L(s) = 1 | + (−1.24 − 0.675i)2-s + (0.402 − 0.107i)3-s + (1.08 + 1.67i)4-s + (2.22 − 0.188i)5-s + (−0.572 − 0.137i)6-s + (−0.219 − 2.81i)8-s + (−2.44 + 1.41i)9-s + (−2.89 − 1.26i)10-s + (0.725 + 0.418i)11-s + (0.618 + 0.557i)12-s + (1.16 − 1.16i)13-s + (0.875 − 0.316i)15-s + (−1.63 + 3.65i)16-s + (4.94 − 1.32i)17-s + (3.99 − 0.103i)18-s + (−2.91 − 5.05i)19-s + ⋯ |
L(s) = 1 | + (−0.878 − 0.477i)2-s + (0.232 − 0.0622i)3-s + (0.544 + 0.838i)4-s + (0.996 − 0.0843i)5-s + (−0.233 − 0.0561i)6-s + (−0.0777 − 0.996i)8-s + (−0.815 + 0.471i)9-s + (−0.915 − 0.401i)10-s + (0.218 + 0.126i)11-s + (0.178 + 0.160i)12-s + (0.322 − 0.322i)13-s + (0.226 − 0.0815i)15-s + (−0.407 + 0.913i)16-s + (1.20 − 0.321i)17-s + (0.941 − 0.0244i)18-s + (−0.669 − 1.15i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26331 - 0.500278i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26331 - 0.500278i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.24 + 0.675i)T \) |
| 5 | \( 1 + (-2.22 + 0.188i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.402 + 0.107i)T + (2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (-0.725 - 0.418i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.16 + 1.16i)T - 13iT^{2} \) |
| 17 | \( 1 + (-4.94 + 1.32i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (2.91 + 5.05i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.896 + 3.34i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 5.00iT - 29T^{2} \) |
| 31 | \( 1 + (-7.03 - 4.06i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.190 - 0.711i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 0.0958T + 41T^{2} \) |
| 43 | \( 1 + (-4.87 - 4.87i)T + 43iT^{2} \) |
| 47 | \( 1 + (-5.28 - 1.41i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-3.43 - 12.8i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-4.46 + 7.74i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.919 + 1.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.138 - 0.515i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 13.6iT - 71T^{2} \) |
| 73 | \( 1 + (1.55 + 5.78i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (5.30 + 9.19i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.36 - 4.36i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.50 + 1.44i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4.24 + 4.24i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.905302909073939152916390170561, −9.045426286934995727711916624367, −8.493960957897808052336299061553, −7.62439043032364566941844096248, −6.58315565811558936575313314880, −5.76100656784571279464689615986, −4.54544932151022537173697098580, −2.99148479490649970768712663072, −2.40109661656396986685430736607, −0.985035810505500395075113037608,
1.20838594562043903699333526767, 2.39245072327220017757726656545, 3.65029825115440889132389651936, 5.35859998873283586205036585598, 5.94627886834842566771709825320, 6.63191677792158216767919797208, 7.75231843569340769469231997173, 8.590628378314308430852817639796, 9.166617018400989547425480877934, 10.00290421344671710115295301620