Properties

Label 980.2.x.l.263.9
Level $980$
Weight $2$
Character 980.263
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,0,0,0,0,16,0,0,0,-16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 263.9
Character \(\chi\) \(=\) 980.263
Dual form 980.2.x.l.667.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.112153 + 1.40976i) q^{2} +(0.643219 + 2.40053i) q^{3} +(-1.97484 - 0.316219i) q^{4} +(1.36213 - 1.77331i) q^{5} +(-3.45630 + 0.637557i) q^{6} +(0.667278 - 2.74859i) q^{8} +(-2.75072 + 1.58813i) q^{9} +(2.34717 + 2.11915i) q^{10} +(4.62887 + 2.67248i) q^{11} +(-0.511166 - 4.94406i) q^{12} +(2.61810 + 2.61810i) q^{13} +(5.13301 + 2.12920i) q^{15} +(3.80001 + 1.24896i) q^{16} +(0.381657 + 1.42436i) q^{17} +(-1.93038 - 4.05597i) q^{18} +(-0.130253 - 0.225604i) q^{19} +(-3.25074 + 3.07127i) q^{20} +(-4.28669 + 6.22586i) q^{22} +(-1.44978 - 0.388469i) q^{23} +(7.02727 - 0.166127i) q^{24} +(-1.28922 - 4.83093i) q^{25} +(-3.98452 + 3.39727i) q^{26} +(-0.309743 - 0.309743i) q^{27} -1.36847i q^{29} +(-3.57734 + 6.99752i) q^{30} +(1.77668 + 1.02577i) q^{31} +(-2.18692 + 5.21703i) q^{32} +(-3.43798 + 12.8307i) q^{33} +(-2.05081 + 0.378297i) q^{34} +(5.93444 - 2.26648i) q^{36} +(-11.2136 - 3.00467i) q^{37} +(0.332656 - 0.158323i) q^{38} +(-4.60081 + 7.96884i) q^{39} +(-3.96517 - 4.92721i) q^{40} +9.70325 q^{41} +(-6.86124 + 6.86124i) q^{43} +(-8.29620 - 6.74146i) q^{44} +(-0.930593 + 7.04110i) q^{45} +(0.710245 - 2.00028i) q^{46} +(-0.357579 + 1.33450i) q^{47} +(-0.553932 + 9.92539i) q^{48} +(6.95504 - 1.27569i) q^{50} +(-3.17373 + 1.83236i) q^{51} +(-4.34245 - 5.99823i) q^{52} +(-2.48296 + 0.665306i) q^{53} +(0.471402 - 0.401925i) q^{54} +(11.0442 - 4.56814i) q^{55} +(0.457788 - 0.457788i) q^{57} +(1.92921 + 0.153478i) q^{58} +(-2.26592 + 3.92468i) q^{59} +(-9.46360 - 5.82799i) q^{60} +(-2.06834 - 3.58246i) q^{61} +(-1.64535 + 2.38965i) q^{62} +(-7.10948 - 3.66814i) q^{64} +(8.20888 - 1.07651i) q^{65} +(-17.7026 - 6.28573i) q^{66} +(6.78396 - 1.81776i) q^{67} +(-0.303302 - 2.93358i) q^{68} -3.73012i q^{69} -7.29096i q^{71} +(2.52962 + 8.62033i) q^{72} +(13.1916 - 3.53467i) q^{73} +(5.49350 - 15.4714i) q^{74} +(10.7675 - 6.20216i) q^{75} +(0.185888 + 0.486722i) q^{76} +(-10.7181 - 7.37977i) q^{78} +(-5.09813 - 8.83021i) q^{79} +(7.39089 - 5.03733i) q^{80} +(-4.22008 + 7.30939i) q^{81} +(-1.08825 + 13.6793i) q^{82} +(-5.83046 + 5.83046i) q^{83} +(3.04570 + 1.26337i) q^{85} +(-8.90318 - 10.4422i) q^{86} +(3.28504 - 0.880224i) q^{87} +(10.4343 - 10.9396i) q^{88} +(6.60960 - 3.81606i) q^{89} +(-9.82189 - 2.10160i) q^{90} +(2.74026 + 1.22561i) q^{92} +(-1.31959 + 4.92476i) q^{93} +(-1.84123 - 0.653770i) q^{94} +(-0.577486 - 0.0763239i) q^{95} +(-13.9303 - 1.89408i) q^{96} +(-11.5761 + 11.5761i) q^{97} -16.9770 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 16 q^{6} - 16 q^{10} - 16 q^{12} + 8 q^{13} + 8 q^{16} - 20 q^{17} - 28 q^{18} - 40 q^{20} + 8 q^{22} + 20 q^{25} - 32 q^{26} + 4 q^{30} - 20 q^{37} - 36 q^{40} + 20 q^{45} - 16 q^{46} + 48 q^{48}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.112153 + 1.40976i −0.0793044 + 0.996850i
\(3\) 0.643219 + 2.40053i 0.371363 + 1.38594i 0.858587 + 0.512668i \(0.171343\pi\)
−0.487224 + 0.873277i \(0.661991\pi\)
\(4\) −1.97484 0.316219i −0.987422 0.158109i
\(5\) 1.36213 1.77331i 0.609162 0.793046i
\(6\) −3.45630 + 0.637557i −1.41103 + 0.260282i
\(7\) 0 0
\(8\) 0.667278 2.74859i 0.235918 0.971773i
\(9\) −2.75072 + 1.58813i −0.916907 + 0.529377i
\(10\) 2.34717 + 2.11915i 0.742239 + 0.670135i
\(11\) 4.62887 + 2.67248i 1.39566 + 0.805782i 0.993934 0.109979i \(-0.0350785\pi\)
0.401722 + 0.915762i \(0.368412\pi\)
\(12\) −0.511166 4.94406i −0.147561 1.42723i
\(13\) 2.61810 + 2.61810i 0.726131 + 0.726131i 0.969847 0.243716i \(-0.0783664\pi\)
−0.243716 + 0.969847i \(0.578366\pi\)
\(14\) 0 0
\(15\) 5.13301 + 2.12920i 1.32534 + 0.549757i
\(16\) 3.80001 + 1.24896i 0.950003 + 0.312241i
\(17\) 0.381657 + 1.42436i 0.0925654 + 0.345459i 0.996639 0.0819178i \(-0.0261045\pi\)
−0.904074 + 0.427377i \(0.859438\pi\)
\(18\) −1.93038 4.05597i −0.454995 0.956001i
\(19\) −0.130253 0.225604i −0.0298820 0.0517572i 0.850698 0.525655i \(-0.176180\pi\)
−0.880580 + 0.473898i \(0.842846\pi\)
\(20\) −3.25074 + 3.07127i −0.726887 + 0.686757i
\(21\) 0 0
\(22\) −4.28669 + 6.22586i −0.913926 + 1.32736i
\(23\) −1.44978 0.388469i −0.302301 0.0810013i 0.104480 0.994527i \(-0.466682\pi\)
−0.406781 + 0.913526i \(0.633349\pi\)
\(24\) 7.02727 0.166127i 1.43443 0.0339106i
\(25\) −1.28922 4.83093i −0.257844 0.966186i
\(26\) −3.98452 + 3.39727i −0.781429 + 0.666259i
\(27\) −0.309743 0.309743i −0.0596101 0.0596101i
\(28\) 0 0
\(29\) 1.36847i 0.254118i −0.991895 0.127059i \(-0.959446\pi\)
0.991895 0.127059i \(-0.0405537\pi\)
\(30\) −3.57734 + 6.99752i −0.653130 + 1.27757i
\(31\) 1.77668 + 1.02577i 0.319101 + 0.184233i 0.650992 0.759085i \(-0.274353\pi\)
−0.331891 + 0.943318i \(0.607687\pi\)
\(32\) −2.18692 + 5.21703i −0.386597 + 0.922249i
\(33\) −3.43798 + 12.8307i −0.598475 + 2.23354i
\(34\) −2.05081 + 0.378297i −0.351712 + 0.0648775i
\(35\) 0 0
\(36\) 5.93444 2.26648i 0.989073 0.377746i
\(37\) −11.2136 3.00467i −1.84350 0.493964i −0.844373 0.535756i \(-0.820027\pi\)
−0.999126 + 0.0417917i \(0.986693\pi\)
\(38\) 0.332656 0.158323i 0.0539640 0.0256833i
\(39\) −4.60081 + 7.96884i −0.736719 + 1.27604i
\(40\) −3.96517 4.92721i −0.626948 0.779061i
\(41\) 9.70325 1.51539 0.757697 0.652607i \(-0.226325\pi\)
0.757697 + 0.652607i \(0.226325\pi\)
\(42\) 0 0
\(43\) −6.86124 + 6.86124i −1.04633 + 1.04633i −0.0474554 + 0.998873i \(0.515111\pi\)
−0.998873 + 0.0474554i \(0.984889\pi\)
\(44\) −8.29620 6.74146i −1.25070 1.01631i
\(45\) −0.930593 + 7.04110i −0.138725 + 1.04963i
\(46\) 0.710245 2.00028i 0.104720 0.294925i
\(47\) −0.357579 + 1.33450i −0.0521583 + 0.194658i −0.987089 0.160173i \(-0.948795\pi\)
0.934931 + 0.354831i \(0.115461\pi\)
\(48\) −0.553932 + 9.92539i −0.0799532 + 1.43261i
\(49\) 0 0
\(50\) 6.95504 1.27569i 0.983592 0.180409i
\(51\) −3.17373 + 1.83236i −0.444412 + 0.256581i
\(52\) −4.34245 5.99823i −0.602189 0.831806i
\(53\) −2.48296 + 0.665306i −0.341060 + 0.0913868i −0.425284 0.905060i \(-0.639826\pi\)
0.0842235 + 0.996447i \(0.473159\pi\)
\(54\) 0.471402 0.401925i 0.0641497 0.0546950i
\(55\) 11.0442 4.56814i 1.48920 0.615968i
\(56\) 0 0
\(57\) 0.457788 0.457788i 0.0606356 0.0606356i
\(58\) 1.92921 + 0.153478i 0.253317 + 0.0201527i
\(59\) −2.26592 + 3.92468i −0.294997 + 0.510950i −0.974984 0.222274i \(-0.928652\pi\)
0.679987 + 0.733224i \(0.261985\pi\)
\(60\) −9.46360 5.82799i −1.22175 0.752390i
\(61\) −2.06834 3.58246i −0.264823 0.458687i 0.702694 0.711492i \(-0.251980\pi\)
−0.967517 + 0.252805i \(0.918647\pi\)
\(62\) −1.64535 + 2.38965i −0.208959 + 0.303486i
\(63\) 0 0
\(64\) −7.10948 3.66814i −0.888685 0.458518i
\(65\) 8.20888 1.07651i 1.01819 0.133524i
\(66\) −17.7026 6.28573i −2.17904 0.773720i
\(67\) 6.78396 1.81776i 0.828792 0.222074i 0.180606 0.983556i \(-0.442194\pi\)
0.648187 + 0.761481i \(0.275528\pi\)
\(68\) −0.303302 2.93358i −0.0367808 0.355749i
\(69\) 3.73012i 0.449053i
\(70\) 0 0
\(71\) 7.29096i 0.865278i −0.901567 0.432639i \(-0.857583\pi\)
0.901567 0.432639i \(-0.142417\pi\)
\(72\) 2.52962 + 8.62033i 0.298119 + 1.01592i
\(73\) 13.1916 3.53467i 1.54395 0.413701i 0.616414 0.787422i \(-0.288585\pi\)
