| L(s) = 1 | + (−0.112 + 1.40i)2-s + (0.643 + 2.40i)3-s + (−1.97 − 0.316i)4-s + (1.36 − 1.77i)5-s + (−3.45 + 0.637i)6-s + (0.667 − 2.74i)8-s + (−2.75 + 1.58i)9-s + (2.34 + 2.11i)10-s + (4.62 + 2.67i)11-s + (−0.511 − 4.94i)12-s + (2.61 + 2.61i)13-s + (5.13 + 2.12i)15-s + (3.80 + 1.24i)16-s + (0.381 + 1.42i)17-s + (−1.93 − 4.05i)18-s + (−0.130 − 0.225i)19-s + ⋯ |
| L(s) = 1 | + (−0.0793 + 0.996i)2-s + (0.371 + 1.38i)3-s + (−0.987 − 0.158i)4-s + (0.609 − 0.793i)5-s + (−1.41 + 0.260i)6-s + (0.235 − 0.971i)8-s + (−0.916 + 0.529i)9-s + (0.742 + 0.670i)10-s + (1.39 + 0.805i)11-s + (−0.147 − 1.42i)12-s + (0.726 + 0.726i)13-s + (1.32 + 0.549i)15-s + (0.950 + 0.312i)16-s + (0.0925 + 0.345i)17-s + (−0.454 − 0.956i)18-s + (−0.0298 − 0.0517i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.839 - 0.542i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.839 - 0.542i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.533256 + 1.80788i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.533256 + 1.80788i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.112 - 1.40i)T \) |
| 5 | \( 1 + (-1.36 + 1.77i)T \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + (-0.643 - 2.40i)T + (-2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (-4.62 - 2.67i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.61 - 2.61i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.381 - 1.42i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.130 + 0.225i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.44 + 0.388i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 1.36iT - 29T^{2} \) |
| 31 | \( 1 + (-1.77 - 1.02i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (11.2 + 3.00i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 9.70T + 41T^{2} \) |
| 43 | \( 1 + (6.86 - 6.86i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.357 - 1.33i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (2.48 - 0.665i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.26 - 3.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.06 + 3.58i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.78 + 1.81i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 7.29iT - 71T^{2} \) |
| 73 | \( 1 + (-13.1 + 3.53i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (5.09 + 8.83i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.83 - 5.83i)T - 83iT^{2} \) |
| 89 | \( 1 + (-6.60 + 3.81i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (11.5 - 11.5i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.881796168216091022094272162850, −9.316864398361556406554570336536, −8.940738178402837709268855889268, −8.114091675015054938206015904247, −6.77309406649165675752311998475, −6.05713873389013690986497109692, −4.96643540781153130412002620748, −4.32540897475125562738964969192, −3.66784826305040597015906542201, −1.55278769567736899012074188406,
1.00694374477868920650833555746, 1.91855953927789131989167484830, 3.00903888711270579076838521604, 3.75537214744607025279121090587, 5.48293754663752095821685026769, 6.34796460501493171674895619952, 7.11236972577358221629443630185, 8.195113314914620377205606245626, 8.780805708813938853452994757407, 9.710349379274364745729164235619