\(452\) −15.5476 3.31282i −0.731299 0.155822i
\(453\) 1.93702 + 0.519023i 0.0910091 + 0.0243858i
\(454\) 3.47042 14.4395i 0.162875 0.677681i
\(455\) 0 0
\(456\) −4.46681 + 5.22209i −0.209178 + 0.244547i
\(457\) −2.42378 + 9.04568i −0.113380 + 0.423139i −0.999161 0.0409647i \(-0.986957\pi\)
0.885781 + 0.464104i \(0.153624\pi\)
\(458\) 38.5226 0.999182i 1.80004 0.0466887i
\(459\) −6.21457 + 10.7640i −0.290071 + 0.502418i
\(460\) 14.2846 6.00845i 0.666025 0.280146i
\(461\) −12.3582 −0.575580 −0.287790 0.957693i \(-0.592921\pi\)
−0.287790 + 0.957693i \(0.592921\pi\)
\(462\) 0 0
\(463\) −29.6788 29.6788i −1.37929 1.37929i −0.845818 0.533471i \(-0.820887\pi\)
−0.533471 0.845818i \(-0.679113\pi\)
\(464\) 18.2691 + 8.15567i 0.848121 + 0.378617i
\(465\) 7.44244 + 1.33358i 0.345135 + 0.0618434i
\(466\) −13.4701 12.7890i −0.623992 0.592440i
\(467\) 34.9600 + 9.36749i 1.61775 + 0.433476i 0.950341 0.311212i \(-0.100735\pi\)
0.667413 + 0.744687i \(0.267401\pi\)
\(468\) −8.84947 + 2.87051i −0.409067 + 0.132689i
\(469\) 0 0
\(470\) −13.5074 10.8111i −0.623051 0.498677i
\(471\) −1.53867 + 0.888349i −0.0708980 + 0.0409330i
\(472\) −22.8114 10.9013i −1.04998 0.501774i
\(473\) 1.49657 + 5.58529i 0.0688125 + 0.256812i
\(474\) 1.77375 + 5.99356i 0.0814713 + 0.275293i
\(475\) −18.6285 22.4522i −0.854736 1.03018i
\(476\) 0 0
\(477\) −26.5217 26.5217i −1.21434 1.21434i
\(478\) 13.3062 + 7.22898i 0.608614 + 0.330646i
\(479\) −15.9325 + 27.5959i −0.727974 + 1.26089i 0.229764 + 0.973246i \(0.426205\pi\)
−0.957738 + 0.287642i \(0.907129\pi\)
\(480\) 2.84776 4.43075i 0.129982 0.202235i
\(481\) 0.606023 + 1.04966i 0.0276323 + 0.0478605i
\(482\) −15.1643 + 9.28749i −0.690713 + 0.423034i
\(483\) 0 0
\(484\) 9.35944 18.3464i 0.425429 0.833928i
\(485\) −10.2584 8.65638i −0.465810 0.393066i
\(486\) −10.1159 + 10.6547i −0.458867 + 0.483305i
\(487\) 2.58469 + 9.64618i 0.117123 + 0.437110i 0.999437 0.0335518i \(-0.0106819\pi\)
−0.882314 + 0.470662i \(0.844015\pi\)
\(488\) −4.28830 + 2.94257i −0.194122 + 0.133204i
\(489\) 3.38579i 0.153111i
\(490\) 0 0
\(491\) 16.3501i 0.737871i 0.929455 + 0.368936i \(0.120278\pi\)
−0.929455 + 0.368936i \(0.879722\pi\)
\(492\) −0.0592862 0.0534349i −0.00267283 0.00240903i
\(493\) −6.63188 24.7505i −0.298685 1.11471i
\(494\) 9.84794 + 9.35000i 0.443080 + 0.420676i
\(495\) −5.27703 + 0.446944i −0.237185 + 0.0200887i
\(496\) −26.2978 + 19.0666i −1.18081 + 0.856117i
\(497\) 0 0
\(498\) −1.90000 3.10225i −0.0851412 0.139015i
\(499\) 4.74809 + 8.22393i 0.212554 + 0.368154i 0.952513 0.304498i \(-0.0984886\pi\)
−0.739959 + 0.672652i \(0.765155\pi\)
\(500\) 16.4847 + 15.1081i 0.737220 + 0.675653i
\(501\) 1.62130 2.80817i 0.0724343 0.125460i
\(502\) −10.0158 + 18.4358i −0.447025 + 0.822831i
\(503\) −9.76866 9.76866i −0.435563 0.435563i 0.454953 0.890516i \(-0.349656\pi\)
−0.890516 + 0.454953i \(0.849656\pi\)
\(504\) 0 0
\(505\) 1.63486 3.48075i 0.0727504 0.154891i
\(506\) −3.93733 + 1.16523i −0.175036 + 0.0518007i
\(507\) 1.10915 + 4.13939i 0.0492589 + 0.183837i
\(508\) 12.5766 + 2.67977i 0.557998 + 0.118896i
\(509\) 17.0075 9.81931i 0.753846 0.435233i −0.0732360 0.997315i \(-0.523333\pi\)
0.827082 + 0.562082i \(0.189999\pi\)
\(510\) −6.70458 + 0.743386i −0.296884 + 0.0329177i
\(511\) 0 0
\(512\) 5.23310 + 22.0140i 0.231273 + 0.972889i
\(513\) 13.6738 + 3.66389i 0.603714 + 0.161765i
\(514\) 14.7867 15.5742i 0.652214 0.686948i
\(515\) 6.19503 34.5731i 0.272986 1.52347i
\(516\) 0.297929 + 5.73933i 0.0131156 + 0.252660i
\(517\) 3.24152 + 3.24152i 0.142562 + 0.142562i
\(518\) 0 0
\(519\) −1.30372 −0.0572269
\(520\) −8.45214 6.07381i −0.370651 0.266354i
\(521\) −21.2862 + 36.8688i −0.932565 + 1.61525i −0.153645 + 0.988126i \(0.549101\pi\)
−0.778920 + 0.627124i \(0.784232\pi\)
\(522\) −0.518422 19.9873i −0.0226907 0.874822i
\(523\) 0.529969 1.97787i 0.0231739 0.0864862i −0.953370 0.301803i \(-0.902412\pi\)