0.927541 + 0.373721i \(0.121918\pi\)
\(74\) 5.49350 15.4714i 0.638606 1.79852i
\(75\) 10.7675 6.20216i 1.24333 0.716164i
\(76\) 0.185888 + 0.486722i 0.0213229 + 0.0558308i
\(77\) 0 0
\(78\) −10.7181 7.37977i −1.21359 0.835594i
\(79\) −5.09813 8.83021i −0.573584 0.993477i −0.996194 0.0871649i \(-0.972219\pi\)
0.422610 0.906312i \(-0.361114\pi\)
\(80\) 7.39089 5.03733i 0.826327 0.563191i
\(81\) −4.22008 + 7.30939i −0.468897 + 0.812154i
\(82\) −1.08825 + 13.6793i −0.120177 + 1.51062i
\(83\) −5.83046 + 5.83046i −0.639977 + 0.639977i −0.950550 0.310573i \(-0.899479\pi\)
0.310573 + 0.950550i \(0.399479\pi\)
\(84\) 0 0
\(85\) 3.04570 + 1.26337i 0.330352 + 0.137032i
\(86\) −8.90318 10.4422i −0.960055 1.12601i
\(87\) 3.28504 0.880224i 0.352193 0.0943699i
\(88\) 10.4343 10.9396i 1.11230 1.16616i
\(89\) 6.60960 3.81606i 0.700616 0.404501i −0.106961 0.994263i \(-0.534112\pi\)
0.807577 + 0.589762i \(0.200779\pi\)
\(90\) −9.82189 2.10160i −1.03532 0.221528i
\(91\) 0 0
\(92\) 2.74026 + 1.22561i 0.285691 + 0.127779i
\(93\) −1.31959 + 4.92476i −0.136835 + 0.510674i
\(94\) −1.84123 0.653770i −0.189908 0.0674313i
\(95\) −0.577486 0.0763239i −0.0592488 0.00783067i
\(96\) −13.9303 1.89408i −1.42175 0.193313i
\(97\) −11.5761 + 11.5761i −1.17538 + 1.17538i −0.194469 + 0.980909i \(0.562298\pi\)
−0.980909 + 0.194469i \(0.937702\pi\)
\(98\) 0 0
\(99\) −16.9770 −1.70625
\(100\) 1.01838 + 9.94801i 0.101838 + 0.994801i
\(101\) 1.41999 2.45950i 0.141294 0.244729i −0.786690 0.617348i \(-0.788207\pi\)
0.927984 + 0.372619i \(0.121540\pi\)
\(102\) −2.22724 4.67970i −0.220529 0.463360i
\(103\) 11.2333 + 3.00994i 1.10685 + 0.296579i 0.765549 0.643377i \(-0.222467\pi\)
0.341297 + 0.939956i \(0.389134\pi\)
\(104\) 8.94309 5.44909i 0.876942 0.534327i
\(105\) 0 0
\(106\) −0.659449 3.57499i −0.0640514 0.347233i
\(107\) 0.911342 3.40117i 0.0881028 0.328804i −0.907781 0.419445i \(-0.862225\pi\)
0.995884 + 0.0906407i \(0.0288915\pi\)
\(108\) 0.513748 + 0.709641i 0.0494354 + 0.0682852i
\(109\) −3.15906 1.82388i −0.302583 0.174696i 0.341020 0.940056i \(-0.389228\pi\)
−0.643603 + 0.765360i \(0.722561\pi\)
\(110\) 5.20133 + 16.0820i 0.495927 + 1.53336i
\(111\) 28.8511i 2.73843i
\(112\) 0 0
\(113\) −8.10112 8.10112i −0.762089 0.762089i 0.214611 0.976700i \(-0.431152\pi\)
−0.976700 + 0.214611i \(0.931152\pi\)
\(114\) 0.594029 + 0.696714i 0.0556359 + 0.0652532i
\(115\) −2.66366 + 2.04177i −0.248388 + 0.190396i
\(116\) −0.432734 + 2.70251i −0.0401784 + 0.250921i
\(117\) −11.3596 3.04378i −1.05019 0.281398i
\(118\) −5.27873 3.63456i −0.485946 0.334589i
\(119\) 0 0
\(120\) 9.27743 12.6878i 0.846910 1.15823i
\(121\) 8.78427 + 15.2148i 0.798570 + 1.38316i
\(122\) 5.28238 2.51407i 0.478244 0.227613i
\(123\) 6.24132 + 23.2929i 0.562761 + 2.10025i
\(124\) −3.18430 2.58755i −0.285958 0.232369i
\(125\) −10.3228 4.29416i −0.923299 0.384081i
\(126\) 0 0
\(127\) 6.08151 + 6.08151i 0.539647 + 0.539647i 0.923425 0.383778i \(-0.125377\pi\)
−0.383778 + 0.923425i \(0.625377\pi\)
\(128\) 5.96855 9.61126i 0.527550 0.849524i
\(129\) −20.8839 12.0573i −1.83872 1.06159i
\(130\) 0.596961 + 11.6933i 0.0523570 + 1.02557i
\(131\) −6.07484 + 3.50731i −0.530761 + 0.306435i −0.741326 0.671145i \(-0.765803\pi\)
0.210565 + 0.977580i \(0.432470\pi\)
\(132\) 10.8468 24.2515i 0.944091 2.11082i
\(133\) 0 0
\(134\) 1.80175 + 9.76762i 0.155648 + 0.843794i
\(135\) −0.971179 + 0.127360i −0.0835857 + 0.0109614i
\(136\) 4.16966 0.0985724i 0.357545 0.00845252i
\(137\) −1.64243 6.12964i −0.140322 0.523690i −0.999919 0.0127172i \(-0.995952\pi\)
0.859597 0.510973i \(-0.170715\pi\)
\(138\) 5.25857 + 0.418345i 0.447639 + 0.0356119i
\(139\) −3.41676 −0.289806 −0.144903 0.989446i \(-0.546287\pi\)
−0.144903 + 0.989446i \(0.546287\pi\)
\(140\) 0 0
\(141\) −3.43352 −0.289154
\(142\) 10.2785 + 0.817706i 0.862553 + 0.0686204i
\(143\) 5.12203 + 19.1157i 0.428325 + 1.59853i
\(144\) −12.4363 + 2.59936i −1.03636 + 0.216613i
\(145\) −2.42671 1.86402i −0.201527 0.154799i
\(146\) 3.50355 + 18.9933i 0.289956 + 1.57190i
\(147\) 0 0
\(148\) 21.1949 + 9.47968i 1.74221 + 0.779225i
\(149\) 11.6025 6.69869i 0.950511 0.548778i 0.0572715 0.998359i \(-0.481760\pi\)
0.893240 + 0.449581i \(0.148427\pi\)
\(150\) 7.53594 + 15.8752i 0.615307 + 1.29621i
\(151\) 1.88244 + 1.08683i 0.153191 + 0.0884446i 0.574636 0.818409i \(-0.305144\pi\)
−0.421445 + 0.906854i \(0.638477\pi\)
\(152\) −0.707009 + 0.207471i −0.0573460 + 0.0168281i
\(153\) −3.31191 3.31191i −0.267752 0.267752i
\(154\) 0 0
\(155\) 4.23906 1.75337i 0.340490 0.140834i
\(156\) 11.6058 14.2823i 0.929206 1.14350i
\(157\) −1.22478 4.57093i −0.0977479 0.364800i 0.899674 0.436563i \(-0.143804\pi\)
−0.997422 + 0.0717625i \(0.977138\pi\)
\(158\) 13.0202 6.19679i 1.03584 0.492990i
\(159\) −3.19417 5.53246i −0.253314 0.438753i
\(160\) 6.27251 + 10.9843i 0.495886 + 0.868388i
\(161\) 0 0
\(162\) −9.83118 6.76906i −0.772410 0.531828i
\(163\) 11.6440 + 3.12000i 0.912029 + 0.244377i 0.684175 0.729318i \(-0.260162\pi\)
0.227854 + 0.973695i \(0.426829\pi\)
\(164\) −19.1624 3.06835i −1.49633 0.239598i
\(165\) 18.0698 + 23.5736i 1.40673 + 1.83520i
\(166\) −7.56565 8.87346i −0.587208 0.688714i
\(167\) 3.96863 + 3.96863i 0.307102 + 0.307102i 0.843784 0.536682i \(-0.180323\pi\)
−0.536682 + 0.843784i \(0.680323\pi\)
\(168\) 0 0
\(169\) 0.708922i 0.0545325i
\(170\) −2.12263 + 4.15201i −0.162798 + 0.318444i
\(171\) 0.716578 + 0.413717i 0.0547981 + 0.0316377i
\(172\) 15.7195 11.3802i 1.19860 0.867733i
\(173\) 3.11660 11.6313i 0.236951 0.884312i −0.740309 0.672267i \(-0.765321\pi\)
0.977260 0.212045i \(-0.0680125\pi\)
\(174\) 0.872475 + 4.72984i 0.0661422 + 0.358568i
\(175\) 0 0
\(176\) 14.2519 + 15.9367i 1.07428 + 1.20128i
\(177\) −10.8788 2.91496i −0.817700 0.219102i
\(178\) 4.63843 + 9.74593i 0.347665 + 0.730489i
\(179\) −0.736556 + 1.27575i −0.0550528 + 0.0953542i −0.892238 0.451565i \(-0.850866\pi\)
0.837186 + 0.546919i \(0.184199\pi\)
\(180\) 4.06430 13.6108i 0.302935 1.01449i
\(181\) −9.31481 −0.692364 −0.346182 0.938167i \(-0.612522\pi\)
−0.346182 + 0.938167i \(0.612522\pi\)
\(182\) 0 0
\(183\) 7.26941 7.26941i 0.537370 0.537370i
\(184\) −2.03515 + 3.72564i −0.150033 + 0.274658i
\(185\) −20.6025 + 15.7923i −1.51473 + 1.16108i
\(186\) −6.79473 2.41263i −0.498214 0.176902i
\(187\) −2.03994 + 7.61316i −0.149175 + 0.556729i
\(188\) 1.12816 2.52236i 0.0822794 0.183962i
\(189\) 0 0
\(190\) 0.172365 0.805557i 0.0125047 0.0584412i
\(191\) −18.6259 + 10.7537i −1.34772 + 0.778107i −0.987926 0.154924i \(-0.950487\pi\)
−0.359795 + 0.933031i \(0.617153\pi\)
\(192\) 4.23252 19.4259i 0.305456 1.40195i
\(193\) 3.76974 1.01010i 0.271352 0.0727085i −0.120577 0.992704i \(-0.538475\pi\)
0.391929 + 0.919995i \(0.371808\pi\)
\(194\) −15.0212 17.6179i −1.07846 1.26489i
\(195\) 7.86429 + 19.0132i 0.563174 + 1.36156i
\(196\) 0 0
\(197\) −10.8418 + 10.8418i −0.772443 + 0.772443i −0.978533 0.206090i \(-0.933926\pi\)
0.206090 + 0.978533i \(0.433926\pi\)
\(198\) 1.90402 23.9334i 0.135313 1.70088i
\(199\) 10.3133 17.8632i 0.731091 1.26629i −0.225326 0.974283i \(-0.572345\pi\)
0.956417 0.292004i \(-0.0943220\pi\)
\(200\) −14.1385 + 0.319966i −0.999744 + 0.0226250i
\(201\) 8.72715 + 15.1159i 0.615565 + 1.06619i
\(202\) 3.30804 + 2.27769i 0.232753 + 0.160257i
\(203\) 0 0
\(204\) 6.84705 2.61502i 0.479389 0.183088i
\(205\) 13.2171 17.2068i 0.923120 1.20178i
