Properties

Label 980.2.x.k.263.5
Level $980$
Weight $2$
Character 980.263
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,0,0,0,0,-16,0,0,0,16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 263.5
Character \(\chi\) \(=\) 980.263
Dual form 980.2.x.k.667.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.977529 + 1.02198i) q^{2} +(-0.346182 - 1.29197i) q^{3} +(-0.0888759 - 1.99802i) q^{4} +(1.92528 + 1.13723i) q^{5} +(1.65877 + 0.909146i) q^{6} +(2.12881 + 1.86230i) q^{8} +(1.04873 - 0.605487i) q^{9} +(-3.04424 + 0.855919i) q^{10} +(-4.33338 - 2.50188i) q^{11} +(-2.55062 + 0.806505i) q^{12} +(-3.27438 - 3.27438i) q^{13} +(0.802768 - 2.88109i) q^{15} +(-3.98420 + 0.355152i) q^{16} +(-0.873420 - 3.25965i) q^{17} +(-0.406374 + 1.66366i) q^{18} +(0.214380 + 0.371316i) q^{19} +(2.10110 - 3.94783i) q^{20} +(6.79287 - 1.98296i) q^{22} +(-3.47589 - 0.931361i) q^{23} +(1.66907 - 3.39506i) q^{24} +(2.41342 + 4.37898i) q^{25} +(6.54714 - 0.145543i) q^{26} +(-3.98268 - 3.98268i) q^{27} +7.51811i q^{29} +(2.15968 + 3.63676i) q^{30} +(-0.353285 - 0.203969i) q^{31} +(3.53171 - 4.41894i) q^{32} +(-1.73221 + 6.46470i) q^{33} +(4.18508 + 2.29378i) q^{34} +(-1.30298 - 2.04158i) q^{36} +(-4.33681 - 1.16204i) q^{37} +(-0.589039 - 0.143881i) q^{38} +(-3.09687 + 5.36393i) q^{39} +(1.98071 + 6.00640i) q^{40} +5.67429 q^{41} +(-4.01233 + 4.01233i) q^{43} +(-4.61368 + 8.88056i) q^{44} +(2.70769 + 0.0269194i) q^{45} +(4.34961 - 2.64185i) q^{46} +(2.60987 - 9.74016i) q^{47} +(1.83811 + 5.02452i) q^{48} +(-6.83440 - 1.81412i) q^{50} +(-3.90900 + 2.25686i) q^{51} +(-6.25128 + 6.83330i) q^{52} +(1.10820 - 0.296942i) q^{53} +(7.96340 - 0.177026i) q^{54} +(-5.49776 - 9.74487i) q^{55} +(0.405515 - 0.405515i) q^{57} +(-7.68334 - 7.34916i) q^{58} +(1.93762 - 3.35606i) q^{59} +(-5.82784 - 1.34789i) q^{60} +(-6.11723 - 10.5954i) q^{61} +(0.553797 - 0.161663i) q^{62} +(1.06370 + 7.92897i) q^{64} +(-2.58038 - 10.0278i) q^{65} +(-4.91349 - 8.08971i) q^{66} +(-11.3327 + 3.03658i) q^{67} +(-6.43523 + 2.03482i) q^{68} +4.81316i q^{69} -12.2700i q^{71} +(3.36016 + 0.664085i) q^{72} +(-5.17303 + 1.38611i) q^{73} +(5.42693 - 3.29619i) q^{74} +(4.82202 - 4.63398i) q^{75} +(0.722846 - 0.461337i) q^{76} +(-2.45454 - 8.40832i) q^{78} +(0.0987717 + 0.171078i) q^{79} +(-8.07460 - 3.84719i) q^{80} +(-1.95031 + 3.37804i) q^{81} +(-5.54678 + 5.79900i) q^{82} +(-1.86715 + 1.86715i) q^{83} +(2.02539 - 7.26902i) q^{85} +(-0.178344 - 8.02268i) q^{86} +(9.71316 - 2.60263i) q^{87} +(-4.56572 - 13.3961i) q^{88} +(6.11311 - 3.52940i) q^{89} +(-2.67435 + 2.74088i) q^{90} +(-1.55196 + 7.02768i) q^{92} +(-0.141221 + 0.527043i) q^{93} +(7.40301 + 12.1885i) q^{94} +(-0.00953113 + 0.958687i) q^{95} +(-6.93175 - 3.03311i) q^{96} +(-5.24949 + 5.24949i) q^{97} -6.05942 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 16 q^{6} + 16 q^{10} + 16 q^{12} - 8 q^{13} + 8 q^{16} + 20 q^{17} - 28 q^{18} + 40 q^{20} + 8 q^{22} + 20 q^{25} + 32 q^{26} + 4 q^{30} - 20 q^{37} + 36 q^{40} - 20 q^{45} - 16 q^{46} - 48 q^{48}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.977529 + 1.02198i −0.691217 + 0.722647i