0.976544 + 0.215316i \(0.0690783\pi\)
\(524\) −24.5925 12.5459i −1.07433 0.548069i
\(525\) 0 0
\(526\) 16.1159 + 3.87332i 0.702687 + 0.168885i
\(527\) 40.1842 + 10.7673i 1.75045 + 0.469032i
\(528\) −0.879339 + 1.08369i −0.0382683 + 0.0471616i
\(529\) 9.51967 + 5.49618i 0.413899 + 0.238964i
\(530\) 6.32758 41.4815i 0.274853 1.80184i
\(531\) 25.2662i 1.09646i
\(532\) 0 0
\(533\) −0.111524 + 0.111524i −0.00483066 + 0.00483066i
\(534\) −1.63312 + 0.483313i −0.0706722 + 0.0209150i
\(535\) 30.6171 + 5.48617i 1.32369 + 0.237188i
\(536\) 1.42338 0.502852i 0.0614805 0.0217199i
\(537\) −1.73565 + 6.47754i −0.0748989 + 0.279527i
\(538\) 15.2834 + 24.9542i 0.658915 + 1.07585i
\(539\) 0 0
\(540\) −10.7649 1.35749i −0.463246 0.0584169i
\(541\) −2.22119 3.84722i −0.0954965 0.165405i 0.814319 0.580417i \(-0.197111\pi\)
−0.909816 + 0.415012i \(0.863777\pi\)
\(542\) 29.8304 0.773727i 1.28133 0.0332344i
\(543\) 1.54147 0.413036i 0.0661509 0.0177251i
\(544\) 17.6704 22.9694i 0.757610 0.984804i
\(545\) −21.5812 10.1364i −0.924437 0.434196i
\(546\) 0 0
\(547\) 13.7530 13.7530i 0.588037 0.588037i −0.349062 0.937099i \(-0.613500\pi\)
0.937099 + 0.349062i \(0.113500\pi\)
\(548\) −21.3667 19.2578i −0.912738 0.822654i
\(549\) 4.50114 + 2.59873i 0.192104 + 0.110911i
\(550\) −3.90013 4.46008i −0.166302 0.190179i
\(551\) −25.2741 + 14.5920i −1.07671 + 0.621642i
\(552\) −4.06875 + 0.317170i −0.173178 + 0.0134996i
\(553\) 0 0
\(554\) −4.49732 1.08089i −0.191073 0.0459227i
\(555\) 0.0578729 + 0.683299i 0.00245657 + 0.0290044i
\(556\) −1.58494 2.44324i −0.0672163 0.103617i
\(557\) 12.0723 3.23476i 0.511519 0.137061i 0.00617797 0.999981i \(-0.498033\pi\)
0.505341 + 0.862920i \(0.331367\pi\)
\(558\) 28.5241 + 15.4965i 1.20752 + 0.656018i
\(559\) 11.3568 0.480342
\(560\) 0 0
\(561\) 1.78737 0.0754628
\(562\) −3.23207 1.75591i −0.136337 0.0740685i
\(563\) 7.45322 1.99709i 0.314116 0.0841671i −0.0983168 0.995155i \(-0.531346\pi\)
0.412433 + 0.910988i \(0.364679\pi\)
\(564\) 2.47962 + 3.82243i 0.104411 + 0.160953i
\(565\) −11.4620 + 13.5832i −0.482208 + 0.571449i
\(566\) 38.1104 + 9.15950i 1.60190 + 0.385003i
\(567\) 0 0
\(568\) 38.4897 3.00037i 1.61499 0.125893i
\(569\) 22.8689 13.2033i 0.958712 0.553513i 0.0629358 0.998018i \(-0.479954\pi\)
0.895776 + 0.444505i \(0.146620\pi\)
\(570\) 2.79422 + 7.15685i 0.117037 + 0.299768i
\(571\) 4.41042 + 2.54636i 0.184570 + 0.106562i 0.589438 0.807813i \(-0.299349\pi\)
−0.404868 + 0.914375i \(0.632682\pi\)
\(572\) 2.04853 + 1.84635i 0.0856534 + 0.0771997i
\(573\) 0.824564 0.824564i 0.0344467 0.0344467i
\(574\) 0 0
\(575\) 1.60572 17.2515i 0.0669633 0.719435i
\(576\) 17.5947 14.2046i 0.733114 0.591858i
\(577\) 19.0781 5.11195i 0.794230 0.212813i 0.161181 0.986925i \(-0.448470\pi\)
0.633049 + 0.774111i \(0.281803\pi\)
\(578\) −13.0697 + 0.338997i −0.543629 + 0.0141004i
\(579\) −1.80058 3.11870i −0.0748295 0.129609i
\(580\) 17.6714 13.7137i 0.733766 0.569428i
\(581\) 0 0
\(582\) 1.84621 + 3.01442i 0.0765278 + 0.124952i
\(583\) −2.87763 + 10.7395i −0.119179 + 0.444783i
\(584\) −15.9790 + 5.64506i −0.661214 + 0.233594i
\(585\) −1.83459 + 10.2384i −0.0758508 + 0.423307i
\(586\) 22.8643 6.76654i 0.944515 0.279523i
\(587\) 8.18830 8.18830i 0.337967 0.337967i −0.517635 0.855602i \(-0.673187\pi\)
0.855602 + 0.517635i \(0.173187\pi\)
\(588\) 0 0
\(589\) 47.3823i 1.95235i
\(590\) −22.7729 + 16.7449i −0.937547 + 0.689376i
\(591\) −2.49925 1.44294i −0.102805 0.0593547i
\(592\) −2.28764 1.85626i −0.0940215 0.0762918i
\(593\) −6.09096 1.63207i −0.250126 0.0670210i 0.131578 0.991306i \(-0.457996\pi\)
−0.381703 + 0.924285i \(0.624662\pi\)
\(594\) 2.79531 + 0.671828i 0.114693 + 0.0275654i
\(595\) 0 0
\(596\) −20.6019 10.5101i −0.843886 0.430509i
\(597\) −1.33605 + 4.98620i −0.0546808 + 0.204072i
\(598\) 0.209108 + 8.06198i 0.00855106 + 0.329679i
\(599\) 12.5631 21.7600i 0.513315 0.889088i −0.486566 0.873644i \(-0.661751\pi\)