\(206\) −5.50314 + 15.4986i −0.383422 + 1.07984i
\(207\) 4.60489 1.23388i 0.320062 0.0857604i
\(208\) 6.67890 + 13.2187i 0.463099 + 0.916555i
\(209\) 1.39239i 0.0963137i
\(210\) 0 0
\(211\) 1.55999i 0.107394i 0.998557 + 0.0536969i \(0.0171005\pi\)
−0.998557 + 0.0536969i \(0.982900\pi\)
\(212\) 5.11383 0.528718i 0.351219 0.0363125i
\(213\) 17.5021 4.68969i 1.19923 0.321332i
\(214\) 4.69263 + 1.66623i 0.320781 + 0.113901i
\(215\) 2.82119 + 21.5129i 0.192404 + 1.46717i
\(216\) −1.05804 + 0.644672i −0.0719906 + 0.0438644i
\(217\) 0 0
\(218\) 2.92554 4.24896i 0.198142 0.287776i
\(219\) 16.9701 + 29.3931i 1.14673 + 1.98620i
\(220\) −23.2551 + 5.52897i −1.56786 + 0.372763i
\(221\) −2.72991 + 4.72835i −0.183634 + 0.318063i
\(222\) 40.6732 + 3.23575i 2.72980 + 0.217169i
\(223\) 1.29543 1.29543i 0.0867482 0.0867482i −0.662401 0.749149i \(-0.730463\pi\)
0.749149 + 0.662401i \(0.230463\pi\)
\(224\) 0 0
\(225\) 11.2184 + 11.2411i 0.747896 + 0.749407i
\(226\) 12.3292 10.5121i 0.820126 0.699252i
\(227\) −5.65204 + 1.51446i −0.375139 + 0.100518i −0.441462 0.897280i \(-0.645540\pi\)
0.0663228 + 0.997798i \(0.478873\pi\)
\(228\) −1.04882 + 0.759299i −0.0694599 + 0.0502858i
\(229\) 19.0037 10.9718i 1.25580 0.725035i 0.283542 0.958960i \(-0.408490\pi\)
0.972255 + 0.233925i \(0.0751571\pi\)
\(230\) −2.57966 3.98412i −0.170098 0.262705i
\(231\) 0 0
\(232\) −3.76135 0.913147i −0.246945 0.0599510i
\(233\) 1.67921 6.26689i 0.110009 0.410557i −0.888857 0.458185i \(-0.848500\pi\)
0.998865 + 0.0476280i \(0.0151662\pi\)
\(234\) 5.56502 15.6729i 0.363797 1.02457i
\(235\) 1.87942 + 2.45186i 0.122600 + 0.159942i
\(236\) 5.71589 7.03411i 0.372073 0.457881i
\(237\) 17.9180 17.9180i 1.16390 1.16390i
\(238\) 0 0
\(239\) −8.09920 −0.523894 −0.261947 0.965082i \(-0.584365\pi\)
−0.261947 + 0.965082i \(0.584365\pi\)
\(240\) 16.8462 + 14.5019i 1.08742 + 0.936095i
\(241\) −1.66869 + 2.89025i −0.107489 + 0.186177i −0.914753 0.404015i \(-0.867615\pi\)
0.807263 + 0.590192i \(0.200948\pi\)
\(242\) −22.4344 + 10.6773i −1.44214 + 0.686364i
\(243\) −21.5302 5.76899i −1.38116 0.370081i
\(244\) 2.95180 + 7.72885i 0.188969 + 0.494789i
\(245\) 0 0
\(246\) −33.5374 + 6.18638i −2.13827 + 0.394429i
\(247\) 0.249640 0.931671i 0.0158842 0.0592808i
\(248\) 4.00495 4.19889i 0.254315 0.266630i
\(249\) −17.7465 10.2459i −1.12464 0.649309i
\(250\) 7.21147 14.0711i 0.456093 0.889932i
\(251\) 1.41618i 0.0893882i −0.999001 0.0446941i \(-0.985769\pi\)
0.999001 0.0446941i \(-0.0142313\pi\)
\(252\) 0 0
\(253\) −5.67269 5.67269i −0.356639 0.356639i
\(254\) −9.25553 + 7.89141i −0.580744 + 0.495151i
\(255\) −1.07370 + 8.12390i −0.0672378 + 0.508738i
\(256\) 12.8802 + 9.49216i 0.805011 + 0.593260i
\(257\) −7.78950 2.08719i −0.485896 0.130195i 0.00755089 0.999971i \(-0.497596\pi\)
−0.493446 + 0.869776i \(0.664263\pi\)
\(258\) 19.3401 28.0890i 1.20406 1.74874i
\(259\) 0 0
\(260\) −16.5517 0.469869i −1.02649 0.0291401i
\(261\) 2.17330 + 3.76427i 0.134524 + 0.233002i
\(262\) −4.26315 8.95742i −0.263378 0.553391i
\(263\) −4.65739 17.3816i −0.287187 1.07180i −0.947226 0.320565i \(-0.896127\pi\)
0.660040 0.751231i \(-0.270539\pi\)
\(264\) 32.9723 + 18.0112i 2.02930 + 1.10851i
\(265\) −2.20231 + 5.30927i −0.135287 + 0.326146i
\(266\) 0 0
\(267\) 13.4120 + 13.4120i 0.820799 + 0.820799i
\(268\) −13.9721 + 1.44457i −0.853480 + 0.0882411i
\(269\) 9.73017 + 5.61772i 0.593259 + 0.342518i 0.766385 0.642381i \(-0.222053\pi\)
−0.173126 + 0.984900i \(0.555387\pi\)
\(270\) −0.0706255 1.38341i −0.00429813 0.0841918i
\(271\) 22.0092 12.7070i 1.33696 0.771896i 0.350607 0.936522i \(-0.385975\pi\)
0.986356 + 0.164626i \(0.0526418\pi\)
\(272\) −0.328678 + 5.88927i −0.0199290 + 0.357090i
\(273\) 0 0
\(274\) 8.82552 1.62797i 0.533169 0.0983494i
\(275\) 6.94292 25.8072i 0.418674 1.55623i
\(276\) −1.17953 + 7.36640i −0.0709995 + 0.443405i
\(277\) −3.45451 12.8924i −0.207561 0.774629i −0.988654 0.150213i \(-0.952004\pi\)
0.781092 0.624415i \(-0.214663\pi\)
\(278\) 0.383202 4.81681i 0.0229829 0.288893i
\(279\) −6.51620 −0.390115
\(280\) 0 0
\(281\) 12.5370 0.747894 0.373947 0.927450i \(-0.378004\pi\)
0.373947 + 0.927450i \(0.378004\pi\)
\(282\) 0.385081 4.84043i 0.0229312 0.288244i
\(283\) −7.26346 27.1076i −0.431768 1.61138i −0.748684 0.662927i \(-0.769314\pi\)
0.316916 0.948453i \(-0.397353\pi\)
\(284\) −2.30554 + 14.3985i −0.136808 + 0.854394i
\(285\) −0.188233 1.43536i −0.0111499 0.0850236i
\(286\) −27.5229 + 5.07694i −1.62747 + 0.300206i
\(287\) 0 0
\(288\) −2.26970 17.8237i −0.133743 1.05027i
\(289\) 12.8393 7.41276i 0.755252 0.436045i
\(290\) 2.89999 3.21202i 0.170293 0.188616i
\(291\) −35.2348 20.3428i −2.06550 1.19252i
\(292\) −27.1690 + 2.80900i −1.58994 + 0.164384i
\(293\) 12.6339 + 12.6339i 0.738078 + 0.738078i 0.972206 0.234128i \(-0.0752234\pi\)
−0.234128 + 0.972206i \(0.575223\pi\)
\(294\) 0 0
\(295\) 3.87319 + 9.36408i 0.225506 + 0.545198i
\(296\) −15.7412 + 28.8165i −0.914936 + 1.67493i
\(297\) −0.605978 2.26154i −0.0351624 0.131228i
\(298\) 8.14228 + 17.1080i 0.471670 + 0.991038i
\(299\) −2.77863 4.81273i −0.160693 0.278328i
\(300\) −23.2254 + 8.84340i −1.34092 + 0.510574i
\(301\) 0 0
\(302\) −1.74328 + 2.53189i −0.100315 + 0.145694i
\(303\) 6.81745 + 1.82673i 0.391652 + 0.104943i
\(304\) −0.213190 1.01998i −0.0122273 0.0584999i
\(305\) −9.17014 1.21198i −0.525080 0.0693977i
\(306\) 5.04043 4.29755i 0.288142 0.245675i
\(307\) 9.69470 + 9.69470i 0.553306 + 0.553306i 0.927393 0.374087i \(-0.122044\pi\)
−0.374087 + 0.927393i \(0.622044\pi\)
\(308\) 0 0
\(309\) 28.9018i 1.64417i
\(310\) 1.99641 + 6.17270i 0.113388 + 0.350586i
\(311\) −9.70173 5.60130i −0.550135 0.317620i 0.199042 0.979991i \(-0.436217\pi\)
−0.749176 + 0.662371i \(0.769550\pi\)
\(312\) 18.8330 + 17.9632i 1.06621 + 1.01696i
\(313\) −0.0595944 + 0.222409i −0.00336848 + 0.0125713i −0.967590 0.252528i \(-0.918738\pi\)
0.964221 + 0.265099i \(0.0854047\pi\)
\(314\) 6.58128 1.21400i 0.371403 0.0685098i
\(315\) 0 0
\(316\) 7.27572 + 19.0504i 0.409291 + 1.07167i
\(317\) −13.8508 3.71131i −0.777938 0.208448i −0.152063 0.988371i \(-0.548592\pi\)
−0.625876 + 0.779923i \(0.715258\pi\)
\(318\) 8.15768 3.88253i 0.457460 0.217721i
\(319\) 3.65719 6.33445i 0.204764 0.354661i
\(320\) −16.1888 + 7.61080i −0.904979 + 0.425457i
\(321\) 8.75080 0.488422
\(322\) 0 0
\(323\) 0.271631 0.271631i 0.0151139 0.0151139i
\(324\) 10.6454 13.1004i 0.591408 0.727801i
\(325\) 9.27256 16.0232i 0.514349 0.888807i
\(326\) −5.70437 + 16.0653i −0.315936 + 0.889776i
\(327\) 2.34632 8.75657i 0.129752 0.484239i
\(328\) 6.47476 26.6703i 0.357509 1.47262i
\(329\) 0 0
\(330\) −35.2597 + 22.8302i −1.94098 + 1.25676i
\(331\) −14.4821 + 8.36122i −0.796006 + 0.459574i −0.842073 0.539364i \(-0.818665\pi\)
0.0460667 + 0.998938i \(0.485331\pi\)
\(332\) 13.3580 9.67055i 0.733113 0.530740i
\(333\) 35.6172 9.54360i 1.95181 0.522986i
\(334\) −6.03991 + 5.14972i −0.330489 + 0.281780i
\(335\) 6.01718 14.5060i 0.328753 0.792550i
\(336\) 0 0
\(337\) 9.74524 9.74524i 0.530857 0.530857i −0.389970 0.920827i \(-0.627515\pi\)
0.920827 + 0.389970i \(0.127515\pi\)
\(338\) −0.999409 0.0795080i −0.0543607 0.00432467i
\(339\) 14.2362 24.6577i 0.773202 1.33923i
\(340\) −5.61527 3.45806i −0.304531 0.187540i
\(341\) 5.48268 + 9.49628i 0.296904 + 0.514252i
\(342\) −0.663608 + 0.963803i −0.0358838 + 0.0521165i
\(343\) 0 0
