Properties

Label 980.2.x.l.263.7
Level $980$
Weight $2$
Character 980.263
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,0,0,0,0,16,0,0,0,-16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 263.7
Character \(\chi\) \(=\) 980.263
Dual form 980.2.x.l.667.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.335576 - 1.37382i) q^{2} +(-0.346182 - 1.29197i) q^{3} +(-1.77478 + 0.922043i) q^{4} +(-1.92528 - 1.13723i) q^{5} +(-1.65877 + 0.909146i) q^{6} +(1.86230 + 2.12881i) q^{8} +(1.04873 - 0.605487i) q^{9} +(-0.916275 + 3.02662i) q^{10} +(4.33338 + 2.50188i) q^{11} +(1.80565 + 1.97376i) q^{12} +(3.27438 + 3.27438i) q^{13} +(-0.802768 + 2.88109i) q^{15} +(2.29967 - 3.27284i) q^{16} +(0.873420 + 3.25965i) q^{17} +(-1.18376 - 1.23759i) q^{18} +(0.214380 + 0.371316i) q^{19} +(4.46552 + 0.243138i) q^{20} +(1.98296 - 6.79287i) q^{22} +(3.47589 + 0.931361i) q^{23} +(2.10567 - 3.14299i) q^{24} +(2.41342 + 4.37898i) q^{25} +(3.39961 - 5.59722i) q^{26} +(-3.98268 - 3.98268i) q^{27} +7.51811i q^{29} +(4.22750 + 0.136036i) q^{30} +(-0.353285 - 0.203969i) q^{31} +(-5.26802 - 2.06105i) q^{32} +(1.73221 - 6.46470i) q^{33} +(4.18508 - 2.29378i) q^{34} +(-1.30298 + 2.04158i) q^{36} +(-4.33681 - 1.16204i) q^{37} +(0.438182 - 0.419124i) q^{38} +(3.09687 - 5.36393i) q^{39} +(-1.16449 - 6.21643i) q^{40} -5.67429 q^{41} +(4.01233 - 4.01233i) q^{43} +(-9.99763 - 0.444713i) q^{44} +(-2.70769 - 0.0269194i) q^{45} +(0.113101 - 5.08780i) q^{46} +(2.60987 - 9.74016i) q^{47} +(-5.02452 - 1.83811i) q^{48} +(5.20605 - 4.78508i) q^{50} +(3.90900 - 2.25686i) q^{51} +(-8.83042 - 2.79218i) q^{52} +(1.10820 - 0.296942i) q^{53} +(-4.13501 + 6.80799i) q^{54} +(-5.49776 - 9.74487i) q^{55} +(0.405515 - 0.405515i) q^{57} +(10.3285 - 2.52289i) q^{58} +(1.93762 - 3.35606i) q^{59} +(-1.23176 - 5.85349i) q^{60} +(6.11723 + 10.5954i) q^{61} +(-0.161663 + 0.553797i) q^{62} +(-1.06370 + 7.92897i) q^{64} +(-2.58038 - 10.0278i) q^{65} +(-9.46264 - 0.210354i) q^{66} +(11.3327 - 3.03658i) q^{67} +(-4.55566 - 4.97982i) q^{68} -4.81316i q^{69} +12.2700i q^{71} +(3.24202 + 1.10496i) q^{72} +(5.17303 - 1.38611i) q^{73} +(-0.141115 + 6.34796i) q^{74} +(4.82202 - 4.63398i) q^{75} +(-0.722846 - 0.461337i) q^{76} +(-8.40832 - 2.45454i) q^{78} +(-0.0987717 - 0.171078i) q^{79} +(-8.14949 + 3.68589i) q^{80} +(-1.95031 + 3.37804i) q^{81} +(1.90416 + 7.79547i) q^{82} +(-1.86715 + 1.86715i) q^{83} +(2.02539 - 7.26902i) q^{85} +(-6.85867 - 4.16579i) q^{86} +(9.71316 - 2.60263i) q^{87} +(2.74400 + 13.8842i) q^{88} +(-6.11311 + 3.52940i) q^{89} +(0.871651 + 3.72891i) q^{90} +(-7.02768 + 1.55196i) q^{92} +(-0.141221 + 0.527043i) q^{93} +(-14.2571 - 0.316934i) q^{94} +(0.00953113 - 0.958687i) q^{95} +(-0.839124 + 7.51962i) q^{96} +(5.24949 - 5.24949i) q^{97} +6.05942 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 16 q^{6} - 16 q^{10} - 16 q^{12} + 8 q^{13} + 8 q^{16} - 20 q^{17} - 28 q^{18} - 40 q^{20} + 8 q^{22} + 20 q^{25} - 32 q^{26} + 4 q^{30} - 20 q^{37} - 36 q^{40} + 20 q^{45} - 16 q^{46} + 48 q^{48}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.335576 1.37382i −0.237288 0.971439i
\(3\) −0.346182 1.29197i −0.199868 0.745919i −0.990953 0.134212i \(-0.957150\pi\)
0.791084 0.611707i \(-0.209517\pi\)
\(4\) −1.77478 + 0.922043i −0.887389 + 0.461022i
\(5\) −1.92528 1.13723i −0.861012 0.508585i
\(6\) −1.65877 + 0.909146i −0.677188 + 0.371157i
\(7\) 0 0
\(8\) 1.86230 + 2.12881i 0.658421 + 0.752650i
\(9\) 1.04873 0.605487i 0.349578 0.201829i
\(10\) −0.916275 + 3.02662i −0.289752 + 0.957102i
\(11\) 4.33338 + 2.50188i 1.30656 + 0.754345i 0.981521 0.191355i \(-0.0612881\pi\)
0.325042 + 0.945699i \(0.394621\pi\)
\(12\) 1.80565 + 1.97376i 0.521246 + 0.569776i
\(13\) 3.27438 + 3.27438i 0.908150 + 0.908150i 0.996123 0.0879732i \(-0.0280390\pi\)
−0.0879732 + 0.996123i \(0.528039\pi\)
\(14\) 0 0
\(15\) −0.802768 + 2.88109i −0.207274 + 0.743895i
\(16\) 2.29967 3.27284i 0.574918 0.818211i
\(17\) 0.873420 + 3.25965i 0.211835 + 0.790581i 0.987257 + 0.159136i \(0.0508710\pi\)
−0.775421 + 0.631444i \(0.782462\pi\)
\(18\) −1.18376 1.23759i −0.279015 0.291702i
\(19\) 0.214380 + 0.371316i 0.0491820 + 0.0851858i 0.889568 0.456802i \(-0.151005\pi\)
−0.840386 + 0.541988i \(0.817672\pi\)
\(20\) 4.46552 + 0.243138i 0.998521 + 0.0543673i
\(21\) 0 0
\(22\) 1.98296 6.79287i 0.422768 1.44824i
\(23\) 3.47589 + 0.931361i 0.724773 + 0.194202i 0.602300 0.798270i \(-0.294251\pi\)
0.122472 + 0.992472i \(0.460918\pi\)
\(24\) 2.10567 3.14299i 0.429818 0.641560i
\(25\) 2.41342 + 4.37898i 0.482683 + 0.875795i
\(26\) 3.39961 5.59722i 0.666719 1.09771i
\(27\) −3.98268 3.98268i −0.766468 0.766468i
\(28\) 0 0
\(29\) 7.51811i 1.39608i 0.716060 + 0.698039i \(0.245944\pi\)
−0.716060 + 0.698039i \(0.754056\pi\)
\(30\) 4.22750 + 0.136036i 0.771832 + 0.0248367i
\(31\) −0.353285 0.203969i −0.0634518 0.0366339i 0.467938 0.883761i \(-0.344997\pi\)
−0.531390 + 0.847127i \(0.678330\pi\)
\(32\) −5.26802 2.06105i −0.931263 0.364346i
\(33\) 1.73221 6.46470i 0.301539 1.12536i
\(34\) 4.18508 2.29378i 0.717735 0.393381i
\(35\) 0 0
\(36\) −1.30298 + 2.04158i −0.217164 + 0.340264i
\(37\) −4.33681 1.16204i −0.712967 0.191039i −0.115935 0.993257i \(-0.536987\pi\)
−0.597031 + 0.802218i \(0.703653\pi\)
\(38\) 0.438182 0.419124i 0.0710825 0.0679909i
\(39\) 3.09687 5.36393i 0.495895 0.858916i
\(40\) −1.16449 6.21643i −0.184122 0.982903i
\(41\) −5.67429 −0.886176 −0.443088 0.896478i \(-0.646117\pi\)
−0.443088 + 0.896478i \(0.646117\pi\)
\(42\) 0 0
\(43\) 4.01233 4.01233i 0.611875 0.611875i −0.331560 0.943434i \(-0.607575\pi\)
0.943434 + 0.331560i \(0.107575\pi\)
\(44\) −9.99763 0.444713i −1.50720 0.0670431i
\(45\) −2.70769 0.0269194i −0.403638 0.00401291i
\(46\) 0.113101 5.08780i 0.0166759 0.750155i
\(47\) 2.60987 9.74016i 0.380689 1.42075i −0.464164 0.885749i \(-0.653645\pi\)
0.844852 0.535000i \(-0.179688\pi\)
\(48\) −5.02452 1.83811i −0.725227 0.265308i
\(49\) 0 0
\(50\) 5.20605 4.78508i 0.736247 0.676713i
\(51\) 3.90900 2.25686i 0.547370 0.316024i
\(52\) −8.83042 2.79218i −1.22456 0.387205i
\(53\) 1.10820 0.296942i 0.152223 0.0407881i −0.181903 0.983317i \(-0.558226\pi\)
0.334126 + 0.942528i \(0.391559\pi\)
\(54\) −4.13501 + 6.80799i −0.562704 + 0.926451i
\(55\) −5.49776 9.74487i −0.741318 1.31400i
\(56\) 0 0
\(57\) 0.405515 0.405515i 0.0537117 0.0537117i
\(58\) 10.3285 2.52289i 1.35620 0.331272i
\(59\) 1.93762 3.35606i 0.252257 0.436921i −0.711890 0.702291i \(-0.752161\pi\)
0.964147 + 0.265370i \(0.0854939\pi\)
\(60\) −1.23176 5.85349i −0.159019 0.755682i
\(61\) 6.11723 + 10.5954i 0.783231 + 1.35660i 0.930050 + 0.367433i \(0.119763\pi\)
−0.146819 + 0.989163i \(0.546903\pi\)
\(62\) −0.161663 + 0.553797i −0.0205313 + 0.0703323i
\(63\) 0 0
\(64\) −1.06370 + 7.92897i −0.132963 + 0.991121i
\(65\) −2.58038 10.0278i −0.320057 1.24380i
\(66\) −9.46264 0.210354i −1.16477 0.0258928i
\(67\) 11.3327 3.03658i 1.38451 0.370977i 0.511750 0.859134i \(-0.328997\pi\)
0.872756 + 0.488157i \(0.162331\pi\)
\(68\) −4.55566 4.97982i −0.552455 0.603892i
\(69\) 4.81316i 0.579436i
\(70\) 0 0
\(71\) 12.2700i 1.45618i 0.685482 + 0.728090i \(0.259592\pi\)
−0.685482 + 0.728090i \(0.740408\pi\)
\(72\) 3.24202 + 1.10496i 0.382076 + 0.130221i
\(73\) 5.17303 1.38611i 0.605457 0.162232i 0.0569493 0.998377i \(-0.481863\pi\)
0.548508 + 0.836145i \(0.315196\pi\)
\(74\) −0.141115 + 6.34796i −0.0164043 + 0.737935i