0.999881 0.0154439i \(-0.00491615\pi\)
\(600\) −2.86744 5.14338i −0.117063 0.209978i
\(601\) 23.9702 0.977766 0.488883 0.872349i \(-0.337405\pi\)
0.488883 + 0.872349i \(0.337405\pi\)
\(602\) 0 0
\(603\) −1.06676 1.06676i −0.0434417 0.0434417i
\(604\) 0.499326 + 9.61906i 0.0203173 + 0.391394i
\(605\) −13.1553 18.8991i −0.534841 0.768356i
\(606\) −0.697300 + 0.734435i −0.0283259 + 0.0298344i
\(607\) −1.98316 0.531386i −0.0804940 0.0215683i 0.218347 0.975871i \(-0.429933\pi\)
−0.298841 + 0.954303i \(0.596600\pi\)
\(608\) −30.4785 12.6689i −1.23607 0.513793i
\(609\) 0 0
\(610\) 0.640788 + 5.77925i 0.0259447 + 0.233995i
\(611\) 7.79739 4.50183i 0.315449 0.182124i
\(612\) −28.3255 6.03546i −1.14499 0.243969i
\(613\) 9.48807 + 35.4100i 0.383220 + 1.43020i 0.840954 + 0.541106i \(0.181994\pi\)
−0.457735 + 0.889089i \(0.651339\pi\)
\(614\) 25.0010 7.39888i 1.00896 0.298595i
\(615\) −0.0839366 + 0.0302872i −0.00338465 + 0.00122130i
\(616\) 0 0
\(617\) 7.99905 + 7.99905i 0.322029 + 0.322029i 0.849545 0.527516i \(-0.176876\pi\)
−0.527516 + 0.849545i \(0.676876\pi\)
\(618\) −4.41566 + 8.12783i −0.177624 + 0.326949i
\(619\) −13.8212 + 23.9391i −0.555523 + 0.962194i 0.442340 + 0.896847i \(0.354148\pi\)
−0.997863 + 0.0653461i \(0.979185\pi\)
\(620\) 4.93672 + 35.9794i 0.198264 + 1.44497i
\(621\) 4.20357 + 7.28080i 0.168683 + 0.292168i
\(622\) 8.65236 + 14.1272i 0.346928 + 0.566450i
\(623\) 0 0
\(624\) 1.60891 + 2.21910i 0.0644079 + 0.0888352i
\(625\) 23.5857 8.28952i 0.943427 0.331581i
\(626\) −19.5868 18.5965i −0.782848 0.743264i
\(627\) −0.526885 1.96636i −0.0210417 0.0785289i
\(628\) −6.33899 5.71335i −0.252953 0.227988i
\(629\) 3.77309i 0.150443i
\(630\) 0 0
\(631\) 11.5488i 0.459750i 0.973220 + 0.229875i \(0.0738318\pi\)
−0.973220 + 0.229875i \(0.926168\pi\)
\(632\) −24.7547 + 16.9863i −0.984691 + 0.675680i
\(633\) −0.0945618 0.352910i −0.00375850 0.0140269i
\(634\) 2.81207 2.96183i 0.111681 0.117629i
\(635\) 9.27169 10.9876i 0.367936 0.436029i
\(636\) −5.02171 + 9.84358i −0.199124 + 0.390324i
\(637\) 0 0
\(638\) −5.05423 + 3.09551i −0.200099 + 0.122553i
\(639\) −19.2909 33.4128i −0.763135 1.32179i
\(640\) 24.4636 + 6.44455i 0.967009 + 0.254743i
\(641\) 8.55730 14.8217i 0.337993 0.585421i −0.646062 0.763285i \(-0.723585\pi\)
0.984055 + 0.177864i \(0.0569186\pi\)
\(642\) −7.19780 3.91040i −0.284074 0.154331i
\(643\) −18.4696 18.4696i −0.728370 0.728370i 0.241925 0.970295i \(-0.422221\pi\)
−0.970295 + 0.241925i \(0.922221\pi\)
\(644\) 0 0
\(645\) 5.81585 + 2.73163i 0.228999 + 0.107558i
\(646\) 11.9961 + 40.5352i 0.471981 + 1.59484i
\(647\) −8.66156 32.3254i −0.340521 1.27084i −0.897758 0.440489i \(-0.854805\pi\)
0.557237 0.830353i \(-0.311861\pi\)
\(648\) −19.0624 9.10972i −0.748841 0.357864i
\(649\) 6.48624 3.74483i 0.254607 0.146997i
\(650\) −10.4440 + 5.13185i −0.409646 + 0.201288i
\(651\) 0 0
\(652\) 15.4690 5.01770i 0.605813 0.196508i
\(653\) −10.2716 2.75226i −0.401958 0.107704i 0.0521757 0.998638i \(-0.483384\pi\)
−0.454133 + 0.890934i \(0.650051\pi\)
\(654\) 4.55361 + 4.32337i 0.178060 + 0.169057i
\(655\) −25.3332 + 17.6341i −0.989852 + 0.689021i
\(656\) 0.156272 0.350057i 0.00610141 0.0136674i
\(657\) 11.9755 + 11.9755i 0.467210 + 0.467210i
\(658\) 0 0
\(659\) −21.6586 −0.843698 −0.421849 0.906666i \(-0.638619\pi\)
−0.421849 + 0.906666i \(0.638619\pi\)
\(660\) 0.604960 + 1.43825i 0.0235480 + 0.0559837i
\(661\) 11.2670 19.5150i 0.438236 0.759046i −0.559318 0.828953i \(-0.688937\pi\)
0.997554 + 0.0699068i \(0.0222702\pi\)
\(662\) 49.2972 1.27865i 1.91599 0.0496961i
\(663\) 0.908584 3.39088i 0.0352865 0.131691i
\(664\) 11.3578 13.2783i 0.440769 0.515296i
\(665\) 0 0
\(666\) −0.688004 + 2.86261i −0.0266596 + 0.110924i
\(667\) −16.7414 4.48584i −0.648229 0.173693i
\(668\) 15.2328 + 3.24573i 0.589373 + 0.125581i
\(669\) 6.42869 + 3.71161i 0.248548 + 0.143499i
\(670\) 0.254509 1.66847i 0.00983253 0.0644587i
\(671\) 1.54069i 0.0594775i