\(344\) 14.2804 + 23.4371i 0.769946 + 1.26364i
\(345\) −6.61464 5.08089i −0.356120 0.273546i
\(346\) 16.0478 + 5.69815i 0.862736 + 0.306334i
\(347\) 4.02857 1.07945i 0.216265 0.0579481i −0.149060 0.988828i \(-0.547625\pi\)
0.365325 + 0.930880i \(0.380958\pi\)
\(348\) −6.76578 + 0.699513i −0.362684 + 0.0374978i
\(349\) 30.1290i 1.61277i −0.591393 0.806383i \(-0.701422\pi\)
0.591393 0.806383i \(-0.298578\pi\)
\(350\) 0 0
\(351\) 1.62188i 0.0865695i
\(352\) −24.0654 + 18.3044i −1.28269 + 0.975629i
\(353\) −5.28777 + 1.41685i −0.281440 + 0.0754116i −0.396778 0.917915i \(-0.629872\pi\)
0.115338 + 0.993326i \(0.463205\pi\)
\(354\) 5.32949 15.0096i 0.283259 0.797749i
\(355\) −12.9291 9.93121i −0.686205 0.527094i
\(356\) −14.2596 + 5.44603i −0.755759 + 0.288639i
\(357\) 0 0
\(358\) −1.71590 1.18145i −0.0906880 0.0624414i
\(359\) −11.6607 20.1969i −0.615427 1.06595i −0.990309 0.138878i \(-0.955650\pi\)
0.374883 0.927072i \(-0.377683\pi\)
\(360\) 18.7321 + 7.25619i 0.987270 + 0.382435i
\(361\) 9.46607 16.3957i 0.498214 0.862932i
\(362\) 1.04469 13.1316i 0.0549076 0.690184i
\(363\) −30.8733 + 30.8733i −1.62043 + 1.62043i
\(364\) 0 0
\(365\) 11.7005 28.2073i 0.612434 1.47644i
\(366\) 9.43282 + 11.0634i 0.493062 + 0.578293i
\(367\) −12.4194 + 3.32776i −0.648285 + 0.173708i −0.567953 0.823061i \(-0.692265\pi\)
−0.0803318 + 0.996768i \(0.525598\pi\)
\(368\) −5.02401 3.28691i −0.261895 0.171342i
\(369\) −26.6910 + 15.4100i −1.38948 + 0.802214i
\(370\) −19.9528 30.8157i −1.03729 1.60203i
\(371\) 0 0
\(372\) 4.16328 9.30835i 0.215856 0.482616i
\(373\) −3.76324 + 14.0446i −0.194853 + 0.727202i 0.797452 + 0.603383i \(0.206181\pi\)
−0.992305 + 0.123819i \(0.960486\pi\)
\(374\) −10.5039 3.72967i −0.543145 0.192856i
\(375\) 3.66842 27.5422i 0.189437 1.42228i
\(376\) 3.42940 + 1.87332i 0.176858 + 0.0966093i
\(377\) 3.58278 3.58278i 0.184523 0.184523i
\(378\) 0 0
\(379\) 18.3234 0.941208 0.470604 0.882344i \(-0.344036\pi\)
0.470604 + 0.882344i \(0.344036\pi\)
\(380\) 1.11631 + 0.333340i 0.0572655 + 0.0171000i
\(381\) −10.6871 + 18.5106i −0.547516 + 0.948325i
\(382\) −13.0711 27.4641i −0.668776 1.40518i
\(383\) −17.9320 4.80487i −0.916284 0.245518i −0.230288 0.973123i \(-0.573967\pi\)
−0.685996 + 0.727605i \(0.740633\pi\)
\(384\) 26.9112 + 8.14552i 1.37331 + 0.415674i
\(385\) 0 0
\(386\) 1.00121 + 5.42771i 0.0509601 + 0.276263i
\(387\) 7.97682 29.7699i 0.405484 1.51329i
\(388\) 26.5216 19.2004i 1.34643 0.974755i
\(389\) 28.6326 + 16.5311i 1.45173 + 0.838158i 0.998580 0.0532759i \(-0.0169663\pi\)
0.453152 + 0.891433i \(0.350300\pi\)
\(390\) −27.6861 + 8.95437i −1.40194 + 0.453422i
\(391\) 2.21328i 0.111930i
\(392\) 0 0
\(393\) −12.3268 12.3268i −0.621807 0.621807i
\(394\) −14.0683 16.5002i −0.708752 0.831268i
\(395\) −22.6030 2.98734i −1.13728 0.150309i
\(396\) 33.5268 + 5.36843i 1.68479 + 0.269774i
\(397\) 28.7436 + 7.70181i 1.44260 + 0.386543i 0.893443 0.449177i \(-0.148283\pi\)
0.549155 + 0.835720i \(0.314950\pi\)
\(398\) 24.0261 + 16.5427i 1.20432 + 0.829211i
\(399\) 0 0
\(400\) 1.13461 19.9678i 0.0567304 0.998390i
\(401\) −17.1410 29.6890i −0.855979 1.48260i −0.875734 0.482794i \(-0.839622\pi\)
0.0197547 0.999805i \(-0.493711\pi\)
\(402\) −22.2885 + 10.6079i −1.11165 + 0.529073i
\(403\) 1.96597 + 7.33709i 0.0979319 + 0.365487i
\(404\) −3.58200 + 4.40809i −0.178211 + 0.219311i
\(405\) 7.21349 + 17.4398i 0.358441 + 0.866590i
\(406\) 0 0
\(407\) −43.8762 43.8762i −2.17486 2.17486i
\(408\) 2.91863 + 9.94598i 0.144494 + 0.492399i
\(409\) −1.83899 1.06174i −0.0909321 0.0524997i 0.453844 0.891081i \(-0.350052\pi\)
−0.544777 + 0.838581i \(0.683386\pi\)
\(410\) 22.7752 + 20.5627i 1.12478 + 1.01552i
\(411\) 13.6579 7.88540i 0.673695 0.388958i
\(412\) −21.2321 9.49633i −1.04603 0.467851i
\(413\) 0 0
\(414\) 1.22302 + 6.63017i 0.0601079 + 0.325855i
\(415\) 2.39736 + 18.2810i 0.117682 + 0.897380i
\(416\) −19.3843 + 7.93312i −0.950394 + 0.388953i
\(417\) −2.19773 8.20203i −0.107623 0.401655i
\(418\) 1.96294 + 0.156161i 0.0960103 + 0.00763810i
\(419\) −25.4554 −1.24358 −0.621789 0.783185i \(-0.713594\pi\)
−0.621789 + 0.783185i \(0.713594\pi\)
\(420\) 0 0
\(421\) 6.51083 0.317318 0.158659 0.987333i \(-0.449283\pi\)
0.158659 + 0.987333i \(0.449283\pi\)
\(422\) −2.19920 0.174958i −0.107056 0.00851681i
\(423\) −1.13577 4.23873i −0.0552228 0.206094i
\(424\) 0.171832 + 7.26857i 0.00834489 + 0.352993i
\(425\) 6.38896 3.68008i 0.309910 0.178510i
\(426\) 4.64840 + 25.1998i 0.225216 + 1.22093i
\(427\) 0 0
\(428\) −2.87527 + 6.42860i −0.138982 + 0.310738i
\(429\) −42.5931 + 24.5911i −2.05641 + 1.18727i
\(430\) −30.6445 + 1.56445i −1.47781 + 0.0754445i
\(431\) −18.3941 10.6198i −0.886014 0.511540i −0.0133771 0.999911i \(-0.504258\pi\)
−0.872636 + 0.488370i \(0.837592\pi\)
\(432\) −0.790169 1.56389i −0.0380170 0.0752425i
\(433\) 10.3951 + 10.3951i 0.499557 + 0.499557i 0.911300 0.411743i \(-0.135080\pi\)
−0.411743 + 0.911300i \(0.635080\pi\)
\(434\) 0 0
\(435\) 2.91374 7.02435i 0.139703 0.336792i
\(436\) 5.66190 + 4.60084i 0.271156 + 0.220340i
\(437\) 0.101198 + 0.377677i 0.00484097 + 0.0180667i
\(438\) −43.3405 + 20.6273i −2.07089 + 0.985608i
\(439\) −2.64749 4.58558i −0.126358 0.218858i 0.795905 0.605421i \(-0.206995\pi\)
−0.922263 + 0.386563i \(0.873662\pi\)
\(440\) −5.18638 33.4042i −0.247251 1.59248i
\(441\) 0 0
\(442\) −6.35966 4.37882i −0.302498 0.208279i
\(443\) 28.7891 + 7.71402i 1.36781 + 0.366504i 0.866679 0.498867i \(-0.166250\pi\)
0.501132 + 0.865371i \(0.332917\pi\)
\(444\) −9.12327 + 56.9765i −0.432971 + 2.70398i
\(445\) 2.23609 16.9188i 0.106001 0.802028i
\(446\) 1.68095 + 1.97153i 0.0795955 + 0.0933545i
\(447\) 23.5433 + 23.5433i 1.11356 + 1.11356i
\(448\) 0 0
\(449\) 9.50768i 0.448695i −0.974509 0.224347i \(-0.927975\pi\)
0.974509 0.224347i \(-0.0720251\pi\)
\(450\) −17.1054 + 14.5546i −0.806358 + 0.686109i
\(451\) 44.9151 + 25.9317i 2.11497 + 1.22108i
\(452\) 13.4367 + 18.5602i 0.632010 + 0.872997i
\(453\) −1.39813 + 5.21791i −0.0656901 + 0.245159i
\(454\) −1.50113 8.13787i −0.0704514 0.381929i
\(455\) 0 0
\(456\) −0.952800 1.56374i −0.0446190 0.0732290i
\(457\) 25.8402 + 6.92387i 1.20875 + 0.323885i 0.806273 0.591543i \(-0.201481\pi\)
0.402482 + 0.915428i \(0.368148\pi\)
\(458\) 13.3362 + 28.0211i 0.623161 + 1.30934i
\(459\) 0.322971 0.559402i 0.0150750 0.0261107i
\(460\) 5.90596 3.18987i 0.275367 0.148728i
\(461\) −4.58670 −0.213624 −0.106812 0.994279i \(-0.534064\pi\)
−0.106812 + 0.994279i \(0.534064\pi\)
\(462\) 0 0
\(463\) 5.55531 5.55531i 0.258177 0.258177i −0.566135 0.824312i \(-0.691562\pi\)
0.824312 + 0.566135i \(0.191562\pi\)
\(464\) 1.70917 5.20019i 0.0793460 0.241413i
\(465\) 6.93566 + 9.04818i 0.321634 + 0.419599i
\(466\) 8.64648 + 3.07013i 0.400540 + 0.142221i
\(467\) −8.99874 + 33.5838i −0.416412 + 1.55407i 0.365578 + 0.930781i \(0.380871\pi\)
−0.781990 + 0.623291i \(0.785795\pi\)
\(468\) 21.4708 + 9.60310i 0.992490 + 0.443904i
\(469\) 0 0
\(470\) −3.66732 + 2.37454i −0.169161 + 0.109529i
\(471\) 10.1848 5.88022i 0.469293 0.270946i
\(472\) 9.27534 + 8.84693i 0.426932 + 0.407213i
\(473\) −50.0962 + 13.4232i −2.30343 + 0.617202i
\(474\) 23.2504 + 27.2696i 1.06793 + 1.25253i
\(475\) −0.921955 + 0.920096i −0.0423022 + 0.0422169i
\(476\) 0 0
\(477\) 5.77333 5.77333i 0.264343 0.264343i
\(478\) 0.908353 11.4179i 0.0415471 0.522244i
\(479\) −14.8734 + 25.7615i −0.679583 + 1.17707i 0.295524 + 0.955335i \(0.404506\pi\)