\(75\) 4.82202 4.63398i 0.556799 0.535086i
\(76\) −0.722846 0.461337i −0.0829161 0.0529189i
\(77\) 0 0
\(78\) −8.40832 2.45454i −0.952055 0.277922i
\(79\) −0.0987717 0.171078i −0.0111127 0.0192477i 0.860416 0.509593i \(-0.170204\pi\)
−0.871528 + 0.490345i \(0.836871\pi\)
\(80\) −8.14949 + 3.68589i −0.911141 + 0.412095i
\(81\) −1.95031 + 3.37804i −0.216701 + 0.375337i
\(82\) 1.90416 + 7.79547i 0.210279 + 0.860866i
\(83\) −1.86715 + 1.86715i −0.204946 + 0.204946i −0.802115 0.597169i \(-0.796292\pi\)
0.597169 + 0.802115i \(0.296292\pi\)
\(84\) 0 0
\(85\) 2.02539 7.26902i 0.219684 0.788436i
\(86\) −6.85867 4.16579i −0.739590 0.449209i
\(87\) 9.71316 2.60263i 1.04136 0.279032i
\(88\) 2.74400 + 13.8842i 0.292512 + 1.48006i
\(89\) −6.11311 + 3.52940i −0.647988 + 0.374116i −0.787685 0.616078i \(-0.788721\pi\)
0.139697 + 0.990194i \(0.455387\pi\)
\(90\) 0.871651 + 3.72891i 0.0918801 + 0.393062i
\(91\) 0 0
\(92\) −7.02768 + 1.55196i −0.732687 + 0.161803i
\(93\) −0.141221 + 0.527043i −0.0146439 + 0.0546518i
\(94\) −14.2571 0.316934i −1.47050 0.0326892i
\(95\) 0.00953113 0.958687i 0.000977873 0.0983592i
\(96\) −0.839124 + 7.51962i −0.0856427 + 0.767468i
\(97\) 5.24949 5.24949i 0.533005 0.533005i −0.388460 0.921465i \(-0.626993\pi\)
0.921465 + 0.388460i \(0.126993\pi\)
\(98\) 0 0
\(99\) 6.05942 0.608994
\(100\) −8.32088 5.54643i −0.832088 0.554643i
\(101\) −4.85758 + 8.41357i −0.483347 + 0.837181i −0.999817 0.0191239i \(-0.993912\pi\)
0.516470 + 0.856305i \(0.327246\pi\)
\(102\) −4.41230 4.61293i −0.436883 0.456748i
\(103\) 0.119769 + 0.0320920i 0.0118012 + 0.00316212i 0.264715 0.964327i \(-0.414722\pi\)
−0.252914 + 0.967489i \(0.581389\pi\)
\(104\) −0.872681 + 13.0684i −0.0855734 + 1.28146i
\(105\) 0 0
\(106\) −0.779831 1.42283i −0.0757439 0.138197i
\(107\) 0.613518 2.28968i 0.0593110 0.221352i −0.929909 0.367790i \(-0.880114\pi\)
0.989220 + 0.146439i \(0.0467811\pi\)
\(108\) 10.7406 + 3.39617i 1.03351 + 0.326797i
\(109\) 8.75938 + 5.05723i 0.838996 + 0.484395i 0.856923 0.515445i \(-0.172373\pi\)
−0.0179266 + 0.999839i \(0.505707\pi\)
\(110\) −11.5428 + 10.8231i −1.10056 + 1.03194i
\(111\) 6.00530i 0.569998i
\(112\) 0 0
\(113\) −7.67087 7.67087i −0.721614 0.721614i 0.247320 0.968934i \(-0.420450\pi\)
−0.968934 + 0.247320i \(0.920450\pi\)
\(114\) −0.693186 0.421025i −0.0649229 0.0394326i
\(115\) −5.63289 5.74602i −0.525270 0.535819i
\(116\) −6.93202 13.3430i −0.643622 1.23886i
\(117\) 5.41655 + 1.45136i 0.500760 + 0.134178i
\(118\) −5.26084 1.53574i −0.484300 0.141376i
\(119\) 0 0
\(120\) −7.62830 + 3.65650i −0.696366 + 0.333792i
\(121\) 7.01879 + 12.1569i 0.638072 + 1.10517i
\(122\) 12.5033 11.9595i 1.13200 1.08277i
\(123\) 1.96434 + 7.33101i 0.177118 + 0.661015i
\(124\) 0.815070 + 0.0362558i 0.0731954 + 0.00325587i
\(125\) 0.333400 11.1754i 0.0298202 0.999555i
\(126\) 0 0
\(127\) −6.81065 6.81065i −0.604347 0.604347i 0.337116 0.941463i \(-0.390549\pi\)
−0.941463 + 0.337116i \(0.890549\pi\)
\(128\) 11.2499 1.19943i 0.994364 0.106016i
\(129\) −6.57280 3.79481i −0.578703 0.334114i
\(130\) −12.9105 + 6.91008i −1.13233 + 0.606054i
\(131\) 1.88090 1.08594i 0.164335 0.0948786i −0.415577 0.909558i \(-0.636420\pi\)
0.579912 + 0.814679i \(0.303087\pi\)
\(132\) 2.88644 + 13.0706i 0.251233 + 1.13765i
\(133\) 0 0
\(134\) −7.97469 14.5501i −0.688909 1.25694i
\(135\) 3.13856 + 12.1970i 0.270124 + 1.04975i
\(136\) −5.31262 + 7.92978i −0.455553 + 0.679973i
\(137\) −3.01914 11.2676i −0.257943 0.962655i −0.966430 0.256931i \(-0.917289\pi\)
0.708487 0.705724i \(-0.249378\pi\)
\(138\) −6.61243 + 1.61518i −0.562887 + 0.137493i
\(139\) 15.0008 1.27235 0.636175 0.771545i \(-0.280516\pi\)
0.636175 + 0.771545i \(0.280516\pi\)
\(140\) 0 0
\(141\) −13.4875 −1.13585
\(142\) 16.8568 4.11751i 1.41459 0.345534i
\(143\) 5.99703 + 22.3812i 0.501497 + 1.87161i
\(144\) 0.430080 4.82476i 0.0358400 0.402064i
\(145\) 8.54982 14.4745i 0.710024 1.20204i
\(146\) −3.64021 6.64168i −0.301266 0.549669i
\(147\) 0 0
\(148\) 8.76832 1.93635i 0.720752 0.159167i
\(149\) −7.79115 + 4.49822i −0.638276 + 0.368509i −0.783950 0.620824i \(-0.786798\pi\)
0.145674 + 0.989333i \(0.453465\pi\)
\(150\) −7.98442 5.06955i −0.651925 0.413927i
\(151\) 0.549816 + 0.317436i 0.0447434 + 0.0258326i 0.522205 0.852820i \(-0.325110\pi\)
−0.477461 + 0.878653i \(0.658443\pi\)
\(152\) −0.391225 + 1.14788i −0.0317326 + 0.0931050i
\(153\) 2.88966 + 2.88966i 0.233615 + 0.233615i
\(154\) 0 0
\(155\) 0.448212 + 0.794463i 0.0360013 + 0.0638128i
\(156\) −0.550474 + 12.3752i −0.0440732 + 0.990811i
\(157\) 2.21196 + 8.25515i 0.176534 + 0.658832i 0.996285 + 0.0861134i \(0.0274447\pi\)
−0.819752 + 0.572719i \(0.805889\pi\)
\(158\) −0.201885 + 0.193104i −0.0160611 + 0.0153625i
\(159\) −0.767279 1.32897i −0.0608492 0.105394i
\(160\) 7.79853 + 9.95906i 0.616528 + 0.787333i
\(161\) 0 0
\(162\) 5.29530 + 1.54579i 0.416038 + 0.121449i
\(163\) −19.0319 5.09959i −1.49069 0.399430i −0.580723 0.814101i \(-0.697230\pi\)
−0.909972 + 0.414671i \(0.863897\pi\)
\(164\) 10.0706 5.23194i 0.786382 0.408546i
\(165\) −10.6868 + 10.4764i −0.831970 + 0.815590i
\(166\) 3.19170 + 1.93856i 0.247724 + 0.150461i
\(167\) −8.56192 8.56192i −0.662541 0.662541i 0.293437 0.955978i \(-0.405201\pi\)
−0.955978 + 0.293437i \(0.905201\pi\)
\(168\) 0 0
\(169\) 8.44313i 0.649471i
\(170\) −10.6660 0.343221i −0.818046 0.0263238i
\(171\) 0.449654 + 0.259608i 0.0343859 + 0.0198527i
\(172\) −3.42145 + 10.8205i −0.260883 + 0.825058i
\(173\) −4.79365 + 17.8901i −0.364454 + 1.36016i 0.503705 + 0.863876i \(0.331970\pi\)
−0.868159 + 0.496286i \(0.834697\pi\)
\(174\) −6.83506 12.4708i −0.518165 0.945407i
\(175\) 0 0
\(176\) 18.1536 8.42898i 1.36838 0.635358i
\(177\) −5.00669 1.34154i −0.376326 0.100836i
\(178\) 6.90019 + 7.21394i 0.517191 + 0.540708i
\(179\) 11.8144 20.4632i 0.883050 1.52949i 0.0351179 0.999383i \(-0.488819\pi\)
0.847932 0.530105i \(-0.177847\pi\)
\(180\) 4.83036 2.44883i 0.360034 0.182525i
\(181\) 0.943069 0.0700978 0.0350489 0.999386i \(-0.488841\pi\)
0.0350489 + 0.999386i \(0.488841\pi\)
\(182\) 0 0
\(183\) 11.5712 11.5712i 0.855368 0.855368i
\(184\) 4.49044 + 9.13399i 0.331040 + 0.673367i
\(185\) 7.02806 + 7.16921i 0.516713 + 0.527091i
\(186\) 0.771454 + 0.0171494i 0.0565658 + 0.00125745i
\(187\) −4.37038 + 16.3105i −0.319594 + 1.19274i
\(188\) 4.34892 + 19.6930i 0.317177 + 1.43626i
\(189\) 0 0
\(190\) −1.32026 + 0.308618i −0.0957821 + 0.0223895i
\(191\) −14.9539 + 8.63366i −1.08203 + 0.624710i −0.931443 0.363887i \(-0.881449\pi\)
−0.150586 + 0.988597i \(0.548116\pi\)
\(192\) 10.6122 1.37060i 0.765871 0.0989142i
\(193\) 5.76504 1.54474i 0.414977 0.111193i −0.0452888 0.998974i \(-0.514421\pi\)
0.460266 + 0.887781i \(0.347754\pi\)
\(194\) −8.97347 5.45027i −0.644258 0.391306i
\(195\) −12.0624 + 6.80522i −0.863804 + 0.487332i
\(196\) 0 0
\(197\) 5.72538 5.72538i 0.407917 0.407917i −0.473095 0.881012i \(-0.656863\pi\)
0.881012 + 0.473095i \(0.156863\pi\)
\(198\) −2.03339 8.32457i −0.144507 0.591601i
\(199\) 9.97026 17.2690i 0.706773 1.22417i −0.259275 0.965804i \(-0.583483\pi\)
0.966048 0.258363i \(-0.0831832\pi\)
\(200\) −4.82753 + 13.2927i −0.341358 + 0.939933i
\(201\) −7.84634 13.5903i −0.553438 0.958583i
\(202\) 13.1888 + 3.85006i 0.927963 + 0.270889i
\(203\) 0 0
\(204\) −4.85668 + 7.60970i −0.340036 + 0.532786i
\(205\) 10.9246 + 6.45298i 0.763008 + 0.450695i