\(672\) 0 0
\(673\) −12.3425 + 12.3425i −0.475769 + 0.475769i −0.903776 0.428007i \(-0.859216\pi\)
0.428007 + 0.903776i \(0.359216\pi\)
\(674\) −9.01541 30.4633i −0.347261 1.17340i
\(675\) −7.01292 + 9.89825i −0.269928 + 0.380984i
\(676\) −17.2683 + 11.2020i −0.664167 + 0.430847i
\(677\) −3.54145 + 13.2169i −0.136109 + 0.507966i 0.863882 + 0.503695i \(0.168026\pi\)
−0.999991 + 0.00427157i \(0.998640\pi\)
\(678\) 3.99141 2.44457i 0.153289 0.0938833i
\(679\) 0 0
\(680\) −13.3325 29.5303i −0.511278 1.13243i
\(681\) 2.18628 + 3.78675i 0.0837785 + 0.145109i
\(682\) −0.249503 9.61940i −0.00955398 0.368346i
\(683\) −2.13814 + 0.572913i −0.0818137 + 0.0219219i −0.299494 0.954098i \(-0.596818\pi\)
0.217680 + 0.976020i \(0.430151\pi\)
\(684\) 1.70998 + 32.9412i 0.0653826 + 1.25954i
\(685\) −30.2506 + 10.9155i −1.15582 + 0.417059i
\(686\) 0 0
\(687\) −8.02297 + 8.02297i −0.306095 + 0.306095i
\(688\) −25.7804 + 9.86681i −0.982868 + 0.376169i
\(689\) 18.9114 + 10.9185i 0.720467 + 0.415962i
\(690\) −1.83204 + 4.17885i −0.0697447 + 0.159086i
\(691\) −19.0959 + 11.0250i −0.726442 + 0.419411i −0.817119 0.576469i \(-0.804430\pi\)
0.0906771 + 0.995880i \(0.471097\pi\)
\(692\) −1.93210 5.95644i −0.0734473 0.226430i
\(693\) 0 0
\(694\) −7.93616 + 33.0204i −0.301252 + 1.25344i
\(695\) −3.24443 + 0.274791i −0.123068 + 0.0104234i
\(696\) −5.55428 + 1.96222i −0.210535 + 0.0743778i
\(697\) −0.474249 + 0.127075i −0.0179635 + 0.00481330i
\(698\) −13.5079 + 24.8638i −0.511282 + 0.941107i
\(699\) 5.46890 0.206853
\(700\) 0 0
\(701\) 3.86536 0.145993 0.0729964 0.997332i \(-0.476744\pi\)
0.0729964 + 0.997332i \(0.476744\pi\)
\(702\) 2.69550 4.96156i 0.101735 0.187262i
\(703\) 4.15093 1.11224i 0.156555 0.0419489i
\(704\) −6.25435 2.41151i −0.235720 0.0908873i
\(705\) 5.07587 0.429908i 0.191168 0.0161913i
\(706\) 7.74281 32.2159i 0.291404 1.21246i
\(707\) 0 0
\(708\) 7.08080 2.29681i 0.266113 0.0863192i
\(709\) −27.5158 + 15.8862i −1.03338 + 0.596620i −0.917950 0.396696i \(-0.870157\pi\)
−0.115427 + 0.993316i \(0.536823\pi\)
\(710\) 17.3308 39.5312i 0.650414 1.48358i
\(711\) 25.9834 + 15.0015i 0.974452 + 0.562600i
\(712\) −4.62844 6.74517i −0.173458 0.252786i
\(713\) 19.8977 19.8977i 0.745175 0.745175i
\(714\) 0 0
\(715\) 2.90028 1.04652i 0.108464 0.0391377i
\(716\) −32.1669 + 1.66978i −1.20213 + 0.0624027i
\(717\) −4.30673 + 1.15398i −0.160838 + 0.0430963i
\(718\) −0.986561 38.0360i −0.0368181 1.41949i
\(719\) −5.63438 9.75903i −0.210127 0.363950i 0.741627 0.670812i \(-0.234054\pi\)
−0.951754 + 0.306862i \(0.900721\pi\)
\(720\) −4.73058 24.8355i −0.176298 0.925565i
\(721\) 0 0
\(722\) 18.1443 11.1126i 0.675260 0.413569i
\(723\) 1.35511 5.05733i 0.0503970 0.188084i
\(724\) 4.17153 + 6.43058i 0.155034 + 0.238991i
\(725\) −4.20610 24.6523i −0.156210 0.915565i
\(726\) 1.72086 + 5.81483i 0.0638672 + 0.215809i
\(727\) −21.9895 + 21.9895i −0.815544 + 0.815544i −0.985459 0.169915i \(-0.945651\pi\)
0.169915 + 0.985459i \(0.445651\pi\)
\(728\) 0 0
\(729\) 18.0830i 0.669742i
\(730\) −2.85714 + 18.7304i −0.105747 + 0.693244i
\(731\) 30.6172 + 17.6768i 1.13242 + 0.653801i
\(732\) 0.319117 1.49767i 0.0117949 0.0553555i
\(733\) −39.0339 10.4591i −1.44175 0.386316i −0.548604 0.836082i \(-0.684841\pi\)
−0.893146 + 0.449766i \(0.851507\pi\)
\(734\) −9.05587 + 37.6792i −0.334258 + 1.39077i
\(735\) 0 0
\(736\) −7.47894 18.1193i −0.275677 0.667887i
\(737\) −0.115744 + 0.431964i −0.00426350 + 0.0159116i
\(738\) −0.382981 + 0.00993359i −0.0140977 + 0.000365660i
\(739\) −15.6220 + 27.0581i −0.574665 + 0.995349i 0.421413 + 0.906869i \(0.361534\pi\)
−0.996078 + 0.0884798i \(0.971799\pi\)
\(740\) −3.03610 + 1.27705i −0.111609 + 0.0469454i
\(741\) −3.99829 −0.146881
\(742\) 0 0
\(743\) 13.4261 + 13.4261i 0.492557 + 0.492557i 0.909111 0.416554i \(-0.136762\pi\)
−0.416554 + 0.909111i \(0.636762\pi\)
\(744\) 1.74989 9.40251i 0.0641542 0.344713i