−0.975107 + 0.221737i \(0.928827\pi\)
\(480\) −22.3336 + 22.1227i −1.01938 + 1.00976i
\(481\) −21.4917 37.2248i −0.979939 1.69730i
\(482\) −3.88741 2.67660i −0.177066 0.121916i
\(483\) 0 0
\(484\) −12.5364 32.8246i −0.569834 1.49203i
\(485\) 4.75985 + 36.2961i 0.216134 + 1.64812i
\(486\) 10.5476 29.7053i 0.478447 1.34746i
\(487\) −5.72475 + 1.53394i −0.259413 + 0.0695095i −0.386182 0.922423i \(-0.626206\pi\)
0.126768 + 0.991932i \(0.459539\pi\)
\(488\) −11.2269 + 3.29451i −0.508217 + 0.149135i
\(489\) 29.9586i 1.35477i
\(490\) 0 0
\(491\) 19.0115i 0.857977i −0.903310 0.428989i \(-0.858870\pi\)
0.903310 0.428989i \(-0.141130\pi\)
\(492\) −4.95997 47.9735i −0.223613 2.16281i
\(493\) 1.94919 0.522285i 0.0877872 0.0235225i
\(494\) 1.28543 + 0.456423i 0.0578344 + 0.0205354i
\(495\) −23.1248 + 30.1053i −1.03938 + 1.35313i
\(496\) 5.47026 + 6.11694i 0.245622 + 0.274659i
\(497\) 0 0
\(498\) 16.4346 23.8691i 0.736452 1.06960i
\(499\) 16.5605 + 28.6836i 0.741348 + 1.28405i 0.951882 + 0.306466i \(0.0991466\pi\)
−0.210534 + 0.977587i \(0.567520\pi\)
\(500\) 19.0280 + 11.7446i 0.850959 + 0.525232i
\(501\) −6.97411 + 12.0795i −0.311580 + 0.539673i
\(502\) 1.99647 + 0.158829i 0.0891067 + 0.00708888i
\(503\) −22.3897 + 22.3897i −0.998307 + 0.998307i −0.999999 0.00169150i \(-0.999462\pi\)
0.00169150 + 0.999999i \(0.499462\pi\)
\(504\) 0 0
\(505\) −2.42723 5.86822i −0.108010 0.261132i
\(506\) 8.63333 7.36091i 0.383798 0.327232i
\(507\) −1.70179 + 0.455992i −0.0755790 + 0.0202513i
\(508\) −10.0869 13.9331i −0.447536 0.618182i
\(509\) −9.71677 + 5.60998i −0.430688 + 0.248658i −0.699640 0.714496i \(-0.746656\pi\)
0.268952 + 0.963154i \(0.413323\pi\)
\(510\) −11.3323 2.42478i −0.501804 0.107371i
\(511\) 0 0
\(512\) −14.8262 + 17.0934i −0.655232 + 0.755427i
\(513\) −0.0295345 + 0.110224i −0.00130398 + 0.00486652i
\(514\) 3.81605 10.7472i 0.168319 0.474040i
\(515\) 20.6387 15.8201i 0.909449 0.697116i
\(516\) 37.4296 + 30.4152i 1.64775 + 1.33895i
\(517\) −5.22162 + 5.22162i −0.229647 + 0.229647i
\(518\) 0 0
\(519\) 29.9259 1.31360
\(520\) 2.51873 23.2812i 0.110454 1.02095i
\(521\) 14.4739 25.0695i 0.634111 1.09831i −0.352591 0.935777i \(-0.614699\pi\)
0.986703 0.162536i \(-0.0519673\pi\)
\(522\) −5.55046 + 2.64166i −0.242937 + 0.115622i
\(523\) −21.7294 5.82238i −0.950161 0.254595i −0.249731 0.968315i \(-0.580342\pi\)
−0.700431 + 0.713720i \(0.747009\pi\)
\(524\) 13.1059 5.00541i 0.572535 0.218662i
\(525\) 0 0
\(526\) 25.0262 4.61639i 1.09120 0.201284i
\(527\) −0.782982 + 2.92213i −0.0341072 + 0.127290i
\(528\) −29.0895 + 44.4629i −1.26596 + 1.93500i
\(529\) −17.9676 10.3736i −0.781201 0.451026i
\(530\) −7.23780 3.70018i −0.314390 0.160726i
\(531\) 14.3943i 0.624659i
\(532\) 0 0
\(533\) 25.4041 + 25.4041i 1.10037 + 1.10037i
\(534\) −20.4118 + 17.4035i −0.883307 + 0.753121i
\(535\) −4.78996 6.24892i −0.207088 0.270164i
\(536\) −0.469481 19.8593i −0.0202785 0.857789i
\(537\) −3.53625 0.947534i −0.152600 0.0408891i
\(538\) −9.01090 + 13.0872i −0.388488 + 0.564227i
\(539\) 0 0
\(540\) 1.95820 + 0.0555894i 0.0842675 + 0.00239219i
\(541\) 2.92645 + 5.06875i 0.125818 + 0.217923i 0.922052 0.387065i \(-0.126511\pi\)
−0.796235 + 0.604988i \(0.793178\pi\)
\(542\) 15.4454 + 32.4528i 0.663438 + 1.39397i
\(543\) −5.99146 22.3604i −0.257118 0.959579i
\(544\) −8.26560 1.12386i −0.354384 0.0481851i
\(545\) −7.53735 + 3.11762i −0.322864 + 0.133544i
\(546\) 0 0
\(547\) 13.8207 + 13.8207i 0.590930 + 0.590930i 0.937883 0.346952i \(-0.112783\pi\)
−0.346952 + 0.937883i \(0.612783\pi\)
\(548\) 1.30524 + 12.6244i 0.0557570 + 0.539289i
\(549\) 11.3788 + 6.56957i 0.485637 + 0.280383i
\(550\) 35.6032 + 12.6822i 1.51813 + 0.540771i
\(551\) −0.308732 + 0.178246i −0.0131524 + 0.00759356i
\(552\) −10.2526 2.48902i −0.436378 0.105940i
\(553\) 0 0
\(554\) 18.5626 3.42410i 0.788650 0.145476i
\(555\) −51.1619 39.2989i −2.17170 1.66815i
\(556\) 6.74757 + 1.08044i 0.286161 + 0.0458210i
\(557\) 9.09246 + 33.9335i 0.385260 + 1.43781i 0.837757 + 0.546044i \(0.183867\pi\)
−0.452496 + 0.891766i \(0.649466\pi\)
\(558\) 0.730815 9.18628i 0.0309378 0.388886i
\(559\) −35.9268 −1.51954
\(560\) 0 0
\(561\) −19.5877 −0.826994
\(562\) −1.40607 + 17.6741i −0.0593113 + 0.745538i
\(563\) −7.68371 28.6760i −0.323830 1.20855i −0.915483 0.402357i \(-0.868191\pi\)
0.591653 0.806193i \(-0.298475\pi\)
\(564\) 6.78066 + 1.08574i 0.285517 + 0.0457180i
\(565\) −25.4005 + 3.33100i −1.06861 + 0.140136i
\(566\) 39.0298 7.19952i 1.64055 0.302619i
\(567\) 0 0
\(568\) −20.0399 4.86509i −0.840854 0.204135i
\(569\) −27.0392 + 15.6111i −1.13354 + 0.654451i −0.944823 0.327581i \(-0.893767\pi\)
−0.188718 + 0.982031i \(0.560433\pi\)
\(570\) 2.04463 0.104382i 0.0856401 0.00437207i
\(571\) −20.8709 12.0498i −0.873420 0.504269i −0.00493696 0.999988i \(-0.501571\pi\)
−0.868483 + 0.495718i \(0.834905\pi\)
\(572\) −4.07047 39.3701i −0.170195 1.64615i
\(573\) −37.7950 37.7950i −1.57891 1.57891i
\(574\) 0 0
\(575\) −0.00757253 + 7.50463i −0.000315796 + 0.312965i
\(576\) 25.3817 1.20074i 1.05757 0.0500307i
\(577\) −0.854134 3.18767i −0.0355581 0.132705i 0.945865 0.324560i \(-0.105216\pi\)
−0.981423 + 0.191855i \(0.938550\pi\)
\(578\) 9.01024 + 18.9317i 0.374777 + 0.787454i
\(579\) 4.84954 + 8.39964i 0.201540 + 0.349077i
\(580\) 4.20293 + 4.44853i 0.174517 + 0.184715i
\(581\) 0 0
\(582\) 32.6302 47.3911i 1.35256 1.96442i
\(583\) −13.2713 3.55603i −0.549640 0.147276i
\(584\) −0.912916 38.6168i −0.0377767 1.59797i
\(585\) −20.8707 + 15.9979i −0.862898 + 0.661434i
\(586\) −19.2276 + 16.3938i −0.794287 + 0.677221i
\(587\) −29.4634 29.4634i −1.21608 1.21608i −0.968992 0.247092i \(-0.920525\pi\)
−0.247092 0.968992i \(-0.579475\pi\)
\(588\) 0 0
\(589\) 0.534436i 0.0220210i
\(590\) −13.6355 + 4.41006i −0.561364 + 0.181559i
\(591\) −32.9995 19.0523i −1.35742 0.783707i
\(592\) −38.8590 25.4231i −1.59709 1.04488i
\(593\) −0.0733317 + 0.273678i −0.00301137 + 0.0112386i −0.967415 0.253195i \(-0.918518\pi\)
0.964404 + 0.264434i \(0.0851851\pi\)
\(594\) 3.25619 0.600644i 0.133603 0.0246447i
\(595\) 0 0
\(596\) −25.0313 + 9.55994i −1.02532 + 0.391591i
\(597\) 49.5148 + 13.2674i 2.02650 + 0.543000i
\(598\) 7.09643 3.37744i 0.290195 0.138114i
\(599\) 0.792194 1.37212i 0.0323682 0.0560633i −0.849388 0.527770i \(-0.823028\pi\)
0.881756 + 0.471706i \(0.156362\pi\)
\(600\) −9.86225 33.7341i −0.402625 1.37719i
\(601\) −13.2735 −0.541438 −0.270719 0.962658i \(-0.587262\pi\)
−0.270719 + 0.962658i \(0.587262\pi\)
\(602\) 0 0
\(603\) −15.7740 + 15.7740i −0.642365 + 0.642365i
\(604\) −3.37384 2.74157i −0.137280 0.111553i
\(605\) 38.9458 + 5.14730i 1.58337 + 0.209267i
\(606\) −3.33985 + 9.40609i −0.135672 + 0.382096i
\(607\) 8.87912 33.1373i 0.360392 1.34500i −0.513168 0.858288i \(-0.671528\pi\)
0.873561 0.486715i \(-0.161805\pi\)
\(608\) 1.46184 0.186153i 0.0592853 0.00754948i
\(609\) 0 0
\(610\) 2.73706 12.7918i 0.110820 0.517923i
\(611\) −4.43005 + 2.55769i −0.179221 + 0.103473i
\(612\) 5.49321 + 7.58778i 0.222050 + 0.306718i
\(613\) 18.6732 5.00346i 0.754202 0.202088i 0.138821 0.990318i \(-0.455669\pi\)
0.615381 + 0.788230i \(0.289002\pi\)
\(614\) −14.7545 + 12.5799i −0.595443 + 0.507684i
\(615\) 49.8069 + 20.6601i 2.00841 + 0.833098i
\(616\) 0 0
\(617\) −22.2105 + 22.2105i −0.894159 + 0.894159i −0.994912 0.100752i \(-0.967875\pi\)