\(3\) −0.346182 1.29197i −0.199868 0.745919i −0.990953 0.134212i \(-0.957150\pi\)
0.791084 0.611707i \(-0.209517\pi\)
\(4\) −0.0888759 1.99802i −0.0444380 0.999012i
\(5\) 1.92528 + 1.13723i 0.861012 + 0.508585i
\(6\) 1.65877 + 0.909146i 0.677188 + 0.371157i
\(7\) 0 0
\(8\) 2.12881 + 1.86230i 0.752650 + 0.658421i
\(9\) 1.04873 0.605487i 0.349578 0.201829i
\(10\) −3.04424 + 0.855919i −0.962673 + 0.270665i
\(11\) −4.33338 2.50188i −1.30656 0.754345i −0.325042 0.945699i \(-0.605379\pi\)
−0.981521 + 0.191355i \(0.938712\pi\)
\(12\) −2.55062 + 0.806505i −0.736300 + 0.232818i
\(13\) −3.27438 3.27438i −0.908150 0.908150i 0.0879732 0.996123i \(-0.471961\pi\)
−0.996123 + 0.0879732i \(0.971961\pi\)
\(14\) 0 0
\(15\) 0.802768 2.88109i 0.207274 0.743895i
\(16\) −3.98420 + 0.355152i −0.996051 + 0.0887881i
\(17\) −0.873420 3.25965i −0.211835 0.790581i −0.987257 0.159136i \(-0.949129\pi\)
0.775421 0.631444i \(-0.217538\pi\)
\(18\) −0.406374 + 1.66366i −0.0957832 + 0.392129i
\(19\) 0.214380 + 0.371316i 0.0491820 + 0.0851858i 0.889568 0.456802i \(-0.151005\pi\)
−0.840386 + 0.541988i \(0.817672\pi\)
\(20\) 2.10110 3.94783i 0.469821 0.882762i
\(21\) 0 0
\(22\) 6.79287 1.98296i 1.44824 0.422768i
\(23\) −3.47589 0.931361i −0.724773 0.194202i −0.122472 0.992472i \(-0.539082\pi\)
−0.602300 + 0.798270i \(0.705749\pi\)
\(24\) 1.66907 3.39506i 0.340698 0.693013i
\(25\) 2.41342 + 4.37898i 0.482683 + 0.875795i
\(26\) 6.54714 0.145543i 1.28400 0.0285433i
\(27\) −3.98268 3.98268i −0.766468 0.766468i
\(28\) 0 0
\(29\) 7.51811i 1.39608i 0.716060 + 0.698039i \(0.245944\pi\)
−0.716060 + 0.698039i \(0.754056\pi\)
\(30\) 2.15968 + 3.63676i 0.394302 + 0.663979i
\(31\) −0.353285 0.203969i −0.0634518 0.0366339i 0.467938 0.883761i \(-0.344997\pi\)
−0.531390 + 0.847127i \(0.678330\pi\)
\(32\) 3.53171 4.41894i 0.624325 0.781165i
\(33\) −1.73221 + 6.46470i −0.301539 + 1.12536i
\(34\) 4.18508 + 2.29378i 0.717735 + 0.393381i
\(35\) 0 0
\(36\) −1.30298 2.04158i −0.217164 0.340264i
\(37\) −4.33681 1.16204i −0.712967 0.191039i −0.115935 0.993257i \(-0.536987\pi\)
−0.597031 + 0.802218i \(0.703653\pi\)
\(38\) −0.589039 0.143881i −0.0955547 0.0233406i
\(39\) −3.09687 + 5.36393i −0.495895 + 0.858916i
\(40\) 1.98071 + 6.00640i 0.313177 + 0.949695i
\(41\) 5.67429 0.886176 0.443088 0.896478i \(-0.353883\pi\)
0.443088 + 0.896478i \(0.353883\pi\)
\(42\) 0 0
\(43\) −4.01233 + 4.01233i −0.611875 + 0.611875i −0.943434 0.331560i \(-0.892425\pi\)
0.331560 + 0.943434i \(0.392425\pi\)
\(44\) −4.61368 + 8.88056i −0.695538 + 1.33879i
\(45\) 2.70769 + 0.0269194i 0.403638 + 0.00401291i
\(46\) 4.34961 2.64185i 0.641315 0.389519i
\(47\) 2.60987 9.74016i 0.380689 1.42075i −0.464164 0.885749i \(-0.653645\pi\)
0.844852 0.535000i \(-0.179688\pi\)