\(745\) −21.2225 + 14.7726i −0.777531 + 0.541227i
\(746\) 22.4889 + 21.3518i 0.823378 + 0.781745i
\(747\) −16.8670 4.51950i −0.617131 0.165360i
\(748\) 2.64886 + 8.16615i 0.0968520 + 0.298584i
\(749\) 0 0
\(750\) −6.58273 + 0.115975i −0.240367 + 0.00423480i
\(751\) −29.3693 + 16.9564i −1.07170 + 0.618748i −0.928646 0.370967i \(-0.879026\pi\)
−0.143056 + 0.989715i \(0.545693\pi\)
\(752\) −13.7892 + 16.9937i −0.502840 + 0.619696i
\(753\) −1.59885 5.96698i −0.0582652 0.217449i
\(754\) 3.30336 + 11.1621i 0.120301 + 0.406501i
\(755\) 9.74730 + 4.57818i 0.354741 + 0.166617i
\(756\) 0 0
\(757\) 10.7202 + 10.7202i 0.389633 + 0.389633i 0.874556 0.484924i \(-0.161153\pi\)
−0.484924 + 0.874556i \(0.661153\pi\)
\(758\) 25.4252 + 13.8129i 0.923484 + 0.501708i
\(759\) 0.604493 1.04701i 0.0219417 0.0380041i
\(760\) −28.5573 + 23.3727i −1.03588 + 0.847815i
\(761\) −12.2719 21.2555i −0.444854 0.770510i 0.553188 0.833057i \(-0.313411\pi\)
−0.998042 + 0.0625464i \(0.980078\pi\)
\(762\) −3.22869 + 1.97744i −0.116963 + 0.0716351i
\(763\) 0 0
\(764\) 4.98927 + 2.54528i 0.180506 + 0.0920851i
\(765\) −20.8820 + 24.7465i −0.754990 + 0.894713i
\(766\) −7.07584 + 7.45268i −0.255661 + 0.269276i
\(767\) −3.80726 14.2089i −0.137472 0.513054i
\(768\) −5.58025 3.63963i −0.201360 0.131334i
\(769\) 38.3029i 1.38124i 0.723219 + 0.690619i \(0.242662\pi\)
−0.723219 + 0.690619i \(0.757338\pi\)
\(770\) 0 0
\(771\) 6.32315i 0.227723i
\(772\) 11.5803 12.8484i 0.416784 0.462423i
\(773\) −0.371576 1.38674i −0.0133647 0.0498776i 0.958922 0.283672i \(-0.0915525\pi\)
−0.972286 + 0.233794i \(0.924886\pi\)
\(774\) 20.0057 + 18.9942i 0.719091 + 0.682731i
\(775\) 38.0769 + 14.0984i 1.36776 + 0.506429i
\(776\) −11.0362 + 12.9023i −0.396178 + 0.463166i
\(777\) 0 0
\(778\) −4.10243 6.69829i −0.147079 0.240145i
\(779\) 0.279601 + 0.484282i 0.0100177 + 0.0173512i
\(780\) 3.03607 0.416578i 0.108709 0.0149159i
\(781\) −5.71840 + 9.90456i −0.204620 + 0.354413i
\(782\) −11.9847 + 22.0600i −0.428572 + 0.788864i
\(783\) 8.58072 + 8.58072i 0.306650 + 0.306650i
\(784\) 0 0
\(785\) −8.97465 + 3.23836i −0.320319 + 0.115582i
\(786\) 7.79449 2.30673i 0.278020 0.0822783i
\(787\) −3.70435 13.8248i −0.132046 0.492801i 0.867947 0.496657i \(-0.165439\pi\)
−0.999993 + 0.00385583i \(0.998773\pi\)
\(788\) 2.88867 13.5570i 0.102905 0.482949i
\(789\) −4.22637 + 2.44010i −0.150463 + 0.0868698i
\(790\) 3.69903 + 33.3614i 0.131605 + 1.18695i
\(791\) 0 0
\(792\) 0.520614 + 6.67861i 0.0184992 + 0.237314i
\(793\) −2.92289 0.783185i −0.103795 0.0278117i
\(794\) −29.3027 + 30.8632i −1.03991 + 1.09529i
\(795\) 7.05837 + 10.1401i 0.250335 + 0.359632i
\(796\) −24.7610 + 1.28534i −0.877631 + 0.0455578i
\(797\) 9.85742 + 9.85742i 0.349168 + 0.349168i 0.859800 0.510632i \(-0.170588\pi\)
−0.510632 + 0.859800i \(0.670588\pi\)
\(798\) 0 0
\(799\) 28.0283 0.991569
\(800\) 19.2496 20.7232i 0.680577 0.732677i
\(801\) −4.08761 + 7.07995i −0.144429 + 0.250158i
\(802\) −0.170116 6.55867i −0.00600699 0.231595i
\(803\) 1.29936 4.84926i 0.0458533 0.171127i
\(804\) −0.201984 + 0.395930i −0.00712342 + 0.0139634i
\(805\) 0 0
\(806\) −18.3761 4.41654i −0.647271 0.155566i
\(807\) −8.32229 2.22995i −0.292959 0.0784980i
\(808\) −4.38889 2.09740i −0.154400 0.0737864i
\(809\) −30.8498 17.8112i −1.08462 0.626207i −0.152483 0.988306i \(-0.548727\pi\)
−0.932140 + 0.362099i \(0.882060\pi\)
\(810\) −19.0302 + 13.9929i −0.668655 + 0.491660i
\(811\) 11.1150i 0.390299i 0.980774 + 0.195149i \(0.0625192\pi\)
−0.980774 + 0.195149i \(0.937481\pi\)
\(812\) 0 0
\(813\) −6.21267 + 6.21267i −0.217888 + 0.217888i
\(814\) 0.836851 0.247661i 0.0293316 0.00868050i
\(815\) 3.20689 17.8969i 0.112332 0.626903i
\(816\) 0.883481 + 8.48680i 0.0309280 + 0.297098i
\(817\) 10.4216 38.8940i 0.364607 1.36073i
\(818\) −25.6608 41.8979i −0.897207 1.46493i
\(819\) 0 0
\(820\) −0.262770 0.338605i −0.00917632 0.0118246i
\(821\) −6.79984 11.7777i −0.237316 0.411043i 0.722627 0.691238i \(-0.242934\pi\)