0.100752 + 0.994912i \(0.467875\pi\)
\(618\) −40.7446 3.24143i −1.63899 0.130390i
\(619\) −17.1081 + 29.6322i −0.687634 + 1.19102i 0.284967 + 0.958537i \(0.408017\pi\)
−0.972601 + 0.232480i \(0.925316\pi\)
\(620\) −8.92593 + 2.12216i −0.358474 + 0.0852281i
\(621\) 0.328735 + 0.569386i 0.0131917 + 0.0228487i
\(622\) 8.98456 13.0489i 0.360248 0.523213i
\(623\) 0 0
\(624\) −27.4359 + 24.5354i −1.09832 + 0.982203i
\(625\) −21.6758 + 12.4563i −0.867033 + 0.498251i
\(626\) −0.306860 0.108958i −0.0122646 0.00435483i
\(627\) 3.34247 0.895612i 0.133485 0.0357673i
\(628\) 0.973330 + 9.41417i 0.0388401 + 0.375666i
\(629\) 17.1189i 0.682577i
\(630\) 0 0
\(631\) 26.0102i 1.03545i −0.855548 0.517724i \(-0.826779\pi\)
0.855548 0.517724i \(-0.173221\pi\)
\(632\) −27.6725 + 8.12045i −1.10075 + 0.323014i
\(633\) −3.74479 + 1.00341i −0.148842 + 0.0398821i
\(634\) 6.78547 19.1101i 0.269485 0.758957i
\(635\) 19.0682 2.50058i 0.756697 0.0992327i
\(636\) 4.55852 + 11.9358i 0.180757 + 0.473285i
\(637\) 0 0
\(638\) 8.51988 + 5.86619i 0.337305 + 0.232245i
\(639\) 11.5790 + 20.0554i 0.458058 + 0.793380i
\(640\) −8.91378 23.6758i −0.352348 0.935869i
\(641\) 11.4725 19.8710i 0.453138 0.784858i −0.545441 0.838149i \(-0.683638\pi\)
0.998579 + 0.0532913i \(0.0169712\pi\)
\(642\) −0.981432 + 12.3365i −0.0387340 + 0.486884i
\(643\) 17.9293 17.9293i 0.707062 0.707062i −0.258855 0.965916i \(-0.583345\pi\)
0.965916 + 0.258855i \(0.0833450\pi\)
\(644\) 0 0
\(645\) −49.8277 + 20.6099i −1.96197 + 0.811513i
\(646\) 0.352470 + 0.413398i 0.0138677 + 0.0162649i
\(647\) 32.2515 8.64177i 1.26794 0.339743i 0.438697 0.898635i \(-0.355440\pi\)
0.829240 + 0.558892i \(0.188773\pi\)
\(648\) 17.2745 + 16.4766i 0.678608 + 0.647264i
\(649\) −20.9773 + 12.1112i −0.823429 + 0.475407i
\(650\) 21.5489 + 14.8691i 0.845217 + 0.583216i
\(651\) 0 0
\(652\) −22.0085 9.84357i −0.861919 0.385504i
\(653\) 8.98773 33.5427i 0.351717 1.31263i −0.532849 0.846210i \(-0.678879\pi\)
0.884566 0.466415i \(-0.154455\pi\)
\(654\) 12.0815 + 4.28982i 0.472424 + 0.167745i
\(655\) −2.05517 + 15.5499i −0.0803022 + 0.607587i
\(656\) 36.8725 + 12.1190i 1.43963 + 0.473168i
\(657\) −30.6728 + 30.6728i −1.19666 + 1.19666i
\(658\) 0 0
\(659\) −48.2178 −1.87830 −0.939149 0.343511i \(-0.888384\pi\)
−0.939149 + 0.343511i \(0.888384\pi\)
\(660\) −28.2306 52.2682i −1.09887 2.03454i
\(661\) −11.5458 + 19.9978i −0.449078 + 0.777826i −0.998326 0.0578332i \(-0.981581\pi\)
0.549248 + 0.835659i \(0.314914\pi\)
\(662\) −10.1631 21.3540i −0.395000 0.829945i
\(663\) −13.1065 3.51186i −0.509012 0.136389i
\(664\) 12.1350 + 19.9161i 0.470930 + 0.772894i
\(665\) 0 0
\(666\) 9.45959 + 51.2820i 0.366552 + 1.98714i
\(667\) −0.531606 + 1.98398i −0.0205839 + 0.0768200i
\(668\) −6.58247 9.09238i −0.254684 0.351795i
\(669\) 3.94295 + 2.27646i 0.152443 + 0.0880132i
\(670\) 19.7752 + 10.1097i 0.763982 + 0.390571i
\(671\) 22.1103i 0.853560i
\(672\) 0 0
\(673\) −15.6001 15.6001i −0.601340 0.601340i 0.339328 0.940668i \(-0.389800\pi\)
−0.940668 + 0.339328i \(0.889800\pi\)
\(674\) 12.6455 + 14.8314i 0.487086 + 0.571285i
\(675\) −1.09702 + 1.89568i −0.0422244 + 0.0729646i
\(676\) 0.224174 1.40001i 0.00862209 0.0538465i
\(677\) 16.9000 + 4.52833i 0.649519 + 0.174038i 0.568511 0.822675i \(-0.307520\pi\)
0.0810075 + 0.996713i \(0.474186\pi\)
\(678\) 33.1649 + 22.8350i 1.27369 + 0.876973i
\(679\) 0 0
\(680\) 5.50481 7.52835i 0.211100 0.288699i
\(681\) −7.27100 12.5937i −0.278625 0.482593i
\(682\) −14.0024 + 6.66422i −0.536178 + 0.255186i
\(683\) 3.51923 + 13.1339i 0.134659 + 0.502556i 0.999999 + 0.00136990i \(0.000436053\pi\)
−0.865340 + 0.501186i \(0.832897\pi\)
\(684\) −1.28430 1.04362i −0.0491066 0.0399038i
\(685\) −13.1069 5.43681i −0.500789 0.207730i
\(686\) 0 0
\(687\) 38.5615 + 38.5615i 1.47121 + 1.47121i
\(688\) −34.6422 + 17.5033i −1.32072 + 0.667309i
\(689\) −8.24247 4.75879i −0.314013 0.181296i
\(690\) 7.90469 8.75520i 0.300926 0.333305i
\(691\) −12.2266 + 7.05900i −0.465120 + 0.268537i −0.714195 0.699947i \(-0.753207\pi\)
0.249075 + 0.968484i \(0.419874\pi\)
\(692\) −9.83283 + 21.9845i −0.373788 + 0.835725i
\(693\) 0 0
\(694\) 1.06995 + 5.80039i 0.0406148 + 0.220180i
\(695\) −4.65407 + 6.05896i −0.176539 + 0.229830i
\(696\) −0.227340 9.61658i −0.00861729 0.364515i
\(697\) 3.70331 + 13.8210i 0.140273 + 0.523506i
\(698\) 42.4746 + 3.37907i 1.60769 + 0.127900i
\(699\) 16.1239 0.609863
\(700\) 0 0
\(701\) 10.5837 0.399740 0.199870 0.979822i \(-0.435948\pi\)
0.199870 + 0.979822i \(0.435948\pi\)
\(702\) 2.28646 + 0.181899i 0.0862968 + 0.00686534i
\(703\) 0.782732 + 2.92120i 0.0295213 + 0.110175i
\(704\) −23.1058 35.9793i −0.870833 1.35602i
\(705\) −4.67688 + 6.08867i −0.176142 + 0.229313i
\(706\) −1.40438 7.61339i −0.0528546 0.286534i
\(707\) 0 0
\(708\) 20.5621 + 9.19667i 0.772772 + 0.345632i
\(709\) −13.6491 + 7.88034i −0.512605 + 0.295952i −0.733904 0.679254i \(-0.762304\pi\)
0.221299 + 0.975206i \(0.428970\pi\)
\(710\) 15.4507 17.1131i 0.579853 0.642243i
\(711\) 28.0471 + 16.1930i 1.05185 + 0.607284i
\(712\) −6.07833 20.7134i −0.227795 0.776269i
\(713\) −2.17733 2.17733i −0.0815415 0.0815415i
\(714\) 0 0
\(715\) 40.8748 + 16.9550i 1.52863 + 0.634083i
\(716\) 1.85800 2.28650i 0.0694367 0.0854505i
\(717\) −5.20956 19.4423i −0.194555 0.726088i
\(718\) 29.7805 14.1736i 1.11140 0.528954i
\(719\) −5.20424 9.01401i −0.194085 0.336166i 0.752515 0.658575i \(-0.228841\pi\)
−0.946600 + 0.322409i \(0.895507\pi\)
\(720\) −12.3304 + 25.5940i −0.459525 + 0.953832i
\(721\) 0 0
\(722\) 22.0524 + 15.1837i 0.820704 + 0.565079i
\(723\) −8.01145 2.14666i −0.297949 0.0798352i
\(724\) 18.3953 + 2.94552i 0.683655 + 0.109469i
\(725\) −6.61097 + 1.76426i −0.245525 + 0.0655228i
\(726\) −40.0614 46.9865i −1.48682 1.74383i
\(727\) 11.4932 + 11.4932i 0.426259 + 0.426259i 0.887352 0.461093i \(-0.152542\pi\)
−0.461093 + 0.887352i \(0.652542\pi\)
\(728\) 0 0
\(729\) 30.0740i 1.11385i
\(730\) 38.4533 + 19.6585i 1.42322 + 0.727593i
\(731\) −12.3915 7.15425i −0.458317 0.264610i
\(732\) −16.6547 + 12.0572i −0.615574 + 0.445647i
\(733\) 5.20693 19.4325i 0.192322 0.717757i −0.800621 0.599171i \(-0.795497\pi\)
0.992944 0.118586i \(-0.0378362\pi\)
\(734\) −3.29846 17.8815i −0.121749 0.660019i
\(735\) 0 0
\(736\) 5.19722 6.71401i 0.191572 0.247482i
\(737\) 36.2600 + 9.71582i 1.33565 + 0.357887i
\(738\) −18.7310 39.3561i −0.689496 1.44872i
\(739\) 13.8181 23.9337i 0.508308 0.880416i −0.491645 0.870796i \(-0.663604\pi\)
0.999954 0.00962048i \(-0.00306234\pi\)
\(740\) 45.6805 24.6725i 1.67925 0.906979i
\(741\) 2.39707 0.0880587
\(742\) 0 0
\(743\) −22.3607 + 22.3607i −0.820334 + 0.820334i −0.986156 0.165822i \(-0.946972\pi\)
0.165822 + 0.986156i \(0.446972\pi\)
\(744\) 12.6556 + 6.91318i 0.463977 + 0.253450i
\(745\) 3.92522 29.6992i 0.143809 1.08809i
\(746\) −19.3775 6.88041i −0.709459 0.251910i
\(747\) 6.77845 25.2975i 0.248011 0.925588i
\(748\) 6.43598 14.3897i 0.235323 0.526140i
\(749\) 0 0
\(750\) 38.4165 + 8.26055i 1.40277 + 0.301633i
\(751\) 20.3290 11.7369i 0.741815 0.428287i −0.0809138 0.996721i \(-0.525784\pi\)
0.822729 + 0.568434i \(0.192451\pi\)
\(752\) −3.02556 + 4.62453i −0.110331 + 0.168639i
\(753\) 3.39957 0.910911i 0.123887 0.0331955i
\(754\) 4.64904 + 5.45269i 0.169308 + 0.198575i
\(755\) 4.49139 1.85774i 0.163458 0.0676101i
\(756\) 0 0