\(206\) 0.00389715 0.175311i 0.000271527 0.0122145i
\(207\) 4.20921 1.12785i 0.292560 0.0783913i
\(208\) 18.2465 3.18653i 1.26517 0.220946i
\(209\) 2.14541i 0.148401i
\(210\) 0 0
\(211\) 7.74837i 0.533420i 0.963777 + 0.266710i \(0.0859365\pi\)
−0.963777 + 0.266710i \(0.914063\pi\)
\(212\) −1.69302 + 1.54882i −0.116277 + 0.106373i
\(213\) 15.8524 4.24765i 1.08619 0.291044i
\(214\) −3.35150 0.0745036i −0.229104 0.00509296i
\(215\) −12.2878 + 3.16192i −0.838022 + 0.215641i
\(216\) 1.06146 15.8953i 0.0722230 1.08154i
\(217\) 0 0
\(218\) 4.00830 13.7309i 0.271476 0.929975i
\(219\) −3.58162 6.20355i −0.242023 0.419197i
\(220\) 18.7425 + 12.2258i 1.26362 + 0.824263i
\(221\) −7.81342 + 13.5332i −0.525587 + 0.910344i
\(222\) 8.25021 2.01523i 0.553718 0.135254i
\(223\) 11.1091 11.1091i 0.743923 0.743923i −0.229407 0.973331i \(-0.573679\pi\)
0.973331 + 0.229407i \(0.0736787\pi\)
\(224\) 0 0
\(225\) 5.18244 + 3.13109i 0.345496 + 0.208739i
\(226\) −7.96425 + 13.1126i −0.529774 + 0.872235i
\(227\) 6.66488 1.78585i 0.442364 0.118531i −0.0307604 0.999527i \(-0.509793\pi\)
0.473124 + 0.880996i \(0.343126\pi\)
\(228\) −0.345796 + 1.09360i −0.0229009 + 0.0724255i
\(229\) 4.37314 2.52483i 0.288985 0.166846i −0.348499 0.937309i \(-0.613308\pi\)
0.637484 + 0.770463i \(0.279975\pi\)
\(230\) −6.00375 + 9.66682i −0.395875 + 0.637411i
\(231\) 0 0
\(232\) −16.0047 + 14.0009i −1.05076 + 0.919207i
\(233\) 0.898620 3.35370i 0.0588706 0.219708i −0.930223 0.366994i \(-0.880387\pi\)
0.989094 + 0.147286i \(0.0470537\pi\)
\(234\) 0.176248 7.92842i 0.0115217 0.518297i
\(235\) −16.1015 + 15.7845i −1.05035 + 1.02967i
\(236\) −0.344415 + 7.74282i −0.0224195 + 0.504015i
\(237\) −0.186834 + 0.186834i −0.0121362 + 0.0121362i
\(238\) 0 0
\(239\) −11.2814 −0.729734 −0.364867 0.931060i \(-0.618886\pi\)
−0.364867 + 0.931060i \(0.618886\pi\)
\(240\) 7.58326 + 9.25290i 0.489497 + 0.597272i
\(241\) 13.0568 22.6150i 0.841062 1.45676i −0.0479359 0.998850i \(-0.515264\pi\)
0.888998 0.457912i \(-0.151402\pi\)
\(242\) 14.3461 13.7221i 0.922201 0.882092i
\(243\) −11.2819 3.02297i −0.723732 0.193923i
\(244\) −20.6261 13.1641i −1.32045 0.842742i
\(245\) 0 0
\(246\) 9.41232 5.15876i 0.600108 0.328911i
\(247\) −0.513870 + 1.91779i −0.0326968 + 0.122026i
\(248\) −0.223709 1.13193i −0.0142055 0.0718775i
\(249\) 3.05867 + 1.76592i 0.193835 + 0.111911i
\(250\) −15.4649 + 3.29215i −0.978083 + 0.208214i
\(251\) 26.0311i 1.64307i 0.570157 + 0.821536i \(0.306882\pi\)
−0.570157 + 0.821536i \(0.693118\pi\)
\(252\) 0 0
\(253\) 12.7322 + 12.7322i 0.800466 + 0.800466i
\(254\) −7.07114 + 11.6421i −0.443683 + 0.730491i
\(255\) −10.0925 0.100338i −0.632017 0.00628342i
\(256\) −5.42302 15.0529i −0.338939 0.940809i
\(257\) 5.34936 + 1.43336i 0.333684 + 0.0894104i 0.421771 0.906702i \(-0.361409\pi\)
−0.0880868 + 0.996113i \(0.528075\pi\)
\(258\) −3.00772 + 10.3033i −0.187253 + 0.641456i
\(259\) 0 0
\(260\) 13.8257 + 15.4179i 0.857433 + 0.956180i
\(261\) 4.55212 + 7.88449i 0.281769 + 0.488038i
\(262\) −2.12307 2.21960i −0.131163 0.137128i
\(263\) −3.78833 14.1383i −0.233599 0.871802i −0.978776 0.204935i \(-0.934302\pi\)
0.745177 0.666867i \(-0.232365\pi\)
\(264\) 16.9880 8.35163i 1.04554 0.514007i
\(265\) −2.47129 0.688584i −0.151810 0.0422994i
\(266\) 0 0
\(267\) 6.67613 + 6.67613i 0.408572 + 0.408572i
\(268\) −17.3131 + 15.8385i −1.05757 + 0.967489i
\(269\) −17.0194 9.82616i −1.03769 0.599112i −0.118513 0.992953i \(-0.537813\pi\)
−0.919179 + 0.393841i \(0.871146\pi\)
\(270\) 15.7033 8.40485i 0.955673 0.511503i
\(271\) −11.8744 + 6.85570i −0.721320 + 0.416454i −0.815238 0.579126i \(-0.803394\pi\)
0.0939185 + 0.995580i \(0.470061\pi\)
\(272\) 12.6769 + 4.63755i 0.768650 + 0.281193i
\(273\) 0 0
\(274\) −14.4665 + 7.92889i −0.873954 + 0.479002i
\(275\) −0.497417 + 25.0138i −0.0299954 + 1.50839i
\(276\) 4.43794 + 8.54229i 0.267133 + 0.514185i
\(277\) 1.82693 + 6.81819i 0.109770 + 0.409666i 0.998843 0.0481000i \(-0.0153166\pi\)
−0.889073 + 0.457765i \(0.848650\pi\)
\(278\) −5.03390 20.6084i −0.301913 1.23601i
\(279\) −0.494002 −0.0295751
\(280\) 0 0
\(281\) 15.9701 0.952697 0.476348 0.879257i \(-0.341960\pi\)
0.476348 + 0.879257i \(0.341960\pi\)
\(282\) 4.52607 + 18.5294i 0.269524 + 1.10341i
\(283\) 5.58000 + 20.8249i 0.331697 + 1.23791i 0.907406 + 0.420255i \(0.138059\pi\)
−0.575710 + 0.817654i \(0.695274\pi\)
\(284\) −11.3135 21.7765i −0.671330 1.29220i
\(285\) −1.24189 + 0.319566i −0.0735634 + 0.0189295i
\(286\) 28.7354 15.7495i 1.69916 0.931285i
\(287\) 0 0
\(288\) −6.77270 + 1.02822i −0.399085 + 0.0605885i
\(289\) 4.85999 2.80592i 0.285882 0.165054i
\(290\) −22.7545 6.88865i −1.33619 0.404516i
\(291\) −8.59946 4.96490i −0.504109 0.291048i
\(292\) −7.90292 + 7.22979i −0.462484 + 0.423092i
\(293\) 19.8931 + 19.8931i 1.16217 + 1.16217i 0.984000 + 0.178170i \(0.0570177\pi\)
0.178170 + 0.984000i \(0.442982\pi\)
\(294\) 0 0
\(295\) −7.54707 + 4.25783i −0.439408 + 0.247901i
\(296\) −5.60264 11.3963i −0.325647 0.662398i
\(297\) −7.29429 27.2227i −0.423258 1.57962i
\(298\) 8.79428 + 9.19416i 0.509439 + 0.532604i
\(299\) 8.33175 + 14.4310i 0.481837 + 0.834567i
\(300\) −4.28528 + 12.6704i −0.247411 + 0.731526i
\(301\) 0 0
\(302\) 0.251596 0.861873i 0.0144777 0.0495952i
\(303\) 12.5517 + 3.36321i 0.721075 + 0.193211i
\(304\) 1.70826 + 0.152275i 0.0979756 + 0.00873356i
\(305\) 0.271967 27.3557i 0.0155728 1.56639i
\(306\) 3.00018 4.93958i 0.171509 0.282377i
\(307\) 14.1084 + 14.1084i 0.805207 + 0.805207i 0.983904 0.178697i \(-0.0571882\pi\)
−0.178697 + 0.983904i \(0.557188\pi\)
\(308\) 0 0
\(309\) 0.165847i 0.00943473i
\(310\) 0.941042 0.882367i 0.0534476 0.0501151i
\(311\) −14.4861 8.36354i −0.821430 0.474253i 0.0294794 0.999565i \(-0.490615\pi\)
−0.850909 + 0.525313i \(0.823948\pi\)
\(312\) 17.1861 3.39657i 0.972971 0.192293i
\(313\) −2.09639 + 7.82385i −0.118495 + 0.442230i −0.999525 0.0308314i \(-0.990185\pi\)
0.881029 + 0.473062i \(0.156851\pi\)
\(314\) 10.5988 5.80907i 0.598127 0.327825i
\(315\) 0 0
\(316\) 0.333039 + 0.212553i 0.0187349 + 0.0119570i
\(317\) −5.91723 1.58552i −0.332345 0.0890516i 0.0887878 0.996051i \(-0.471701\pi\)
−0.421133 + 0.906999i \(0.638367\pi\)
\(318\) −1.56828 + 1.50007i −0.0879450 + 0.0841200i
\(319\) −18.8094 + 32.5788i −1.05312 + 1.82406i
\(320\) 11.0650 14.0558i 0.618552 0.785744i
\(321\) −3.17059 −0.176965
\(322\) 0 0
\(323\) −1.02312 + 1.02312i −0.0569278 + 0.0569278i
\(324\) 0.346671 7.79354i 0.0192595 0.432974i
\(325\) −6.43599 + 22.2409i −0.357005 + 1.23370i
\(326\) −0.619277 + 27.8578i −0.0342986 + 1.54290i
\(327\) 3.50144 13.0676i 0.193630 0.722638i
\(328\) −10.5672 12.0795i −0.583477 0.666980i
\(329\) 0 0
\(330\) 17.9790 + 11.1662i 0.989712 + 0.614678i
\(331\) 26.9329 15.5497i 1.48036 0.854689i 0.480612 0.876933i \(-0.340415\pi\)
0.999753 + 0.0222445i \(0.00708123\pi\)
\(332\) 1.59218 5.03536i 0.0873823 0.276352i
\(333\) −5.25176 + 1.40720i −0.287795 + 0.0771143i
\(334\) −8.88939 + 14.6357i −0.486406 + 0.800832i
\(335\) −25.2719 7.04159i −1.38075 0.384723i
\(336\) 0 0
\(337\) −9.43123 + 9.43123i −0.513752 + 0.513752i −0.915674 0.401922i \(-0.868342\pi\)
0.401922 + 0.915674i \(0.368342\pi\)
\(338\) 11.5994 2.83331i 0.630922 0.154112i
\(339\) −7.25500 + 12.5660i −0.394038 + 0.682493i
\(340\) 3.10773 + 14.7684i 0.168540 + 0.800929i
\(341\) −1.02061 1.76775i −0.0552692 0.0957290i
\(342\) 0.205762 0.704863i 0.0111264 0.0381147i