−0.959943 + 0.280195i \(0.909601\pi\)
\(822\) 8.46641 0.219598i 0.295300 0.00765936i
\(823\) −24.5214 + 6.57048i −0.854761 + 0.229033i −0.659487 0.751716i \(-0.729226\pi\)
−0.195274 + 0.980749i \(0.562560\pi\)
\(824\) −43.6785 8.12897i −1.52161 0.283186i
\(825\) 1.73696 + 0.161672i 0.0604731 + 0.00562869i
\(826\) 0 0
\(827\) 17.3478 17.3478i 0.603242 0.603242i −0.337929 0.941172i \(-0.609726\pi\)
0.941172 + 0.337929i \(0.109726\pi\)
\(828\) −13.1152 + 14.5514i −0.455786 + 0.505696i
\(829\) −16.3045 9.41343i −0.566280 0.326942i 0.189382 0.981903i \(-0.439351\pi\)
−0.755662 + 0.654962i \(0.772685\pi\)
\(830\) −7.10490 18.1978i −0.246615 0.631655i
\(831\) 1.17942 0.680936i 0.0409135 0.0236214i
\(832\) −7.75428 + 10.6395i −0.268831 + 0.368858i
\(833\) 0 0
\(834\) 0.833737 + 0.200381i 0.0288700 + 0.00693864i
\(835\) 11.2298 13.3081i 0.388624 0.460546i
\(836\) 8.20309 5.32136i 0.283710 0.184043i
\(837\) −19.0306 + 5.09924i −0.657794 + 0.176255i
\(838\) −34.9576 18.9917i −1.20759 0.656056i
\(839\) 3.21211 0.110894 0.0554472 0.998462i \(-0.482342\pi\)
0.0554472 + 0.998462i \(0.482342\pi\)
\(840\) 0 0
\(841\) 3.98283 0.137339
\(842\) −4.90377 2.66410i −0.168995 0.0918111i
\(843\) 1.04610 0.280301i 0.0360295 0.00965408i
\(844\) 1.47224 0.955043i 0.0506765 0.0328739i
\(845\) 1.94217 + 22.9310i 0.0668126 + 0.788849i
\(846\) 21.2649 + 5.11082i 0.731101 + 0.175714i
\(847\) 0 0
\(848\) −52.4156 8.35517i −1.79996 0.286918i
\(849\) −9.99440 + 5.77027i −0.343007 + 0.198035i
\(850\) −36.1439 2.42085i −1.23972 0.0830346i
\(851\) 2.21021 + 1.27607i 0.0757652 + 0.0437430i
\(852\) −7.61024 + 8.44360i −0.260723 + 0.289273i
\(853\) 31.7184 31.7184i 1.08602 1.08602i 0.0900831 0.995934i \(-0.471287\pi\)
0.995934 0.0900831i \(-0.0287133\pi\)
\(854\) 0 0
\(855\) 33.3804 + 15.6783i 1.14158 + 0.536187i
\(856\) 7.19881 38.6805i 0.246050 1.32207i
\(857\) 35.4579 9.50091i 1.21122 0.324545i 0.403978 0.914769i \(-0.367627\pi\)
0.807240 + 0.590224i \(0.200960\pi\)
\(858\) −0.811718 + 0.0210540i −0.0277116 + 0.000718771i
\(859\) −5.30651 9.19114i −0.181056 0.313598i 0.761185 0.648535i \(-0.224618\pi\)
−0.942240 + 0.334938i \(0.891285\pi\)
\(860\) −3.86126 + 30.6198i −0.131668 + 1.04412i
\(861\) 0 0
\(862\) −10.3498 16.8988i −0.352517 0.575576i
\(863\) 5.67140 21.1660i 0.193057 0.720498i −0.799705 0.600394i \(-0.795011\pi\)
0.992761 0.120104i \(-0.0383228\pi\)
\(864\) −1.80828 + 13.6048i −0.0615191 + 0.462844i
\(865\) −6.89133 1.23483i −0.234312 0.0419856i
\(866\) −4.25653 + 1.25969i −0.144643 + 0.0428061i
\(867\) 2.72198 2.72198i 0.0924434 0.0924434i
\(868\) 0 0
\(869\) 8.89379i 0.301701i
\(870\) −0.993141 + 6.51070i −0.0336706 + 0.220733i
\(871\) 0.760656 + 0.439165i 0.0257739 + 0.0148805i
\(872\) −13.0042 + 27.2118i −0.440379 + 0.921507i
\(873\) 16.3894 + 4.39154i 0.554698 + 0.148631i
\(874\) 27.8020 + 6.68197i 0.940417 + 0.226021i
\(875\) 0 0
\(876\) 2.26749 4.44474i 0.0766114 0.150174i
\(877\) 2.95602 11.0320i 0.0998175 0.372524i −0.897888 0.440224i \(-0.854899\pi\)
0.997706 + 0.0676994i \(0.0215659\pi\)
\(878\) 0.917916 + 35.3895i 0.0309782 + 1.19434i
\(879\) −3.51032 + 6.08006i −0.118400 + 0.205075i
\(880\) −5.67453 + 4.89541i −0.191288 + 0.165024i
\(881\) −27.2610 −0.918447 −0.459224 0.888321i \(-0.651872\pi\)
−0.459224 + 0.888321i \(0.651872\pi\)
\(882\) 0 0
\(883\) 29.9932 + 29.9932i 1.00935 + 1.00935i 0.999956 + 0.00939636i \(0.00299100\pi\)
0.00939636 + 0.999956i \(0.497009\pi\)
\(884\) 16.8388 0.874102i 0.566350 0.0293992i
\(885\) 1.46792 8.19216i 0.0493437 0.275376i
\(886\) 4.28700 4.51531i 0.144024 0.151695i
\(887\) 21.8561 + 5.85632i 0.733855 + 0.196636i 0.606345 0.795201i \(-0.292635\pi\)
0.127510 + 0.991837i \(0.459302\pi\)
\(888\) 0.864784 0.0674121i 0.0290202 0.00226220i
\(889\) 0 0
\(890\) −9.09032 + 1.00791i −0.304708 + 0.0337852i
\(891\) 5.42024 3.12937i 0.181585 0.104838i