\(757\) 1.19863 1.19863i 0.0435649 0.0435649i −0.684989 0.728554i \(-0.740193\pi\)
0.728554 + 0.684989i \(0.240193\pi\)
\(758\) −2.05503 + 25.8315i −0.0746420 + 0.938244i
\(759\) 9.96865 17.2662i 0.361839 0.626724i
\(760\) −0.595127 + 1.53634i −0.0215875 + 0.0557290i
\(761\) 14.7741 + 25.5895i 0.535560 + 0.927618i 0.999136 + 0.0415603i \(0.0132329\pi\)
−0.463576 + 0.886057i \(0.653434\pi\)
\(762\) −24.8969 17.1422i −0.901918 0.620998i
\(763\) 0 0
\(764\) 40.1837 15.3469i 1.45379 0.555233i
\(765\) −10.3843 + 1.36178i −0.375444 + 0.0492354i
\(766\) 8.78486 24.7410i 0.317410 0.893928i
\(767\) −16.2076 + 4.34282i −0.585223 + 0.156810i
\(768\) −14.5014 + 37.0247i −0.523274 + 1.33602i
\(769\) 39.8461i 1.43689i 0.695584 + 0.718444i \(0.255146\pi\)
−0.695584 + 0.718444i \(0.744854\pi\)
\(770\) 0 0
\(771\) 20.0414i 0.721774i
\(772\) −7.76406 + 0.802724i −0.279434 + 0.0288907i
\(773\) −16.8262 + 4.50856i −0.605195 + 0.162162i −0.548388 0.836224i \(-0.684758\pi\)
−0.0568065 + 0.998385i \(0.518092\pi\)
\(774\) 41.0738 + 14.5842i 1.47637 + 0.524218i
\(775\) 2.66488 9.90546i 0.0957252 0.355815i
\(776\) 24.0935 + 39.5425i 0.864907 + 1.41949i
\(777\) 0 0
\(778\) −26.5161 + 38.5111i −0.950646 + 1.38069i
\(779\) −1.26388 2.18910i −0.0452830 0.0784325i
\(780\) −9.51842 40.0349i −0.340814 1.43348i
\(781\) 19.4849 33.7489i 0.697225 1.20763i
\(782\) 3.12019 + 0.248227i 0.111578 + 0.00887658i
\(783\) −0.423873 + 0.423873i −0.0151480 + 0.0151480i
\(784\) 0 0
\(785\) −9.77396 4.05429i −0.348848 0.144704i
\(786\) 18.7604 15.9954i 0.669161 0.570537i
\(787\) 37.2220 9.97361i 1.32682 0.355521i 0.475292 0.879828i \(-0.342342\pi\)
0.851529 + 0.524307i \(0.175676\pi\)
\(788\) 24.8391 17.9824i 0.884857 0.640597i
\(789\) 38.7293 22.3604i 1.37880 0.796050i
\(790\) 6.74643 31.5297i 0.240027 1.12178i
\(791\) 0 0
\(792\) −11.3283 + 46.6627i −0.402535 + 1.65809i
\(793\) 3.96414 14.7944i 0.140771 0.525364i
\(794\) −14.0814 + 39.6577i −0.499730 + 1.40740i
\(795\) −14.1616 1.87168i −0.502261 0.0663817i
\(796\) −26.0158 + 32.0157i −0.922107 + 1.13477i
\(797\) 4.70746 4.70746i 0.166747 0.166747i −0.618801 0.785548i \(-0.712381\pi\)
0.785548 + 0.618801i \(0.212381\pi\)
\(798\) 0 0
\(799\) −2.03729 −0.0720742
\(800\) 28.0225 + 3.83898i 0.990746 + 0.135728i
\(801\) −12.1208 + 20.9938i −0.428267 + 0.741780i
\(802\) 43.7768 20.8349i 1.54581 0.735706i
\(803\) 70.5083 + 18.8926i 2.48818 + 0.666707i
\(804\) −12.4548 32.6111i −0.439248 1.15011i
\(805\) 0 0
\(806\) −10.5640 + 1.94866i −0.372102 + 0.0686387i
\(807\) −7.22685 + 26.9710i −0.254397 + 0.949423i
\(808\) −5.81261 5.54414i −0.204487 0.195042i
\(809\) −6.63972 3.83344i −0.233440 0.134777i 0.378718 0.925512i \(-0.376365\pi\)
−0.612158 + 0.790735i \(0.709698\pi\)
\(810\) −25.3949 + 8.21336i −0.892287 + 0.288588i
\(811\) 6.37079i 0.223709i −0.993725 0.111854i \(-0.964321\pi\)
0.993725 0.111854i \(-0.0356790\pi\)
\(812\) 0 0
\(813\) 44.6603 + 44.6603i 1.56630 + 1.56630i
\(814\) 66.7758 56.9340i 2.34049 1.99554i
\(815\) 21.3933 16.3985i 0.749376 0.574416i
\(816\) −14.3488 + 2.99909i −0.502307 + 0.104989i
\(817\) 2.44162 + 0.654230i 0.0854215 + 0.0228886i
\(818\) 1.70305 2.47345i 0.0595456 0.0864822i
\(819\) 0 0
\(820\) −31.5427 + 29.8013i −1.10152 + 1.04071i
\(821\) −0.931693 1.61374i −0.0325163 0.0563199i 0.849309 0.527896i \(-0.177019\pi\)
−0.881826 + 0.471576i \(0.843685\pi\)
\(822\) 9.58473 + 20.1387i 0.334306 + 0.702419i
\(823\) 12.2331 + 45.6547i 0.426420 + 1.59142i 0.760802 + 0.648984i \(0.224806\pi\)
−0.334382 + 0.942437i \(0.608528\pi\)
\(824\) 15.7688 28.8671i 0.549332 1.00563i
\(825\) 66.4166 + 0.0670175i 2.31233 + 0.00233325i
\(826\) 0 0
\(827\) −10.7786 10.7786i −0.374809 0.374809i 0.494416 0.869225i \(-0.335382\pi\)
−0.869225 + 0.494416i \(0.835382\pi\)
\(828\) −9.48412 + 0.980561i −0.329596 + 0.0340769i
\(829\) 20.7913 + 12.0039i 0.722112 + 0.416911i 0.815529 0.578716i \(-0.196446\pi\)
−0.0934177 + 0.995627i \(0.529779\pi\)
\(830\) −26.0407 + 1.32942i −0.903886 + 0.0461449i
\(831\) 28.7265 16.5853i 0.996512 0.575337i
\(832\) −9.00978 28.2169i −0.312358 0.978246i
\(833\) 0 0
\(834\) 11.8094 2.17838i 0.408925 0.0754312i
\(835\) 12.4434 1.63182i 0.430621 0.0564713i
\(836\) −0.440300 + 2.74975i −0.0152281 + 0.0951022i
\(837\) −0.232590 0.868039i −0.00803950 0.0300038i
\(838\) 2.85491 35.8860i 0.0986213 1.23966i
\(839\) −21.1523 −0.730259 −0.365130 0.930957i \(-0.618975\pi\)
−0.365130 + 0.930957i \(0.618975\pi\)
\(840\) 0 0
\(841\) 27.1273 0.935424
\(842\) −0.730212 + 9.17870i −0.0251648 + 0.316319i
\(843\) 8.06403 + 30.0954i 0.277740 + 1.03654i
\(844\) 0.493296 3.08073i 0.0169800 0.106043i
\(845\) 1.25713 + 0.965642i 0.0432468 + 0.0332191i
\(846\) 6.10298 1.12577i 0.209825 0.0387047i
\(847\) 0 0
\(848\) −10.2662 0.572953i −0.352543 0.0196753i
\(849\) 60.4005 34.8723i 2.07294 1.19681i
\(850\) 4.47148 + 9.41963i 0.153371 + 0.323091i
\(851\) 15.0900 + 8.71224i 0.517280 + 0.298652i
\(852\) −36.0470 + 3.72689i −1.23495 + 0.127681i
\(853\) −11.2132 11.2132i −0.383931 0.383931i 0.488585 0.872516i \(-0.337513\pi\)
−0.872516 + 0.488585i \(0.837513\pi\)
\(854\) 0 0
\(855\) 1.70972 0.707177i 0.0584711 0.0241850i
\(856\) −8.74031 4.77443i −0.298738 0.163187i
\(857\) −7.32325 27.3307i −0.250157 0.933600i −0.970721 0.240211i \(-0.922783\pi\)
0.720563 0.693389i \(-0.243883\pi\)
\(858\) −29.8906 62.8040i −1.02045 2.14409i
\(859\) 13.9784 + 24.2113i 0.476936 + 0.826078i 0.999651 0.0264302i \(-0.00841397\pi\)
−0.522715 + 0.852508i \(0.675081\pi\)
\(860\) 1.23138 43.3768i 0.0419898 1.47914i
\(861\) 0 0
\(862\) 17.0344 24.7402i 0.580194 0.842656i
\(863\) 19.5121 + 5.22825i 0.664199 + 0.177972i 0.575140 0.818055i \(-0.304947\pi\)
0.0890588 + 0.996026i \(0.471614\pi\)
\(864\) 2.29332 0.938554i 0.0780204 0.0319302i
\(865\) −16.3807 21.3700i −0.556959 0.726602i
\(866\) −15.8204 + 13.4887i −0.537600 + 0.458366i
\(867\) 26.0530 + 26.0530i 0.884807 + 0.884807i
\(868\) 0 0
\(869\) 54.4985i 1.84874i
\(870\) 9.57586 + 4.89547i 0.324652 + 0.165972i
\(871\) 22.5202 + 13.0020i 0.763067 + 0.440557i
\(872\) −7.12108 + 7.46592i −0.241150 + 0.252828i
\(873\) 13.4583 50.2271i 0.455495 1.69993i
\(874\) −0.543783 + 0.100307i −0.0183937 + 0.00339295i
\(875\) 0 0
\(876\) −24.2187 63.4131i −0.818274 2.14253i
\(877\) −50.9185 13.6436i −1.71940 0.460711i −0.741699 0.670733i \(-0.765980\pi\)
−0.977697 + 0.210022i \(0.932646\pi\)
\(878\) 6.76149 3.21803i 0.228189 0.108603i
\(879\) −22.2016 + 38.4543i −0.748841 + 1.29703i
\(880\) 47.6736 3.56514i 1.60708 0.120181i
\(881\) 39.2472 1.32227 0.661136 0.750266i \(-0.270075\pi\)
0.661136 + 0.750266i \(0.270075\pi\)
\(882\) 0 0
\(883\) −15.5015 + 15.5015i −0.521668 + 0.521668i −0.918075 0.396407i \(-0.870257\pi\)
0.396407 + 0.918075i \(0.370257\pi\)
\(884\) 6.88634 8.47449i 0.231613 0.285028i
\(885\) −19.9874 + 15.3209i −0.671869 + 0.515005i
\(886\) −14.1037 + 39.7205i −0.473823 + 1.33444i
\(887\) −8.94877 + 33.3972i −0.300470 + 1.12137i 0.636305 + 0.771438i \(0.280462\pi\)
−0.936775 + 0.349932i \(0.886205\pi\)
\(888\) −79.2999 19.2517i −2.66113 0.646045i
\(889\) 0 0
\(890\) 23.6006 + 5.04984i 0.791095 + 0.169271i
\(891\) −39.0683 + 22.5561i −1.30884 + 0.755658i
\(892\) −2.96790 + 2.14863i −0.0993728 + 0.0719414i
\(893\) 0.347646 0.0931514i 0.0116335 0.00311719i
\(894\) −35.8309 + 30.5499i −1.19836 + 1.02174i
\(895\) 1.25902 + 3.04388i 0.0420843 + 0.101746i
\(896\) 0 0