\(48\) 1.83811 + 5.02452i 0.265308 + 0.725227i
\(49\) 0 0
\(50\) −6.83440 1.81412i −0.966530 0.256555i
\(51\) −3.90900 + 2.25686i −0.547370 + 0.316024i
\(52\) −6.25128 + 6.83330i −0.866896 + 0.947609i
\(53\) 1.10820 0.296942i 0.152223 0.0407881i −0.181903 0.983317i \(-0.558226\pi\)
0.334126 + 0.942528i \(0.391559\pi\)
\(54\) 7.96340 0.177026i 1.08368 0.0240902i
\(55\) −5.49776 9.74487i −0.741318 1.31400i
\(56\) 0 0
\(57\) 0.405515 0.405515i 0.0537117 0.0537117i
\(58\) −7.68334 7.34916i −1.00887 0.964992i
\(59\) 1.93762 3.35606i 0.252257 0.436921i −0.711890 0.702291i \(-0.752161\pi\)
0.964147 + 0.265370i \(0.0854939\pi\)
\(60\) −5.82784 1.34789i −0.752371 0.174012i
\(61\) −6.11723 10.5954i −0.783231 1.35660i −0.930050 0.367433i \(-0.880237\pi\)
0.146819 0.989163i \(-0.453097\pi\)
\(62\) 0.553797 0.161663i 0.0703323 0.0205313i
\(63\) 0 0
\(64\) 1.06370 + 7.92897i 0.132963 + 0.991121i
\(65\) −2.58038 10.0278i −0.320057 1.24380i
\(66\) −4.91349 8.08971i −0.604809 0.995774i
\(67\) −11.3327 + 3.03658i −1.38451 + 0.370977i −0.872756 0.488157i \(-0.837669\pi\)
−0.511750 + 0.859134i \(0.671003\pi\)
\(68\) −6.43523 + 2.03482i −0.780386 + 0.246758i
\(69\) 4.81316i 0.579436i
\(70\) 0 0
\(71\) 12.2700i 1.45618i −0.685482 0.728090i \(-0.740408\pi\)
0.685482 0.728090i \(-0.259592\pi\)
\(72\) 3.36016 + 0.664085i 0.395998 + 0.0782631i
\(73\) −5.17303 + 1.38611i −0.605457 + 0.162232i −0.548508 0.836145i \(-0.684804\pi\)
−0.0569493 + 0.998377i \(0.518137\pi\)
\(74\) 5.42693 3.29619i 0.630868 0.383174i
\(75\) 4.82202 4.63398i 0.556799 0.535086i
\(76\) 0.722846 0.461337i 0.0829161 0.0529189i
\(77\) 0 0
\(78\) −2.45454 8.40832i −0.277922 0.952055i
\(79\) 0.0987717 + 0.171078i 0.0111127 + 0.0192477i 0.871528 0.490345i \(-0.163129\pi\)
−0.860416 + 0.509593i \(0.829796\pi\)
\(80\) −8.07460 3.84719i −0.902768 0.430129i
\(81\) −1.95031 + 3.37804i −0.216701 + 0.375337i
\(82\) −5.54678 + 5.79900i −0.612540 + 0.640392i
\(83\) −1.86715 + 1.86715i −0.204946 + 0.204946i −0.802115 0.597169i \(-0.796292\pi\)
0.597169 + 0.802115i \(0.296292\pi\)
\(84\) 0 0
\(85\) 2.02539 7.26902i 0.219684 0.788436i
\(86\) −0.178344 8.02268i −0.0192313 0.865108i
\(87\) 9.71316 2.60263i 1.04136 0.279032i
\(88\) −4.56572 13.3961i −0.486708 1.42803i
\(89\) 6.11311 3.52940i 0.647988 0.374116i −0.139697 0.990194i \(-0.544613\pi\)
0.787685 + 0.616078i \(0.211279\pi\)
\(90\) −2.67435 + 2.74088i −0.281901 + 0.288914i
\(91\) 0 0
\(92\) −1.55196 + 7.02768i −0.161803 + 0.732687i
\(93\) −0.141221 + 0.527043i −0.0146439 + 0.0546518i
\(94\) 7.40301 + 12.1885i 0.763562 + 1.25715i
\(95\) −0.00953113 + 0.958687i −0.000977873 + 0.0983592i
\(96\) −6.93175 3.03311i −0.707468 0.309565i
\(97\) −5.24949 + 5.24949i −0.533005 + 0.533005i −0.921465 0.388460i \(-0.873007\pi\)
0.388460 + 0.921465i \(0.373007\pi\)
\(98\) 0 0
\(99\) −6.05942 −0.608994
\(100\) 8.53480 5.21125i 0.853480 0.521125i
\(101\) 4.85758 8.41357i 0.483347 0.837181i −0.516470 0.856305i \(-0.672754\pi\)