\(892\) −7.43038 + 34.8720i −0.248787 + 1.16760i
\(893\) −8.26224 30.8351i −0.276485 1.03186i
\(894\) 6.52969 1.93242i 0.218386 0.0646298i
\(895\) −15.3098 + 32.5957i −0.511749 + 1.08956i
\(896\) 0 0
\(897\) −1.67904 1.67904i −0.0560615 0.0560615i
\(898\) 16.3549 30.1042i 0.545772 1.00459i
\(899\) 20.3085 35.1754i 0.677327 1.17317i
\(900\) −26.9807 8.42735i −0.899355 0.280912i
\(901\) 33.9892 + 58.8710i 1.13234 + 1.96128i
\(902\) 0.0593137 + 0.0968451i 0.00197493 + 0.00322459i
\(903\) 0 0
\(904\) 17.0840 + 14.6131i 0.568206 + 0.486026i
\(905\) 8.53929 0.723246i 0.283856 0.0240415i
\(906\) −2.05667 1.95268i −0.0683284 0.0648734i
\(907\) −1.07561 4.01423i −0.0357151 0.133290i 0.945766 0.324847i \(-0.105313\pi\)
−0.981481 + 0.191557i \(0.938646\pi\)
\(908\) −14.0609 + 15.6006i −0.466627 + 0.517725i
\(909\) 4.86119i 0.161235i
\(910\) 0 0
\(911\) 29.4464i 0.975603i 0.872955 + 0.487801i \(0.162201\pi\)
−0.872955 + 0.487801i \(0.837799\pi\)
\(912\) 9.07626 3.47371i 0.300545 0.115026i
\(913\) 1.33972 + 4.99989i 0.0443381 + 0.165472i
\(914\) 9.11881 9.60445i 0.301624 0.317687i
\(915\) −1.30844 1.10411i −0.0432557 0.0365006i
\(916\) −48.5454 24.7655i −1.60398 0.818274i
\(917\) 0 0
\(918\) 14.9895 9.18048i 0.494728 0.303001i
\(919\) −4.57597 7.92582i −0.150947 0.261449i 0.780629 0.624995i \(-0.214899\pi\)
−0.931576 + 0.363547i \(0.881566\pi\)
\(920\) −21.8075 2.17724i −0.718970 0.0717815i
\(921\) −3.83837 + 6.64825i −0.126479 + 0.219067i
\(922\) 15.3572 + 8.34320i 0.505762 + 0.274769i
\(923\) 15.8834 + 15.8834i 0.522809 + 0.522809i
\(924\) 0 0
\(925\) −0.341285 + 3.66667i −0.0112214 + 0.120559i
\(926\) 16.8443 + 56.9174i 0.553539 + 1.87042i
\(927\) 11.4916 + 42.8871i 0.377433 + 1.40860i
\(928\) −17.1964 22.4685i −0.564500 0.737564i
\(929\) −26.0531 + 15.0417i −0.854773 + 0.493504i −0.862259 0.506468i \(-0.830951\pi\)
0.00748525 + 0.999972i \(0.497617\pi\)
\(930\) −8.34815 6.68168i −0.273747 0.219101i
\(931\) 0 0
\(932\) 8.10485 + 24.9864i 0.265483 + 0.818456i
\(933\) −4.71148 1.26244i −0.154247 0.0413303i
\(934\) −37.1195 35.2426i −1.21459 1.15317i
\(935\) 9.44786 + 1.69293i 0.308978 + 0.0553647i
\(936\) 12.9349 + 2.40730i 0.422789 + 0.0786850i
\(937\) 6.79581 + 6.79581i 0.222009 + 0.222009i 0.809344 0.587335i \(-0.199823\pi\)
−0.587335 + 0.809344i \(0.699823\pi\)
\(938\) 0 0
\(939\) 7.95230 0.259514
\(940\) 9.48656 + 22.5536i 0.309417 + 0.735617i
\(941\) 9.08044 15.7278i 0.296014 0.512711i −0.679206 0.733947i \(-0.737676\pi\)
0.975220 + 0.221236i \(0.0710092\pi\)
\(942\) 2.51179 0.0651496i 0.0818384 0.00212269i
\(943\) −0.0859540 + 0.320785i −0.00279905 + 0.0104462i
\(944\) 20.9873 + 28.9470i 0.683080 + 0.942144i
\(945\) 0 0
\(946\) 1.91096 7.95101i 0.0621306 0.258510i
\(947\) 16.9897 + 4.55237i 0.552091 + 0.147932i 0.524070 0.851675i \(-0.324413\pi\)
0.0280205 + 0.999607i \(0.491080\pi\)
\(948\) 1.84214 8.64549i 0.0598300 0.280792i
\(949\) −8.53920 4.93011i −0.277194 0.160038i
\(950\) 7.99129 + 40.4770i 0.259272 + 1.31325i
\(951\) 1.20251i 0.0389940i
\(952\) 0 0
\(953\) 12.8804 12.8804i 0.417238 0.417238i −0.467013 0.884251i \(-0.654670\pi\)
0.884251 + 0.467013i \(0.154670\pi\)
\(954\) 15.0525 + 50.8628i 0.487343 + 1.64674i
\(955\) 5.13957 3.57757i 0.166312 0.115768i
\(956\) −11.6549 17.9664i −0.376945 0.581076i
\(957\) 0.451656 1.68560i 0.0146000 0.0544878i
\(958\) 38.4291 23.5363i 1.24159 0.760423i
\(959\) 0 0
\(960\) −6.53007 + 3.58339i −0.210757 + 0.115653i
\(961\) 17.4723 + 30.2629i 0.563622 + 0.976222i
\(962\) −0.0444444 1.71351i −0.00143294 0.0552459i
\(963\) −37.9798 + 10.1766i −1.22388 + 0.327938i
\(964\) 25.1142 1.30368i 0.808875 0.0419887i
\(965\) −6.56378 18.1906i −0.211296 0.585575i
\(966\) 0 0
\(967\) −21.8531 + 21.8531i −0.702748 + 0.702748i −0.965000 0.262251i \(-0.915535\pi\)
0.262251 + 0.965000i \(0.415535\pi\)
\(968\) −24.0166 + 16.4798i −0.771922 + 0.529681i
\(969\) −10.7791 6.22331i −0.346274 0.199922i