\(897\) 9.76583 9.76583i 0.326072 0.326072i
\(898\) 13.4035 + 1.06632i 0.447282 + 0.0355835i
\(899\) 1.40373 2.43133i 0.0468169 0.0810893i
\(900\) −18.6000 25.7469i −0.620000 0.858230i
\(901\) −1.89527 3.28271i −0.0631408 0.109363i
\(902\) −41.5949 + 60.4111i −1.38496 + 2.01147i
\(903\) 0 0
\(904\) −27.6723 + 16.8610i −0.920368 + 0.560787i
\(905\) −12.6880 + 16.5180i −0.421762 + 0.549077i
\(906\) −7.19919 2.55624i −0.239177 0.0849253i
\(907\) −43.2674 + 11.5935i −1.43667 + 0.384955i −0.891366 0.453284i \(-0.850252\pi\)
−0.545304 + 0.838239i \(0.683586\pi\)
\(908\) 11.6408 1.20354i 0.386313 0.0399409i
\(909\) 9.02052i 0.299192i
\(910\) 0 0
\(911\) 0.963995i 0.0319386i 0.999872 + 0.0159693i \(0.00508340\pi\)
−0.999872 + 0.0159693i \(0.994917\pi\)
\(912\) 2.31136 1.16784i 0.0765369 0.0386710i
\(913\) −42.5702 + 11.4067i −1.40887 + 0.377505i
\(914\) −12.6591 + 35.6520i −0.418724 + 1.17926i
\(915\) −2.98902 22.7927i −0.0988140 0.753504i
\(916\) −40.9987 + 15.6582i −1.35464 + 0.517362i
\(917\) 0 0
\(918\) 0.752400 + 0.518050i 0.0248329 + 0.0170982i
\(919\) −19.8487 34.3789i −0.654747 1.13406i −0.981957 0.189104i \(-0.939442\pi\)
0.327210 0.944952i \(-0.393892\pi\)
\(920\) 3.83457 + 8.68374i 0.126422 + 0.286294i
\(921\) −17.0366 + 29.5082i −0.561374 + 0.972329i
\(922\) 0.514414 6.46615i 0.0169413 0.212951i
\(923\) 19.0885 19.0885i 0.628305 0.628305i
\(924\) 0 0
\(925\) −0.0585708 + 58.0457i −0.00192580 + 1.90853i
\(926\) 7.20861 + 8.45470i 0.236890 + 0.277839i
\(927\) −35.6798 + 9.56036i −1.17188 + 0.314003i
\(928\) 7.13932 + 2.99273i 0.234360 + 0.0982412i
\(929\) 13.3874 7.72921i 0.439226 0.253587i −0.264043 0.964511i \(-0.585056\pi\)
0.703269 + 0.710924i \(0.251723\pi\)
\(930\) −13.5336 + 8.76283i −0.443785 + 0.287344i
\(931\) 0 0
\(932\) −5.29788 + 11.8451i −0.173538 + 0.388000i
\(933\) 7.20572 26.8921i 0.235905 0.880408i
\(934\) −46.3358 16.4526i −1.51615 0.538345i
\(935\) 10.7218 + 13.9875i 0.350640 + 0.457441i
\(936\) −15.9461 + 29.1917i −0.521214 + 0.954161i
\(937\) 34.3456 34.3456i 1.12202 1.12202i 0.130585 0.991437i \(-0.458314\pi\)
0.991437 0.130585i \(-0.0416856\pi\)
\(938\) 0 0
\(939\) −0.572232 −0.0186741
\(940\) −2.93623 5.43635i −0.0957691 0.177314i
\(941\) −9.51809 + 16.4858i −0.310281 + 0.537422i −0.978423 0.206611i \(-0.933756\pi\)
0.668142 + 0.744034i \(0.267090\pi\)
\(942\) 7.14744 + 15.0177i 0.232876 + 0.489302i
\(943\) −14.0676 3.76941i −0.458105 0.122749i
\(944\) −13.5123 + 12.0838i −0.439788 + 0.393294i
\(945\) 0 0
\(946\) −13.3051 72.1291i −0.432586 2.34512i
\(947\) 1.46452 5.46566i 0.0475905 0.177610i −0.938040 0.346528i \(-0.887361\pi\)
0.985630 + 0.168918i \(0.0540272\pi\)
\(948\) −41.0511 + 29.7192i −1.33328 + 0.965233i
\(949\) 43.7910 + 25.2827i 1.42152 + 0.820712i
\(950\) −1.19371 1.40293i −0.0387292 0.0455170i
\(951\) 35.6364i 1.15559i
\(952\) 0 0
\(953\) −10.9748 10.9748i −0.355509 0.355509i 0.506646 0.862154i \(-0.330885\pi\)
−0.862154 + 0.506646i \(0.830885\pi\)
\(954\) 7.49151 + 8.78650i 0.242546 + 0.284474i
\(955\) −6.30130 + 47.6772i −0.203905 + 1.54280i
\(956\) 15.9947 + 2.56112i 0.517304 + 0.0828325i
\(957\) 17.5584 + 4.70476i 0.567582 + 0.152083i
\(958\) −34.6494 23.8572i −1.11947 0.770790i
\(959\) 0 0
\(960\) −28.6829 33.9661i −0.925735 1.09625i
\(961\) −13.3956 23.2019i −0.432116 0.748447i
\(962\) 54.8884 26.1233i 1.76967 0.842249i
\(963\) 2.89466 + 10.8030i 0.0932791 + 0.348122i
\(964\) 4.20934 5.18012i 0.135574 0.166840i
\(965\) 3.34365 8.06078i 0.107636 0.259486i
\(966\) 0 0
\(967\) 5.51012 + 5.51012i 0.177194 + 0.177194i 0.790131 0.612938i \(-0.210012\pi\)
−0.612938 + 0.790131i \(0.710012\pi\)
\(968\) 47.6808 13.9919i 1.53252 0.449715i
\(969\) 0.826775 + 0.477339i 0.0265598 + 0.0153343i
\(970\) −51.7027 + 2.63951i −1.66007 + 0.0847495i
\(971\) −42.0895 + 24.3004i −1.35072 + 0.779836i −0.988350 0.152200i \(-0.951364\pi\)
−0.362366 + 0.932036i \(0.618031\pi\)
\(972\) 40.6944 + 18.2011i 1.30527 + 0.583800i
\(973\) 0 0
\(974\) −1.52044 8.24255i −0.0487180 0.264108i
\(975\) 44.4284 + 11.9526i 1.42285 + 0.382790i
\(976\) −3.38533 16.1967i −0.108362 0.518443i
\(977\) 5.89146 + 21.9872i 0.188484 + 0.703433i 0.993858 + 0.110665i \(0.0352982\pi\)
−0.805373 + 0.592768i \(0.798035\pi\)
\(978\) −42.2344 3.35996i −1.35051 0.107440i
\(979\) 40.7933 1.30376
\(980\) 0 0
\(981\) 11.5863 0.369921
\(982\) 26.8017 + 2.13221i 0.855275 + 0.0680414i
\(983\) 3.67375 + 13.7106i 0.117174 + 0.437301i 0.999440 0.0334503i \(-0.0106495\pi\)
−0.882266 + 0.470751i \(0.843983\pi\)
\(984\) 68.1874 1.61198i 2.17373 0.0513879i
\(985\) 4.45789 + 33.9936i 0.142040 + 1.08313i
\(986\) 0.517687 + 2.80647i 0.0164865 + 0.0893762i
\(987\) 0 0
\(988\) −0.787612 + 1.76096i −0.0250573 + 0.0560237i
\(989\) 12.6127 7.28194i 0.401060 0.231552i
\(990\) −39.8478 35.9768i −1.26645 1.14342i
\(991\) 30.8581 + 17.8159i 0.980240 + 0.565942i 0.902343 0.431019i \(-0.141846\pi\)
0.0778976 + 0.996961i \(0.475179\pi\)
\(992\) −9.23692 + 7.02571i −0.293272 + 0.223067i
\(993\) −29.3865 29.3865i −0.932552 0.932552i
\(994\) 0 0
\(995\) −17.6288 42.6206i −0.558872 1.35116i
\(996\) 31.8065 + 25.8458i 1.00783 + 0.818957i
\(997\) 3.97096 + 14.8198i 0.125762 + 0.469349i 0.999866 0.0163900i \(-0.00521734\pi\)
−0.874104 + 0.485739i \(0.838551\pi\)
\(998\) −42.2942 + 20.1293i −1.33880 + 0.637182i
\(999\) 2.54265 + 4.40400i 0.0804459 + 0.139336i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.l.263.9 72
4.3 odd 2 inner 980.2.x.l.263.13 72
5.2 odd 4 inner 980.2.x.l.67.1 72
7.2 even 3 inner 980.2.x.l.863.15 72
7.3 odd 6 140.2.k.a.43.4 36
7.4 even 3 980.2.k.l.883.4 36
7.5 odd 6 980.2.x.k.863.15 72
7.6 odd 2 980.2.x.k.263.9 72
20.7 even 4 inner 980.2.x.l.67.15 72
28.3 even 6 140.2.k.a.43.13 yes 36
28.11 odd 6 980.2.k.l.883.13 36
28.19 even 6 980.2.x.k.863.1 72
28.23 odd 6 inner 980.2.x.l.863.1 72
28.27 even 2 980.2.x.k.263.13 72
35.2 odd 12 inner 980.2.x.l.667.13 72
35.3 even 12 700.2.k.b.407.6 36
35.12 even 12 980.2.x.k.667.13 72
35.17 even 12 140.2.k.a.127.13 yes 36
35.24 odd 6 700.2.k.b.43.15 36
35.27 even 4 980.2.x.k.67.1 72
35.32 odd 12 980.2.k.l.687.13 36
140.3 odd 12 700.2.k.b.407.15 36
140.27 odd 4 980.2.x.k.67.15 72
140.47 odd 12 980.2.x.k.667.9 72
140.59 even 6 700.2.k.b.43.6 36
140.67 even 12 980.2.k.l.687.4 36
140.87 odd 12 140.2.k.a.127.4 yes 36
140.107 even 12 inner 980.2.x.l.667.9 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.k.a.43.4 36 7.3 odd 6
140.2.k.a.43.13 yes 36 28.3 even 6
140.2.k.a.127.4 yes 36 140.87 odd 12
140.2.k.a.127.13 yes 36 35.17 even 12
700.2.k.b.43.6 36 140.59 even 6
700.2.k.b.43.15 36 35.24 odd 6
700.2.k.b.407.6 36 35.3 even 12
700.2.k.b.407.15 36 140.3 odd 12
980.2.k.l.687.4 36 140.67 even 12
980.2.k.l.687.13 36 35.32 odd 12
980.2.k.l.883.4 36 7.4 even 3
980.2.k.l.883.13 36 28.11 odd 6
980.2.x.k.67.1 72 35.27 even 4
980.2.x.k.67.15 72 140.27 odd 4
980.2.x.k.263.9 72 7.6 odd 2
980.2.x.k.263.13 72 28.27 even 2
980.2.x.k.667.9 72 140.47 odd 12
980.2.x.k.667.13 72 35.12 even 12
980.2.x.k.863.1 72 28.19 even 6
980.2.x.k.863.15 72 7.5 odd 6
980.2.x.l.67.1 72 5.2 odd 4 inner
980.2.x.l.67.15 72 20.7 even 4 inner
980.2.x.l.263.9 72 1.1 even 1 trivial
980.2.x.l.263.13 72 4.3 odd 2 inner
980.2.x.l.667.9 72 140.107 even 12 inner
980.2.x.l.667.13 72 35.2 odd 12 inner
980.2.x.l.863.1 72 28.23 odd 6 inner
980.2.x.l.863.15 72 7.2 even 3 inner