\(343\) 0 0
\(344\) 16.0137 + 1.06936i 0.863399 + 0.0576559i
\(345\) −5.47367 + 9.26669i −0.294693 + 0.498902i
\(346\) 26.1865 + 0.582125i 1.40780 + 0.0312952i
\(347\) −30.6251 + 8.20598i −1.64404 + 0.440520i −0.957936 0.286980i \(-0.907349\pi\)
−0.686107 + 0.727500i \(0.740682\pi\)
\(348\) −14.8390 + 13.5751i −0.795452 + 0.727699i
\(349\) 13.8389i 0.740778i 0.928877 + 0.370389i \(0.120776\pi\)
−0.928877 + 0.370389i \(0.879224\pi\)
\(350\) 0 0
\(351\) 26.0816i 1.39214i
\(352\) −17.6718 22.1113i −0.941912 1.17854i
\(353\) −1.67242 + 0.448123i −0.0890139 + 0.0238512i −0.303051 0.952974i \(-0.598005\pi\)
0.214037 + 0.976826i \(0.431339\pi\)
\(354\) −0.162912 + 7.32849i −0.00865868 + 0.389505i
\(355\) 13.9538 23.6232i 0.740591 1.25379i
\(356\) 7.59514 11.9005i 0.402542 0.630723i
\(357\) 0 0
\(358\) −32.0774 9.36396i −1.69534 0.494901i
\(359\) −15.4616 26.7802i −0.816031 1.41341i −0.908585 0.417699i \(-0.862837\pi\)
0.0925546 0.995708i \(-0.470497\pi\)
\(360\) −4.98521 5.81429i −0.262744 0.306440i
\(361\) 9.40808 16.2953i 0.495162 0.857646i
\(362\) −0.316471 1.29561i −0.0166334 0.0680957i
\(363\) 13.2766 13.2766i 0.696839 0.696839i
\(364\) 0 0
\(365\) −11.5359 3.21428i −0.603815 0.168243i
\(366\) −19.7798 12.0138i −1.03391 0.627969i
\(367\) −11.9867 + 3.21183i −0.625700 + 0.167656i −0.557718 0.830031i \(-0.688323\pi\)
−0.0679826 + 0.997687i \(0.521656\pi\)
\(368\) 11.0416 9.23421i 0.575583 0.481367i
\(369\) −5.95082 + 3.43571i −0.309788 + 0.178856i
\(370\) 7.49077 12.0611i 0.389427 0.627028i
\(371\) 0 0
\(372\) −0.235321 1.06560i −0.0122008 0.0552486i
\(373\) 5.80479 21.6638i 0.300561 1.12171i −0.636139 0.771574i \(-0.719470\pi\)
0.936700 0.350133i \(-0.113864\pi\)
\(374\) 23.8743 + 0.530725i 1.23451 + 0.0274431i
\(375\) −14.5536 + 3.43797i −0.751547 + 0.177536i
\(376\) 25.5954 12.5831i 1.31998 0.648926i
\(377\) −24.6171 + 24.6171i −1.26785 + 1.26785i
\(378\) 0 0
\(379\) −6.09622 −0.313142 −0.156571 0.987667i \(-0.550044\pi\)
−0.156571 + 0.987667i \(0.550044\pi\)
\(380\) 0.867035 + 1.71024i 0.0444780 + 0.0877337i
\(381\) −6.44142 + 11.1569i −0.330004 + 0.571584i
\(382\) 16.8793 + 17.6468i 0.863620 + 0.902890i
\(383\) 26.6446 + 7.13940i 1.36148 + 0.364806i 0.864358 0.502877i \(-0.167725\pi\)
0.497118 + 0.867683i \(0.334392\pi\)
\(384\) −5.44416 14.1194i −0.277821 0.720526i
\(385\) 0 0
\(386\) −4.05681 7.40177i −0.206486 0.376740i
\(387\) 1.77845 6.63728i 0.0904039 0.337392i
\(388\) −4.47642 + 14.1569i −0.227256 + 0.718710i
\(389\) −18.2694 10.5478i −0.926296 0.534797i −0.0406576 0.999173i \(-0.512945\pi\)
−0.885638 + 0.464376i \(0.846279\pi\)
\(390\) 13.3970 + 14.2879i 0.678384 + 0.723495i
\(391\) 12.1436i 0.614130i
\(392\) 0 0
\(393\) −2.05413 2.05413i −0.103617 0.103617i
\(394\) −9.78696 5.94436i −0.493060 0.299473i
\(395\) −0.00439130 + 0.441698i −0.000220950 + 0.0222243i
\(396\) −10.7541 + 5.58705i −0.540415 + 0.280760i
\(397\) −5.02710 1.34701i −0.252303 0.0676043i 0.130451 0.991455i \(-0.458358\pi\)
−0.382754 + 0.923850i \(0.625024\pi\)
\(398\) −27.0703 7.90231i −1.35691 0.396107i
\(399\) 0 0
\(400\) 19.8818 + 2.17148i 0.994088 + 0.108574i
\(401\) 5.78504 + 10.0200i 0.288891 + 0.500374i 0.973545 0.228494i \(-0.0733801\pi\)
−0.684654 + 0.728868i \(0.740047\pi\)
\(402\) −16.0376 + 15.3400i −0.799881 + 0.765091i
\(403\) −0.488916 1.82466i −0.0243546 0.0908928i
\(404\) 0.863443 19.4111i 0.0429579 0.965739i
\(405\) 7.59650 4.28572i 0.377473 0.212959i
\(406\) 0 0
\(407\) −15.8857 15.8857i −0.787427 0.787427i
\(408\) 12.0842 + 4.11859i 0.598255 + 0.203901i
\(409\) 3.86895 + 2.23374i 0.191307 + 0.110451i 0.592594 0.805501i \(-0.298104\pi\)
−0.401287 + 0.915952i \(0.631437\pi\)
\(410\) 5.19921 17.1739i 0.256771 0.848160i
\(411\) −13.5122 + 7.80127i −0.666508 + 0.384808i
\(412\) −0.242153 + 0.0534760i −0.0119300 + 0.00263457i
\(413\) 0 0
\(414\) −2.96198 5.40423i −0.145573 0.265603i
\(415\) 5.71816 1.47141i 0.280694 0.0722286i
\(416\) −10.5008 23.9982i −0.514846 1.17661i
\(417\) −5.19300 19.3805i −0.254302 0.949069i
\(418\) 2.94741 0.719946i 0.144162 0.0352137i
\(419\) 25.3590 1.23887 0.619433 0.785049i \(-0.287362\pi\)
0.619433 + 0.785049i \(0.287362\pi\)
\(420\) 0 0
\(421\) −11.7614 −0.573218 −0.286609 0.958048i \(-0.592528\pi\)
−0.286609 + 0.958048i \(0.592528\pi\)
\(422\) 10.6449 2.60016i 0.518185 0.126574i
\(423\) −3.16048 11.7951i −0.153668 0.573497i
\(424\) 2.69593 + 1.80616i 0.130926 + 0.0877150i
\(425\) −12.1660 + 11.6916i −0.590137 + 0.567124i
\(426\) −11.1552 20.3530i −0.540472 0.986108i
\(427\) 0 0
\(428\) 1.02233 + 4.62937i 0.0494160 + 0.223769i
\(429\) 26.8398 15.4960i 1.29584 0.748152i
\(430\) 8.46741 + 15.8202i 0.408335 + 0.762918i
\(431\) 14.4038 + 8.31606i 0.693809 + 0.400571i 0.805037 0.593224i \(-0.202145\pi\)
−0.111229 + 0.993795i \(0.535479\pi\)
\(432\) −22.1936 + 3.87584i −1.06779 + 0.186476i
\(433\) −25.8715 25.8715i −1.24330 1.24330i −0.958623 0.284680i \(-0.908113\pi\)
−0.284680 0.958623i \(-0.591887\pi\)
\(434\) 0 0
\(435\) −21.6604 6.03530i −1.03853 0.289370i
\(436\) −20.2089 0.898932i −0.967832 0.0430510i
\(437\) 0.399330 + 1.49032i 0.0191025 + 0.0712916i
\(438\) −7.32067 + 7.00227i −0.349795 + 0.334581i
\(439\) 12.7134 + 22.0202i 0.606775 + 1.05097i 0.991768 + 0.128046i \(0.0408706\pi\)
−0.384993 + 0.922920i \(0.625796\pi\)
\(440\) 10.5066 29.8516i 0.500880 1.42312i
\(441\) 0 0
\(442\) 21.2143 + 6.19282i 1.00906 + 0.294563i
\(443\) −1.73983 0.466187i −0.0826619 0.0221492i 0.217251 0.976116i \(-0.430291\pi\)
−0.299913 + 0.953967i \(0.596958\pi\)
\(444\) −5.53715 10.6581i −0.262781 0.505810i
\(445\) 15.7832 + 0.156914i 0.748195 + 0.00743845i
\(446\) −18.9900 11.5340i −0.899201 0.546152i
\(447\) 8.50872 + 8.50872i 0.402449 + 0.402449i
\(448\) 0 0
\(449\) 27.3838i 1.29232i −0.763202 0.646160i \(-0.776374\pi\)
0.763202 0.646160i \(-0.223626\pi\)
\(450\) 2.56246 8.17048i 0.120795 0.385160i
\(451\) −24.5889 14.1964i −1.15784 0.668482i
\(452\) 20.6870 + 6.54121i 0.973032 + 0.307673i
\(453\) 0.219781 0.820236i 0.0103262 0.0385380i
\(454\) −4.69001 8.55708i −0.220113 0.401604i
\(455\) 0 0
\(456\) 1.61845 + 0.108077i 0.0757911 + 0.00506117i
\(457\) −3.69520 0.990127i −0.172854 0.0463162i 0.171354 0.985210i \(-0.445186\pi\)
−0.344208 + 0.938893i \(0.611853\pi\)
\(458\) −4.93620 5.16065i −0.230653 0.241141i
\(459\) 9.50359 16.4607i 0.443590 0.768320i
\(460\) 15.2952 + 5.00413i 0.713143 + 0.233319i
\(461\) −24.8145 −1.15573 −0.577864 0.816133i \(-0.696114\pi\)
−0.577864 + 0.816133i \(0.696114\pi\)
\(462\) 0 0
\(463\) 10.3704 10.3704i 0.481955 0.481955i −0.423801 0.905755i \(-0.639304\pi\)
0.905755 + 0.423801i \(0.139304\pi\)
\(464\) 24.6056 + 17.2892i 1.14229 + 0.802630i
\(465\) 0.871259 0.854106i 0.0404037 0.0396082i
\(466\) −4.90894 0.109125i −0.227402 0.00505514i
\(467\) −1.32853 + 4.95815i −0.0614772 + 0.229436i −0.989828 0.142269i \(-0.954560\pi\)
0.928351 + 0.371705i \(0.121227\pi\)
\(468\) −10.9514 + 2.41845i −0.506228 + 0.111793i
\(469\) 0 0
\(470\) 27.0884 + 16.8238i 1.24950 + 0.776022i
\(471\) 9.89965 5.71557i 0.456152 0.263359i
\(472\) 10.7528 2.12514i 0.494940 0.0978174i
\(473\) 27.4253 7.34859i 1.26102 0.337889i
\(474\) 0.319374 + 0.193980i 0.0146693 + 0.00890978i
\(475\) −1.10860 + 1.83490i −0.0508660 + 0.0841911i
\(476\) 0 0
\(477\) 0.982415 0.982415i 0.0449817 0.0449817i
\(478\) 3.78577 + 15.4987i 0.173157 + 0.708893i