\(970\) 6.90374 + 17.6826i 0.221666 + 0.567753i
\(971\) 49.5916 28.6317i 1.59147 0.918836i 0.598416 0.801186i \(-0.295797\pi\)
0.993055 0.117650i \(-0.0375362\pi\)
\(972\) 19.7638 6.41081i 0.633925 0.205627i
\(973\) 0 0
\(974\) 3.30035 13.7319i 0.105750 0.440000i
\(975\) 1.18967 3.21306i 0.0381000 0.102900i
\(976\) 7.31550 0.761547i 0.234163 0.0243765i
\(977\) 23.4116 6.27313i 0.749004 0.200695i 0.135928 0.990719i \(-0.456598\pi\)
0.613076 + 0.790024i \(0.289932\pi\)
\(978\) −2.28579 + 4.20741i −0.0730914 + 0.134538i
\(979\) 2.42338 0.0774516
\(980\) 0 0
\(981\) 30.1401 0.962300
\(982\) 11.0382 20.3178i 0.352243 0.648366i
\(983\) 13.7291 3.67869i 0.437889 0.117332i −0.0331380 0.999451i \(-0.510550\pi\)
0.471027 + 0.882119i \(0.343883\pi\)
\(984\) 0.0375985 + 0.106427i 0.00119860 + 0.00339276i
\(985\) −11.8441 9.99445i −0.377384 0.318450i
\(986\) −8.46817 + 35.2339i −0.269682 + 1.12208i
\(987\) 0 0
\(988\) −5.92542 18.2674i −0.188513 0.581164i
\(989\) 20.7096 11.9567i 0.658527 0.380201i
\(990\) 6.85933 + 3.00718i 0.218004 + 0.0955746i
\(991\) −40.1223 23.1646i −1.27453 0.735848i −0.298689 0.954350i \(-0.596549\pi\)
−0.975836 + 0.218503i \(0.929883\pi\)
\(992\) 45.5516 5.93948i 1.44626 0.188579i
\(993\) −10.2670 + 10.2670i −0.325812 + 0.325812i
\(994\) 0 0
\(995\) −11.7850 + 25.0911i −0.373609 + 0.795442i
\(996\) 0.266702 + 5.13778i 0.00845079 + 0.162797i
\(997\) −44.4512 + 11.9107i −1.40778 + 0.377214i −0.881133 0.472869i \(-0.843219\pi\)
−0.526649 + 0.850083i \(0.676552\pi\)
\(998\) −0.348214 13.4251i −0.0110225 0.424965i
\(999\) −0.893438 1.54748i −0.0282671 0.0489601i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.m.67.4 72
4.3 odd 2 inner 980.2.x.m.67.18 72
5.3 odd 4 inner 980.2.x.m.263.6 72
7.2 even 3 inner 980.2.x.m.667.8 72
7.3 odd 6 980.2.k.k.687.15 36
7.4 even 3 980.2.k.j.687.15 36
7.5 odd 6 140.2.w.b.107.8 yes 72
7.6 odd 2 140.2.w.b.67.4 yes 72
20.3 even 4 inner 980.2.x.m.263.8 72
28.3 even 6 980.2.k.k.687.7 36
28.11 odd 6 980.2.k.j.687.7 36
28.19 even 6 140.2.w.b.107.6 yes 72
28.23 odd 6 inner 980.2.x.m.667.6 72
28.27 even 2 140.2.w.b.67.18 yes 72
35.3 even 12 980.2.k.k.883.7 36
35.12 even 12 700.2.be.e.443.1 72
35.13 even 4 140.2.w.b.123.6 yes 72
35.18 odd 12 980.2.k.j.883.7 36
35.19 odd 6 700.2.be.e.107.11 72
35.23 odd 12 inner 980.2.x.m.863.18 72
35.27 even 4 700.2.be.e.543.13 72
35.33 even 12 140.2.w.b.23.18 yes 72
35.34 odd 2 700.2.be.e.207.15 72
140.3 odd 12 980.2.k.k.883.15 36
140.19 even 6 700.2.be.e.107.13 72
140.23 even 12 inner 980.2.x.m.863.4 72
140.27 odd 4 700.2.be.e.543.11 72
140.47 odd 12 700.2.be.e.443.15 72
140.83 odd 4 140.2.w.b.123.8 yes 72
140.103 odd 12 140.2.w.b.23.4 72
140.123 even 12 980.2.k.j.883.15 36
140.139 even 2 700.2.be.e.207.1 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.4 72 140.103 odd 12
140.2.w.b.23.18 yes 72 35.33 even 12
140.2.w.b.67.4 yes 72 7.6 odd 2
140.2.w.b.67.18 yes 72 28.27 even 2
140.2.w.b.107.6 yes 72 28.19 even 6
140.2.w.b.107.8 yes 72 7.5 odd 6
140.2.w.b.123.6 yes 72 35.13 even 4
140.2.w.b.123.8 yes 72 140.83 odd 4
700.2.be.e.107.11 72 35.19 odd 6
700.2.be.e.107.13 72 140.19 even 6
700.2.be.e.207.1 72 140.139 even 2
700.2.be.e.207.15 72 35.34 odd 2
700.2.be.e.443.1 72 35.12 even 12
700.2.be.e.443.15 72 140.47 odd 12
700.2.be.e.543.11 72 140.27 odd 4
700.2.be.e.543.13 72 35.27 even 4
980.2.k.j.687.7 36 28.11 odd 6
980.2.k.j.687.15 36 7.4 even 3
980.2.k.j.883.7 36 35.18 odd 12
980.2.k.j.883.15 36 140.123 even 12
980.2.k.k.687.7 36 28.3 even 6
980.2.k.k.687.15 36 7.3 odd 6
980.2.k.k.883.7 36 35.3 even 12
980.2.k.k.883.15 36 140.3 odd 12
980.2.x.m.67.4 72 1.1 even 1 trivial
980.2.x.m.67.18 72 4.3 odd 2 inner
980.2.x.m.263.6 72 5.3 odd 4 inner
980.2.x.m.263.8 72 20.3 even 4 inner
980.2.x.m.667.6 72 28.23 odd 6 inner
980.2.x.m.667.8 72 7.2 even 3 inner
980.2.x.m.863.4 72 140.23 even 12 inner
980.2.x.m.863.18 72 35.23 odd 12 inner