\(479\) −2.11175 + 3.65765i −0.0964882 + 0.167122i −0.910229 0.414106i \(-0.864094\pi\)
0.813741 + 0.581228i \(0.197428\pi\)
\(480\) 10.1671 13.5231i 0.464062 0.617243i
\(481\) −10.3954 18.0053i −0.473988 0.820972i
\(482\) −35.4506 10.3487i −1.61473 0.471369i
\(483\) 0 0
\(484\) −23.6660 15.1042i −1.07573 0.686553i
\(485\) −16.0766 + 4.13687i −0.730002 + 0.187845i
\(486\) −0.367099 + 16.5137i −0.0166520 + 0.749077i
\(487\) −22.6422 + 6.06695i −1.02601 + 0.274920i −0.732306 0.680975i \(-0.761556\pi\)
−0.293708 + 0.955895i \(0.594889\pi\)
\(488\) −11.1634 + 32.7542i −0.505346 + 1.48271i
\(489\) 26.3540i 1.19177i
\(490\) 0 0
\(491\) 43.0124i 1.94112i 0.240851 + 0.970562i \(0.422573\pi\)
−0.240851 + 0.970562i \(0.577427\pi\)
\(492\) −10.2458 11.1997i −0.461915 0.504922i
\(493\) −24.5064 + 6.56647i −1.10371 + 0.295739i
\(494\) 2.80715 + 0.0624028i 0.126300 + 0.00280763i
\(495\) −11.6661 6.89095i −0.524351 0.309725i
\(496\) −1.48000 + 0.687184i −0.0664538 + 0.0308555i
\(497\) 0 0
\(498\) 1.39965 4.79467i 0.0627199 0.214854i
\(499\) −0.280975 0.486663i −0.0125782 0.0217860i 0.859668 0.510853i \(-0.170671\pi\)
−0.872246 + 0.489067i \(0.837337\pi\)
\(500\) 9.71246 + 20.1412i 0.434355 + 0.900742i
\(501\) −8.09775 + 14.0257i −0.361781 + 0.626623i
\(502\) 35.7622 8.73542i 1.59614 0.389881i
\(503\) −9.37781 + 9.37781i −0.418136 + 0.418136i −0.884561 0.466425i \(-0.845542\pi\)
0.466425 + 0.884561i \(0.345542\pi\)
\(504\) 0 0
\(505\) 18.9204 10.6743i 0.841945 0.475000i
\(506\) 13.2192 21.7644i 0.587663 0.967545i
\(507\) 10.9083 2.92286i 0.484453 0.129809i
\(508\) 18.3671 + 5.80768i 0.814908 + 0.257674i
\(509\) 15.9743 9.22275i 0.708047 0.408791i −0.102290 0.994755i \(-0.532617\pi\)
0.810338 + 0.585963i \(0.199284\pi\)
\(510\) 3.24895 + 13.8990i 0.143866 + 0.615457i
\(511\) 0 0
\(512\) −18.8602 + 12.5017i −0.833512 + 0.552501i
\(513\) 0.625029 2.33264i 0.0275957 0.102989i
\(514\) 0.174062 7.83008i 0.00767756 0.345370i
\(515\) −0.194093 0.197991i −0.00855276 0.00872453i
\(516\) 15.1642 + 0.674534i 0.667569 + 0.0296947i
\(517\) 35.6783 35.6783i 1.56913 1.56913i
\(518\) 0 0
\(519\) 24.7730 1.08741
\(520\) 16.5420 24.1679i 0.725413 1.05983i
\(521\) −6.90441 + 11.9588i −0.302488 + 0.523924i −0.976699 0.214614i \(-0.931150\pi\)
0.674211 + 0.738539i \(0.264484\pi\)
\(522\) 9.30432 8.89964i 0.407239 0.389527i
\(523\) −12.2607 3.28525i −0.536124 0.143654i −0.0194092 0.999812i \(-0.506179\pi\)
−0.516715 + 0.856158i \(0.672845\pi\)
\(524\) −2.33689 + 3.66156i −0.102088 + 0.159956i
\(525\) 0 0
\(526\) −18.1522 + 9.94896i −0.791473 + 0.433795i
\(527\) 0.356301 1.32973i 0.0155207 0.0579241i
\(528\) −17.1744 20.5359i −0.747421 0.893712i
\(529\) −8.70422 5.02539i −0.378444 0.218495i
\(530\) −0.116687 + 3.62619i −0.00506855 + 0.157512i
\(531\) 4.69281i 0.203651i
\(532\) 0 0
\(533\) −18.5798 18.5798i −0.804780 0.804780i
\(534\) 6.93147 11.4122i 0.299954 0.493853i
\(535\) −3.78509 + 3.71057i −0.163644 + 0.160422i
\(536\) 27.5691 + 18.4701i 1.19080 + 0.797789i
\(537\) −30.5277 8.17987i −1.31737 0.352988i
\(538\) −7.78810 + 26.6791i −0.335769 + 1.15022i
\(539\) 0 0
\(540\) −16.8164 18.7531i −0.723664 0.807005i
\(541\) −11.6821 20.2340i −0.502254 0.869929i −0.999997 0.00260457i \(-0.999171\pi\)
0.497743 0.867325i \(-0.334162\pi\)
\(542\) 13.4033 + 14.0127i 0.575720 + 0.601899i
\(543\) −0.326474 1.21842i −0.0140103 0.0522872i
\(544\) 2.11712 18.9721i 0.0907706 0.813421i
\(545\) −11.1130 19.6980i −0.476030 0.843770i
\(546\) 0 0
\(547\) −5.99240 5.99240i −0.256216 0.256216i 0.567297 0.823513i \(-0.307989\pi\)
−0.823513 + 0.567297i \(0.807989\pi\)
\(548\) 15.7475 + 17.2137i 0.672700 + 0.735332i
\(549\) 12.8307 + 7.40781i 0.547601 + 0.316158i
\(550\) 34.5315 7.71068i 1.47243 0.328784i
\(551\) −2.79160 + 1.61173i −0.118926 + 0.0686619i
\(552\) 10.2463 8.96353i 0.436113 0.381513i
\(553\) 0 0
\(554\) 8.75392 4.79790i 0.371918 0.203843i
\(555\) 6.82941 11.5619i 0.289892 0.490775i
\(556\) −26.6231 + 13.8314i −1.12907 + 0.586581i
\(557\) 6.04931 + 22.5763i 0.256317 + 0.956589i 0.967353 + 0.253433i \(0.0815598\pi\)
−0.711036 + 0.703156i \(0.751773\pi\)
\(558\) 0.165775 + 0.678671i 0.00701782 + 0.0287304i
\(559\) 26.2758 1.11135
\(560\) 0 0
\(561\) 22.5856 0.953564
\(562\) −5.35918 21.9401i −0.226063 0.925487i
\(563\) −2.40734 8.98432i −0.101457 0.378644i 0.896462 0.443121i \(-0.146129\pi\)
−0.997919 + 0.0644770i \(0.979462\pi\)
\(564\) 23.9373 12.4360i 1.00794 0.523652i
\(565\) 6.04503 + 23.4921i 0.254316 + 0.988321i
\(566\) 26.7371 14.6542i 1.12385 0.615964i
\(567\) 0 0
\(568\) −26.1205 + 22.8504i −1.09599 + 0.958780i
\(569\) 2.60258 1.50260i 0.109106 0.0629922i −0.444454 0.895802i \(-0.646602\pi\)
0.553560 + 0.832809i \(0.313269\pi\)
\(570\) 0.855777 + 1.59890i 0.0358446 + 0.0669707i
\(571\) 15.8499 + 9.15092i 0.663296 + 0.382954i 0.793532 0.608529i \(-0.208240\pi\)
−0.130236 + 0.991483i \(0.541573\pi\)
\(572\) −31.2799 34.1922i −1.30788 1.42965i
\(573\) 16.3312 + 16.3312i 0.682246 + 0.682246i
\(574\) 0 0
\(575\) 4.31035 + 17.4686i 0.179754 + 0.728491i
\(576\) 3.68535 + 8.95944i 0.153556 + 0.373310i
\(577\) 0.273102 + 1.01923i 0.0113694 + 0.0424312i 0.971378 0.237541i \(-0.0763414\pi\)
−0.960008 + 0.279972i \(0.909675\pi\)
\(578\) −5.48572 5.73516i −0.228176 0.238551i
\(579\) −3.99151 6.91350i −0.165881 0.287315i
\(580\) −1.82794 + 33.5723i −0.0759010 + 1.39401i
\(581\) 0 0
\(582\) −3.93512 + 13.4802i −0.163116 + 0.558774i
\(583\) 5.54517 + 1.48582i 0.229658 + 0.0615366i
\(584\) 12.5845 + 8.43107i 0.520750 + 0.348880i
\(585\) −8.77785 8.95414i −0.362919 0.370208i
\(586\) 20.6540 34.0053i 0.853209 1.40475i
\(587\) −29.5589 29.5589i −1.22003 1.22003i −0.967621 0.252406i \(-0.918778\pi\)
−0.252406 0.967621i \(-0.581222\pi\)
\(588\) 0 0
\(589\) 0.174907i 0.00720692i
\(590\) 8.38212 + 8.93951i 0.345086 + 0.368034i
\(591\) −9.37905 5.41499i −0.385802 0.222743i
\(592\) −13.7764 + 11.5214i −0.566207 + 0.473525i
\(593\) 0.823702 3.07410i 0.0338254 0.126238i −0.946949 0.321385i \(-0.895852\pi\)
0.980774 + 0.195147i \(0.0625183\pi\)
\(594\) −34.9513 + 19.1563i −1.43407 + 0.785994i
\(595\) 0 0
\(596\) 9.68000 15.1671i 0.396508 0.621269i
\(597\) −25.7625 6.90305i −1.05439 0.282523i
\(598\) 17.0297 16.2890i 0.696397 0.666108i
\(599\) 0.992946 1.71983i 0.0405707 0.0702705i −0.845027 0.534724i \(-0.820416\pi\)
0.885598 + 0.464453i \(0.153749\pi\)
\(600\) 18.8449 + 1.63534i 0.769341 + 0.0667624i
\(601\) −29.8474 −1.21750 −0.608750 0.793362i \(-0.708329\pi\)
−0.608750 + 0.793362i \(0.708329\pi\)
\(602\) 0 0
\(603\) 10.0464 10.0464i 0.409119 0.409119i
\(604\) −1.26849 0.0564249i −0.0516142 0.00229590i
\(605\) 0.312049 31.3874i 0.0126866 1.27608i
\(606\) 0.408417 18.3724i 0.0165908 0.746327i
\(607\) −1.95663 + 7.30226i −0.0794173 + 0.296389i −0.994199 0.107560i \(-0.965696\pi\)
0.914781 + 0.403950i \(0.132363\pi\)
\(608\) −0.364053 2.39795i −0.0147643 0.0972497i
\(609\) 0 0
\(610\) −37.6732 + 8.80629i −1.52534 + 0.356556i
\(611\) 40.4387 23.3473i 1.63597 0.944530i
\(612\) −7.79290 2.46411i −0.315009 0.0996058i
\(613\) −20.4572 + 5.48148i −0.826257 + 0.221395i −0.647080 0.762422i \(-0.724010\pi\)
−0.179177 + 0.983817i \(0.557343\pi\)
\(614\) 14.6480 24.1168i 0.591144 0.973276i
\(615\) 4.55514 16.3482i 0.183681 0.659222i
\(616\) 0 0
\(617\) 3.15050 3.15050i 0.126835 0.126835i −0.640840 0.767675i \(-0.721414\pi\)
0.767675 + 0.640840i \(0.221414\pi\)
\(618\) −0.227845 + 0.0556544i −0.00916527 + 0.00223875i
\(619\) −23.8051 + 41.2316i −0.956808 + 1.65724i −0.226631 + 0.973981i \(0.572771\pi\)
−0.730176 + 0.683259i \(0.760562\pi\)
\(620\) −1.52801 0.996724i −0.0613662 0.0400294i
\(621\) −10.1340 17.5527i −0.406665 0.704365i
\(622\) −6.62884 + 22.7079i −0.265792 + 0.910504i
\(623\) 0 0
\(624\) −10.4335 22.4708i −0.417675 0.899553i
\(625\) −13.3509 + 21.1366i −0.534034 + 0.845463i
\(626\) 11.4521 + 0.254579i 0.457717 + 0.0101750i
\(627\) 2.77180 0.742701i 0.110695 0.0296606i
\(628\) −11.5373 12.6115i −0.460390 0.503255i
\(629\) 15.1514i 0.604126i
\(630\) 0 0
\(631\) 22.2381i 0.885285i 0.896698 + 0.442643i \(0.145959\pi\)
−0.896698 + 0.442643i \(0.854041\pi\)
\(632\) 0.180250 0.528864i 0.00716997 0.0210371i
\(633\) 10.0107 2.68235i 0.397888 0.106614i
\(634\) −0.192540 + 8.66129i −0.00764675 + 0.343984i
\(635\) 5.36714 + 20.8577i 0.212988 + 0.827712i
\(636\) 2.58712 + 1.65116i 0.102586 + 0.0654726i
\(637\) 0 0
\(638\) 51.0695 + 14.9081i 2.02186 + 0.590217i
\(639\) 7.42932 + 12.8680i 0.293899 + 0.509048i
\(640\) −23.0233 10.4845i −0.910078 0.414438i
\(641\) 11.7014 20.2673i 0.462176 0.800512i −0.536893 0.843650i \(-0.680402\pi\)
0.999069 + 0.0431381i \(0.0137355\pi\)
\(642\) 1.06397 + 4.35582i 0.0419916 + 0.171911i
\(643\) 16.9251 16.9251i 0.667460 0.667460i −0.289668 0.957127i \(-0.593545\pi\)
0.957127 + 0.289668i \(0.0935447\pi\)
\(644\) 0 0
\(645\) 8.33892 + 14.7809i 0.328345 + 0.581996i
\(646\) 1.74891 + 1.06225i 0.0688101 + 0.0417936i
\(647\) −8.65768 + 2.31982i −0.340369 + 0.0912015i −0.424955 0.905215i \(-0.639710\pi\)
0.0845859 + 0.996416i \(0.473043\pi\)
\(648\) −10.8233 + 2.13906i −0.425178 + 0.0840301i
\(649\) 16.7929 9.69538i 0.659179 0.380577i
\(650\) 32.7148 + 1.37841i 1.28318 + 0.0540658i
\(651\) 0 0
\(652\) 38.4795 8.49762i 1.50697 0.332792i
\(653\) 5.31582 19.8389i 0.208024 0.776356i −0.780483 0.625178i \(-0.785027\pi\)
0.988506 0.151178i \(-0.0483068\pi\)
\(654\) −19.1275 0.425204i −0.747945 0.0166268i
\(655\) −4.85621 0.0482798i −0.189748 0.00188645i
\(656\) −13.0490 + 18.5711i −0.509478 + 0.725079i
\(657\) 4.58586 4.58586i 0.178911 0.178911i
\(658\) 0 0
\(659\) −6.31956 −0.246175 −0.123088 0.992396i \(-0.539280\pi\)
−0.123088 + 0.992396i \(0.539280\pi\)
\(660\) 9.30704 28.4471i 0.362276 1.10730i
\(661\) 15.0159 26.0082i 0.584049 1.01160i −0.410944 0.911661i \(-0.634801\pi\)
0.994993 0.0999425i \(-0.0318659\pi\)
\(662\) −30.4006 31.7829i −1.18155 1.23528i
\(663\) 20.1894 + 5.40973i 0.784091 + 0.210097i
\(664\) −7.45200 0.497628i −0.289193 0.0193117i
\(665\) 0 0
\(666\) 3.69561 + 6.74276i 0.143202 + 0.261277i
\(667\) −7.00207 + 26.1321i −0.271121 + 1.01184i
\(668\) 23.0900 + 7.30104i 0.893378 + 0.282486i
\(669\) −18.1985 10.5069i −0.703593 0.406220i
\(670\) −1.19326 + 37.0821i −0.0460997 + 1.43260i
\(671\) 61.2183i 2.36331i
\(672\) 0 0
\(673\) 29.5868 + 29.5868i 1.14049 + 1.14049i 0.988361 + 0.152127i \(0.0486122\pi\)
0.152127 + 0.988361i \(0.451388\pi\)
\(674\) 16.1217 + 9.79194i 0.620986 + 0.377172i
\(675\) 7.82821 27.0519i 0.301308 1.04123i
\(676\) −7.78493 14.9847i −0.299420 0.576334i
\(677\) 9.83150 + 2.63434i 0.377855 + 0.101246i 0.442748 0.896646i \(-0.354004\pi\)
−0.0648924 + 0.997892i \(0.520670\pi\)
\(678\) 19.6981 + 5.75023i 0.756501 + 0.220836i
\(679\) 0 0
\(680\) 19.2463 9.22539i 0.738061 0.353777i
\(681\) −4.61453 7.99259i −0.176829 0.306277i
\(682\) −2.08608 + 1.99535i −0.0798802 + 0.0764060i
\(683\) −0.862105 3.21742i −0.0329875 0.123111i 0.947469 0.319849i \(-0.103632\pi\)
−0.980456 + 0.196737i \(0.936965\pi\)
\(684\) −1.03741 0.0461458i −0.0396662 0.00176443i
\(685\) −7.00114 + 25.1267i −0.267500 + 0.960043i
\(686\) 0 0
\(687\) −4.77591 4.77591i −0.182212 0.182212i
\(688\) −3.90469 22.3588i −0.148865 0.852420i
\(689\) 4.60097 + 2.65637i 0.175283 + 0.101200i
\(690\) 14.5676 + 4.41018i 0.554580 + 0.167893i
\(691\) −2.37720 + 1.37248i −0.0904331 + 0.0522116i −0.544535 0.838738i \(-0.683294\pi\)
0.454101 + 0.890950i \(0.349960\pi\)
\(692\) −7.98782 36.1710i −0.303652 1.37501i
\(693\) 0 0
\(694\) 21.5506 + 39.3198i 0.818050 + 1.49256i
\(695\) −28.8807 17.0593i −1.09551 0.647098i
\(696\) 23.6293 + 15.8306i 0.895667 + 0.600059i
\(697\) −4.95604 18.4962i −0.187723 0.700593i
\(698\) 19.0122 4.64399i 0.719621 0.175778i
\(699\) −4.64396 −0.175651
\(700\) 0 0
\(701\) −45.4380 −1.71617 −0.858085 0.513508i \(-0.828346\pi\)
−0.858085 + 0.513508i \(0.828346\pi\)
\(702\) −35.8316 + 8.75237i −1.35237 + 0.330337i
\(703\) −0.498237 1.85945i −0.0187914 0.0701303i
\(704\) −24.4467 + 31.6980i −0.921371 + 1.19466i
\(705\) 25.9672 + 15.3384i 0.977981 + 0.577676i
\(706\) 1.17687 + 2.14723i 0.0442919 + 0.0808120i
\(707\) 0 0
\(708\) 10.1227 2.23545i 0.380435 0.0840135i
\(709\) −37.2819 + 21.5247i −1.40015 + 0.808377i −0.994408 0.105610i \(-0.966321\pi\)
−0.405743 + 0.913987i \(0.632987\pi\)
\(710\) −37.1366 11.2427i −1.39371 0.421930i
\(711\) −0.207170 0.119610i −0.00776950 0.00448572i
\(712\) −18.8979 6.44087i −0.708227 0.241382i
\(713\) −1.03801 1.03801i −0.0388737 0.0388737i
\(714\) 0 0
\(715\) 13.9066 49.9102i 0.520079 1.86653i
\(716\) −2.10003 + 47.2109i −0.0784819 + 1.76436i
\(717\) 3.90543 + 14.5752i 0.145851 + 0.544323i
\(718\) −31.6028 + 30.2283i −1.17940 + 1.12811i
\(719\) −8.95406 15.5089i −0.333930 0.578384i 0.649349 0.760491i \(-0.275042\pi\)
−0.983279 + 0.182107i \(0.941708\pi\)
\(720\) −6.31489 + 8.79993i −0.235342 + 0.327954i
\(721\) 0 0
\(722\) −25.5439 7.45674i −0.950647 0.277511i
\(723\) −33.7379 9.04005i −1.25473 0.336203i
\(724\) −1.67374 + 0.869550i −0.0622040 + 0.0323166i
\(725\) −32.9216 + 18.1443i −1.22268 + 0.673863i
\(726\) −22.6949 13.7843i −0.842288 0.511585i
\(727\) −9.20391 9.20391i −0.341354 0.341354i 0.515522 0.856876i \(-0.327598\pi\)
−0.856876 + 0.515522i \(0.827598\pi\)
\(728\) 0 0
\(729\) 27.3242i 1.01201i
\(730\) −0.544688 + 16.9269i −0.0201598 + 0.626491i
\(731\) 16.5832 + 9.57434i 0.613353 + 0.354120i
\(732\) −9.86716 + 31.2055i −0.364701 + 1.15339i
\(733\) 4.81185 17.9581i 0.177730 0.663297i −0.818341 0.574734i \(-0.805106\pi\)
0.996071 0.0885635i \(-0.0282276\pi\)
\(734\) 8.43492 + 15.3898i 0.311339 + 0.568047i
\(735\) 0 0
\(736\) −16.3915 12.0704i −0.604197 0.444922i
\(737\) 56.7059 + 15.1943i 2.08879 + 0.559690i
\(738\) 6.71701 + 7.02244i 0.247257 + 0.258499i
\(739\) −3.53772 + 6.12751i −0.130137 + 0.225404i −0.923729 0.383046i \(-0.874875\pi\)
0.793592 + 0.608450i \(0.208208\pi\)
\(740\) −19.0836 6.24357i −0.701526 0.229518i
\(741\) 2.65562 0.0975566
\(742\) 0 0
\(743\) −34.5013 + 34.5013i −1.26573 + 1.26573i −0.317456 + 0.948273i \(0.602828\pi\)
−0.948273 + 0.317456i \(0.897172\pi\)
\(744\) −1.38497 + 0.680878i −0.0507755 + 0.0249622i
\(745\) 20.1157 + 0.199987i 0.736981 + 0.00732696i
\(746\) −31.7101 0.704915i −1.16099 0.0258088i
\(747\) −0.827608 + 3.08868i −0.0302806 + 0.113009i
\(748\) −7.28252 32.9772i −0.266275 1.20576i
\(749\) 0 0
\(750\) 9.60701 + 18.8404i 0.350799 + 0.687955i
\(751\) −7.29278 + 4.21049i −0.266117 + 0.153643i −0.627122 0.778921i \(-0.715767\pi\)
0.361004 + 0.932564i \(0.382434\pi\)
\(752\) −25.8762 30.9409i −0.943608 1.12830i
\(753\) 33.6314 9.01152i 1.22560 0.328398i
\(754\) 42.0805 + 25.5587i 1.53248 + 0.930792i
\(755\) −0.697552 1.23642i −0.0253865 0.0449980i
\(756\) 0 0
\(757\) 0.487957 0.487957i 0.0177351 0.0177351i −0.698184 0.715919i \(-0.746008\pi\)
0.715919 + 0.698184i \(0.246008\pi\)
\(758\) 2.04574 + 8.37512i 0.0743047 + 0.304198i
\(759\) 12.0419 20.8573i 0.437095 0.757070i
\(760\) 2.05862 1.76507i 0.0746739 0.0640258i
\(761\) 2.18495 + 3.78445i 0.0792044 + 0.137186i 0.902907 0.429836i \(-0.141429\pi\)
−0.823702 + 0.567022i \(0.808095\pi\)
\(762\) 17.4892 + 5.10540i 0.633565 + 0.184949i
\(763\) 0 0
\(764\) 18.5793 29.1110i 0.672176 1.05320i
\(765\) −2.27720 8.84962i −0.0823323 0.319959i
\(766\) 0.866986 39.0008i 0.0313255 1.40916i
\(767\) 17.3335 4.64450i 0.625877 0.167703i
\(768\) −17.5706 + 12.2174i −0.634024 + 0.440858i
\(769\) 9.02388i 0.325409i 0.986675 + 0.162705i \(0.0520218\pi\)
−0.986675 + 0.162705i \(0.947978\pi\)
\(770\) 0 0
\(771\) 7.40742i 0.266772i
\(772\) −8.80735 + 8.05719i −0.316984 + 0.289985i
\(773\) −33.7229 + 9.03604i −1.21293 + 0.325004i −0.807911 0.589305i \(-0.799402\pi\)
−0.405019 + 0.914308i \(0.632735\pi\)
\(774\) −9.71525 0.215970i −0.349208 0.00776287i
\(775\) 0.0405526 2.03929i 0.00145669 0.0732533i
\(776\) 20.9513 + 1.39908i 0.752108 + 0.0502242i
\(777\) 0 0
\(778\) −8.36010 + 28.6385i −0.299724 + 1.02674i
\(779\) −1.21645 2.10696i −0.0435839 0.0754896i
\(780\) 15.1333 23.1998i 0.541859 0.830685i
\(781\) −30.6980 + 53.1705i −1.09846 + 1.90259i
\(782\) 16.6832 4.07511i 0.596590 0.145726i
\(783\) 29.9422 29.9422i 1.07005 1.07005i
\(784\) 0 0
\(785\) 5.12936 18.4090i 0.183075 0.657045i
\(786\) −2.13269 + 3.51132i −0.0760706 + 0.125245i
\(787\) −3.73542 + 1.00090i −0.133154 + 0.0356784i −0.324780 0.945789i \(-0.605290\pi\)
0.191627 + 0.981468i \(0.438624\pi\)
\(788\) −4.88223 + 15.4403i −0.173922 + 0.550039i
\(789\) −16.9547 + 9.78882i −0.603605 + 0.348491i
\(790\) 0.608289 0.142190i 0.0216420 0.00505891i
\(791\) 0 0
\(792\) 11.2844 + 12.8994i 0.400975 + 0.458359i
\(793\) −14.6631 + 54.7234i −0.520701 + 1.94328i
\(794\) −0.163576 + 7.35836i −0.00580510 + 0.261138i
\(795\) −0.0341126 + 3.43121i −0.00120985 + 0.121692i
\(796\) −1.77223 + 39.8417i −0.0628151 + 1.41215i
\(797\) 34.6913 34.6913i 1.22883 1.22883i 0.264420 0.964408i \(-0.414819\pi\)
0.964408 0.264420i \(-0.0851806\pi\)
\(798\) 0 0
\(799\) 34.0290 1.20386
\(800\) −3.68862 28.0427i −0.130412 0.991460i
\(801\) −4.27402 + 7.40281i −0.151015 + 0.261566i
\(802\) 11.8244 11.3101i 0.417533 0.399373i
\(803\) 25.8846 + 6.93575i 0.913447 + 0.244757i
\(804\) 26.4563 + 16.8850i 0.933042 + 0.595489i
\(805\) 0 0
\(806\) −2.34269 + 1.28400i −0.0825177 + 0.0452268i
\(807\) −6.80328 + 25.3902i −0.239487 + 0.893777i
\(808\) −26.9572 + 5.32768i −0.948350 + 0.187427i
\(809\) 31.8064 + 18.3634i 1.11825 + 0.645624i 0.940955 0.338533i \(-0.109931\pi\)
0.177299 + 0.984157i \(0.443264\pi\)
\(810\) −8.43702 8.99806i −0.296447 0.316160i
\(811\) 9.04068i 0.317461i −0.987322 0.158731i \(-0.949260\pi\)
0.987322 0.158731i \(-0.0507401\pi\)
\(812\) 0 0
\(813\) 12.9681 + 12.9681i 0.454810 + 0.454810i
\(814\) −16.4933 + 27.1551i −0.578090 + 0.951784i
\(815\) 30.8424 + 31.4618i 1.08036 + 1.10206i
\(816\) 1.60306 17.9836i 0.0561184 0.629552i
\(817\) 2.35001 + 0.629682i 0.0822163 + 0.0220298i
\(818\) 1.77044 6.06484i 0.0619019 0.212052i
\(819\) 0 0
\(820\) −25.3387 1.37964i −0.884865 0.0481790i
\(821\) 0.285380 + 0.494293i 0.00995984 + 0.0172510i 0.870962 0.491350i \(-0.163496\pi\)
−0.861003 + 0.508601i \(0.830163\pi\)
\(822\) 15.2519 + 15.9454i 0.531972 + 0.556161i
\(823\) 1.69940 + 6.34226i 0.0592375 + 0.221077i 0.989199 0.146580i \(-0.0468266\pi\)
−0.929961 + 0.367657i \(0.880160\pi\)
\(824\) 0.154727 + 0.314731i 0.00539019 + 0.0109642i
\(825\) 32.4893 8.01669i 1.13113 0.279105i
\(826\) 0 0
\(827\) −6.28320 6.28320i −0.218488 0.218488i 0.589373 0.807861i \(-0.299375\pi\)
−0.807861 + 0.589373i \(0.799375\pi\)
\(828\) −6.43048 + 5.88276i −0.223475 + 0.204440i
\(829\) 21.8135 + 12.5940i 0.757613 + 0.437408i 0.828438 0.560081i \(-0.189230\pi\)
−0.0708254 + 0.997489i \(0.522563\pi\)
\(830\) −3.94033 7.36197i −0.136771 0.255538i
\(831\) 8.17644 4.72067i 0.283638 0.163758i
\(832\) −29.4454 + 22.4795i −1.02084 + 0.779336i
\(833\) 0 0
\(834\) −24.8828 + 13.6379i −0.861621 + 0.472242i
\(835\) 6.74723 + 26.2210i 0.233498 + 0.907414i
\(836\) −1.97816 3.80762i −0.0684160 0.131689i
\(837\) 0.594677 + 2.21936i 0.0205550 + 0.0767125i
\(838\) −8.50986 34.8387i −0.293968 1.20348i
\(839\) 0.275469 0.00951026 0.00475513 0.999989i \(-0.498486\pi\)
0.00475513 + 0.999989i \(0.498486\pi\)
\(840\) 0 0
\(841\) −27.5219 −0.949032
\(842\) 3.94686 + 16.1581i 0.136018 + 0.556846i
\(843\) −5.52857 20.6329i −0.190414 0.710635i
\(844\) −7.14433 13.7516i −0.245918 0.473351i
\(845\) 9.60178 16.2554i 0.330311 0.559203i
\(846\) −15.1438 + 8.30009i −0.520654 + 0.285363i
\(847\) 0 0
\(848\) 1.57666 4.30984i 0.0541426 0.148001i
\(849\) 24.9734 14.4184i 0.857084 0.494838i
\(850\) 20.1448 + 12.7905i 0.690960 + 0.438711i
\(851\) −13.9920 8.07827i −0.479638 0.276919i
\(852\) −24.2181 + 22.1553i −0.829697 + 0.759027i
\(853\) 20.8769 + 20.8769i 0.714813 + 0.714813i 0.967538 0.252725i \(-0.0813269\pi\)
−0.252725 + 0.967538i \(0.581327\pi\)
\(854\) 0 0
\(855\) −0.570477 1.01118i −0.0195099 0.0345816i
\(856\) 6.01686 2.95800i 0.205652 0.101102i
\(857\) −6.30707 23.5383i −0.215445 0.804053i −0.986009 0.166690i \(-0.946692\pi\)
0.770564 0.637363i \(-0.219975\pi\)
\(858\) −30.2955 31.6731i −1.03427 1.08130i
\(859\) −28.1658 48.7846i −0.961004 1.66451i −0.719988 0.693987i \(-0.755853\pi\)
−0.241017 0.970521i \(-0.577481\pi\)
\(860\) 18.8927 16.9416i 0.644236 0.577704i
\(861\) 0 0
\(862\) 6.59121 22.5790i 0.224498 0.769044i
\(863\) −14.3793 3.85293i −0.489479 0.131155i 0.00563418 0.999984i \(-0.498207\pi\)
−0.495113 + 0.868829i \(0.664873\pi\)
\(864\) 12.7723 + 29.1894i 0.434524 + 0.993043i
\(865\) 29.5743 28.9921i 1.00556 0.985760i
\(866\) −26.8610 + 44.2246i −0.912772 + 1.50281i
\(867\) −5.30760 5.30760i −0.180255 0.180255i
\(868\) 0 0
\(869\) 0.988459i 0.0335312i
\(870\) −1.02274 + 31.7828i −0.0346740 + 1.07754i
\(871\) 47.0504 + 27.1646i 1.59424 + 0.920436i
\(872\) 5.54666 + 28.0652i 0.187834 + 0.950406i
\(873\) 2.32682 8.68382i 0.0787510 0.293903i
\(874\) 1.91343 1.04872i 0.0647227 0.0354736i
\(875\) 0 0
\(876\) 12.0765 + 7.70751i 0.408028 + 0.260413i
\(877\) 45.3079 + 12.1402i 1.52994 + 0.409946i 0.922999 0.384803i \(-0.125730\pi\)
0.606939 + 0.794748i \(0.292397\pi\)
\(878\) 25.9855 24.8553i 0.876969 0.838827i
\(879\) 18.8147 32.5880i 0.634603 1.09917i
\(880\) −44.5365 4.41668i −1.50132 0.148886i
\(881\) 8.94374 0.301322 0.150661 0.988585i \(-0.451860\pi\)
0.150661 + 0.988585i \(0.451860\pi\)
\(882\) 0 0
\(883\) 13.6439 13.6439i 0.459153 0.459153i −0.439224 0.898377i \(-0.644747\pi\)
0.898377 + 0.439224i \(0.144747\pi\)
\(884\) 1.38885 31.2228i 0.0467121 1.05014i
\(885\) 8.11365 + 8.27660i 0.272737 + 0.278215i
\(886\) −0.0566122 + 2.54666i −0.00190192 + 0.0855568i
\(887\) 8.52105 31.8010i 0.286109 1.06777i −0.661917 0.749578i \(-0.730257\pi\)
0.948025 0.318195i \(-0.103077\pi\)
\(888\) −12.7842 + 11.1836i −0.429009 + 0.375299i
\(889\) 0 0
\(890\) −5.08089 21.7360i −0.170312 0.728591i
\(891\) −16.9029 + 9.75888i −0.566268 + 0.326935i
\(892\) −9.47315 + 29.9594i −0.317185 + 1.00311i
\(893\) 4.17618 1.11901i 0.139751 0.0374461i
\(894\) 8.83415 14.5448i 0.295458 0.486451i
\(895\) −46.0174 + 25.9616i −1.53819 + 0.867801i
\(896\) 0 0
\(897\) 15.7601 15.7601i 0.526215 0.526215i
\(898\) −37.6204 + 9.18933i −1.25541 + 0.306652i
\(899\) 1.53346 2.65603i 0.0511438 0.0885836i
\(900\) −12.0847 0.778550i −0.402823 0.0259517i
\(901\) 1.93585 + 3.35299i 0.0644926 + 0.111704i
\(902\) −11.2519 + 38.5447i −0.374647 + 1.28340i
\(903\) 0 0
\(904\) 2.04442 30.6153i 0.0679965 1.01825i
\(905\) −1.81567 1.07249i −0.0603550 0.0356507i
\(906\) −1.20061 0.0266895i −0.0398877 0.000886701i
\(907\) 13.8355 3.70721i 0.459400 0.123096i −0.0216943 0.999765i \(-0.506906\pi\)
0.481095 + 0.876669i \(0.340239\pi\)
\(908\) −10.1821 + 9.31480i −0.337903 + 0.309122i
\(909\) 11.7648i 0.390214i
\(910\) 0 0
\(911\) 1.96705i 0.0651712i −0.999469 0.0325856i \(-0.989626\pi\)
0.999469 0.0325856i \(-0.0103742\pi\)
\(912\) −0.394636 2.25974i −0.0130677 0.0748274i
\(913\) −12.7624 + 3.41969i −0.422375 + 0.113175i
\(914\) −0.120238 + 5.40882i −0.00397711 + 0.178908i
\(915\) −35.4369 + 9.11870i −1.17151 + 0.301455i
\(916\) −5.43335 + 8.51325i −0.179523 + 0.281286i
\(917\) 0 0
\(918\) −25.8033 7.53244i −0.851635 0.248607i
\(919\) −4.25783 7.37478i −0.140453 0.243271i 0.787214 0.616679i \(-0.211523\pi\)
−0.927667 + 0.373408i \(0.878189\pi\)
\(920\) 1.74209 22.6922i 0.0574351 0.748138i
\(921\) 13.3435 23.1116i 0.439684 0.761555i
\(922\) 8.32716 + 34.0908i 0.274240 + 1.12272i
\(923\) −40.1766 + 40.1766i −1.32243 + 1.32243i
\(924\) 0 0
\(925\) −5.37795 21.7953i −0.176826 0.716624i
\(926\) −17.7272 10.7671i −0.582552 0.353828i
\(927\) 0.145037 0.0388626i 0.00476364 0.00127641i
\(928\) 15.4952 39.6055i 0.508656 1.30012i
\(929\) −30.7662 + 17.7629i −1.00941 + 0.582781i −0.911018 0.412367i \(-0.864702\pi\)
−0.0983891 + 0.995148i \(0.531369\pi\)
\(930\) −1.46576 0.910338i −0.0480643 0.0298512i
\(931\) 0 0
\(932\) 1.49740 + 6.78063i 0.0490490 + 0.222107i
\(933\) −5.79062 + 21.6109i −0.189576 + 0.707508i
\(934\) 7.25745 + 0.161333i 0.237471 + 0.00527897i
\(935\) 26.9630 26.4321i 0.881784 0.864423i
\(936\) 6.99754 + 14.2337i 0.228722 + 0.465243i
\(937\) −23.8007 + 23.8007i −0.777536 + 0.777536i −0.979411 0.201876i \(-0.935296\pi\)
0.201876 + 0.979411i \(0.435296\pi\)
\(938\) 0 0
\(939\) 10.8339 0.353551
\(940\) 14.0226 42.8604i 0.457368 1.39795i
\(941\) −6.79801 + 11.7745i −0.221609 + 0.383838i −0.955297 0.295649i \(-0.904464\pi\)
0.733688 + 0.679487i \(0.237797\pi\)
\(942\) −11.1743 11.6824i −0.364077 0.380632i
\(943\) −19.7232 5.28482i −0.642276 0.172097i
\(944\) −6.52796 14.0594i −0.212467 0.457593i
\(945\) 0 0
\(946\) −19.2989 35.2115i −0.627463 1.14483i
\(947\) −9.45619 + 35.2910i −0.307285 + 1.14680i 0.623675 + 0.781683i \(0.285639\pi\)
−0.930960 + 0.365120i \(0.881028\pi\)
\(948\) 0.159320 0.503858i 0.00517446 0.0163645i
\(949\) 21.4771 + 12.3998i 0.697177 + 0.402515i
\(950\) 2.89285 + 0.907268i 0.0938565 + 0.0294357i
\(951\) 8.19376i 0.265701i
\(952\) 0 0
\(953\) 4.64369 + 4.64369i 0.150424 + 0.150424i 0.778307 0.627883i \(-0.216079\pi\)
−0.627883 + 0.778307i \(0.716079\pi\)
\(954\) −1.67934 1.01999i −0.0543706 0.0330234i
\(955\) 38.6090 + 0.383845i 1.24936 + 0.0124209i
\(956\) 20.0220 10.4020i 0.647558 0.336423i
\(957\) 48.6023 + 13.0229i 1.57109 + 0.420972i
\(958\) 5.73362 + 1.67375i 0.185245 + 0.0540763i
\(959\) 0 0
\(960\) −21.9902 9.42975i −0.709730 0.304344i
\(961\) −15.4168 26.7027i −0.497316 0.861376i
\(962\) −21.2477 + 20.3236i −0.685053 + 0.655258i
\(963\) −0.742954 2.77274i −0.0239414 0.0893504i
\(964\) −2.32087 + 52.1756i −0.0747501 + 1.68046i
\(965\) −12.8561 3.58212i −0.413851 0.115313i
\(966\) 0 0
\(967\) 24.8629 + 24.8629i 0.799538 + 0.799538i 0.983023 0.183485i \(-0.0587378\pi\)
−0.183485 + 0.983023i \(0.558738\pi\)
\(968\) −12.8087 + 37.5815i −0.411688 + 1.20791i
\(969\) 1.67602 + 0.967651i 0.0538415 + 0.0310854i
\(970\) 11.0782 + 20.6982i 0.355701 + 0.664579i
\(971\) 33.6619 19.4347i 1.08026 0.623689i 0.149294 0.988793i \(-0.452300\pi\)
0.930967 + 0.365104i \(0.118966\pi\)
\(972\) 22.8101 5.03727i 0.731634 0.161571i
\(973\) 0 0
\(974\) 15.9331 + 29.0704i 0.510529 + 0.931476i
\(975\) 30.9625 + 0.615711i 0.991595 + 0.0197185i
\(976\) 48.7446 + 4.34510i 1.56028 + 0.139083i
\(977\) 13.8183 + 51.5706i 0.442087 + 1.64989i 0.723515 + 0.690309i \(0.242525\pi\)
−0.281428 + 0.959582i \(0.590808\pi\)
\(978\) 36.2058 8.84378i 1.15773 0.282793i
\(979\) −35.3206 −1.12885
\(980\) 0 0
\(981\) 12.2483 0.391060
\(982\) 59.0915 14.4339i 1.88568 0.460605i
\(983\) −10.3281 38.5452i −0.329417 1.22940i −0.909797 0.415054i \(-0.863763\pi\)
0.580380 0.814346i \(-0.302904\pi\)
\(984\) −11.9482 + 17.8342i −0.380894 + 0.568534i
\(985\) −17.5341 + 4.51190i −0.558681 + 0.143761i
\(986\) 17.2449 + 31.4639i 0.549190 + 1.00201i
\(987\) 0 0
\(988\) −0.856280 3.87746i −0.0272419 0.123359i
\(989\) 17.6833 10.2095i 0.562298 0.324643i
\(990\) −5.55209 + 18.3396i −0.176457 + 0.582870i
\(991\) 20.3753 + 11.7637i 0.647242 + 0.373685i 0.787399 0.616444i \(-0.211427\pi\)
−0.140157 + 0.990129i \(0.544761\pi\)
\(992\) 1.44072 + 1.80265i 0.0457429 + 0.0572342i
\(993\) −29.4134 29.4134i −0.933406 0.933406i
\(994\) 0 0
\(995\) −38.8344 + 21.9092i −1.23113 + 0.694568i
\(996\) −7.05672 0.313896i −0.223601 0.00994618i
\(997\) 8.68766 + 32.4228i 0.275141 + 1.02684i 0.955747 + 0.294190i \(0.0950499\pi\)
−0.680606 + 0.732650i \(0.738283\pi\)
\(998\) −0.574301 + 0.549323i −0.0181792 + 0.0173885i
\(999\) 12.6441 + 21.9002i 0.400041 + 0.692891i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.l.263.7 72
4.3 odd 2 inner 980.2.x.l.263.5 72
5.2 odd 4 inner 980.2.x.l.67.17 72
7.2 even 3 inner 980.2.x.l.863.5 72
7.3 odd 6 140.2.k.a.43.18 yes 36
7.4 even 3 980.2.k.l.883.18 36
7.5 odd 6 980.2.x.k.863.5 72
7.6 odd 2 980.2.x.k.263.7 72
20.7 even 4 inner 980.2.x.l.67.5 72
28.3 even 6 140.2.k.a.43.8 36
28.11 odd 6 980.2.k.l.883.8 36
28.19 even 6 980.2.x.k.863.17 72
28.23 odd 6 inner 980.2.x.l.863.17 72
28.27 even 2 980.2.x.k.263.5 72
35.2 odd 12 inner 980.2.x.l.667.5 72
35.3 even 12 700.2.k.b.407.11 36
35.12 even 12 980.2.x.k.667.5 72
35.17 even 12 140.2.k.a.127.8 yes 36
35.24 odd 6 700.2.k.b.43.1 36
35.27 even 4 980.2.x.k.67.17 72
35.32 odd 12 980.2.k.l.687.8 36
140.3 odd 12 700.2.k.b.407.1 36
140.27 odd 4 980.2.x.k.67.5 72
140.47 odd 12 980.2.x.k.667.7 72
140.59 even 6 700.2.k.b.43.11 36
140.67 even 12 980.2.k.l.687.18 36
140.87 odd 12 140.2.k.a.127.18 yes 36
140.107 even 12 inner 980.2.x.l.667.7 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.k.a.43.8 36 28.3 even 6
140.2.k.a.43.18 yes 36 7.3 odd 6
140.2.k.a.127.8 yes 36 35.17 even 12
140.2.k.a.127.18 yes 36 140.87 odd 12
700.2.k.b.43.1 36 35.24 odd 6
700.2.k.b.43.11 36 140.59 even 6
700.2.k.b.407.1 36 140.3 odd 12
700.2.k.b.407.11 36 35.3 even 12
980.2.k.l.687.8 36 35.32 odd 12
980.2.k.l.687.18 36 140.67 even 12
980.2.k.l.883.8 36 28.11 odd 6
980.2.k.l.883.18 36 7.4 even 3
980.2.x.k.67.5 72 140.27 odd 4
980.2.x.k.67.17 72 35.27 even 4
980.2.x.k.263.5 72 28.27 even 2
980.2.x.k.263.7 72 7.6 odd 2
980.2.x.k.667.5 72 35.12 even 12
980.2.x.k.667.7 72 140.47 odd 12
980.2.x.k.863.5 72 7.5 odd 6
980.2.x.k.863.17 72 28.19 even 6
980.2.x.l.67.5 72 20.7 even 4 inner
980.2.x.l.67.17 72 5.2 odd 4 inner
980.2.x.l.263.5 72 4.3 odd 2 inner
980.2.x.l.263.7 72 1.1 even 1 trivial
980.2.x.l.667.5 72 35.2 odd 12 inner
980.2.x.l.667.7 72 140.107 even 12 inner
980.2.x.l.863.5 72 7.2 even 3 inner
980.2.x.l.863.17 72 28.23 odd 6 inner