0.999817 + 0.0191239i \(0.00608769\pi\)
\(102\) 1.51470 6.20106i 0.149977 0.613997i
\(103\) 0.119769 + 0.0320920i 0.0118012 + 0.00316212i 0.264715 0.964327i \(-0.414722\pi\)
−0.252914 + 0.967489i \(0.581389\pi\)
\(104\) −0.872681 13.0684i −0.0855734 1.28146i
\(105\) 0 0
\(106\) −0.779831 + 1.42283i −0.0757439 + 0.138197i
\(107\) −0.613518 + 2.28968i −0.0593110 + 0.221352i −0.989220 0.146439i \(-0.953219\pi\)
0.929909 + 0.367790i \(0.119886\pi\)
\(108\) −7.60354 + 8.31146i −0.731651 + 0.799771i
\(109\) 8.75938 + 5.05723i 0.838996 + 0.484395i 0.856923 0.515445i \(-0.172373\pi\)
−0.0179266 + 0.999839i \(0.505707\pi\)
\(110\) 15.3333 + 3.90730i 1.46197 + 0.372546i
\(111\) 6.00530i 0.569998i
\(112\) 0 0
\(113\) −7.67087 7.67087i −0.721614 0.721614i 0.247320 0.968934i \(-0.420450\pi\)
−0.968934 + 0.247320i \(0.920450\pi\)
\(114\) 0.0180247 + 0.810829i 0.00168817 + 0.0759411i
\(115\) −5.63289 5.74602i −0.525270 0.535819i
\(116\) 15.0214 0.668179i 1.39470 0.0620388i
\(117\) −5.41655 1.45136i −0.500760 0.134178i
\(118\) 1.53574 + 5.26084i 0.141376 + 0.484300i
\(119\) 0 0
\(120\) 7.07439 4.63832i 0.645801 0.423419i
\(121\) 7.01879 + 12.1569i 0.638072 + 1.10517i
\(122\) 16.8080 + 4.10559i 1.52172 + 0.371703i
\(123\) −1.96434 7.33101i −0.177118 0.661015i
\(124\) −0.376136 + 0.723999i −0.0337780 + 0.0650170i
\(125\) −0.333400 + 11.1754i −0.0298202 + 0.999555i
\(126\) 0 0
\(127\) 6.81065 + 6.81065i 0.604347 + 0.604347i 0.941463 0.337116i \(-0.109451\pi\)
−0.337116 + 0.941463i \(0.609451\pi\)
\(128\) −9.14303 6.66371i −0.808137 0.588995i
\(129\) 6.57280 + 3.79481i 0.578703 + 0.334114i
\(130\) 12.7706 + 7.16540i 1.12006 + 0.628447i
\(131\) 1.88090 1.08594i 0.164335 0.0948786i −0.415577 0.909558i \(-0.636420\pi\)
0.579912 + 0.814679i \(0.303087\pi\)
\(132\) 13.0706 + 2.88644i 1.13765 + 0.251233i
\(133\) 0 0
\(134\) 7.97469 14.5501i 0.688909 1.25694i
\(135\) −3.13856 12.1970i −0.270124 1.04975i
\(136\) 4.21108 8.56575i 0.361097 0.734507i
\(137\) −3.01914 11.2676i −0.257943 0.962655i −0.966430 0.256931i \(-0.917289\pi\)
0.708487 0.705724i \(-0.249378\pi\)
\(138\) −4.91894 4.70500i −0.418728 0.400516i
\(139\) 15.0008 1.27235 0.636175 0.771545i \(-0.280516\pi\)
0.636175 + 0.771545i \(0.280516\pi\)
\(140\) 0 0
\(141\) −13.4875 −1.13585
\(142\) 12.5397 + 11.9943i 1.05230 + 1.00654i
\(143\) 5.99703 + 22.3812i 0.501497 + 1.87161i
\(144\) −3.96333 + 2.78484i −0.330277 + 0.232070i
\(145\) −8.54982 + 14.4745i −0.710024 + 1.20204i
\(146\) 3.64021 6.64168i 0.301266 0.549669i
\(147\) 0 0
\(148\) −1.93635 + 8.76832i −0.159167 + 0.720752i
\(149\) −7.79115 + 4.49822i −0.638276 + 0.368509i −0.783950 0.620824i \(-0.786798\pi\)
0.145674 + 0.989333i \(0.453465\pi\)
\(150\) 0.0221620 + 9.45784i 0.00180952 + 0.772230i
\(151\) −0.549816 0.317436i −0.0447434 0.0258326i 0.477461 0.878653i \(-0.341557\pi\)
−0.522205 + 0.852820i \(0.674890\pi\)
\(152\) −0.235127 + 1.18970i −0.0190713 + 0.0964976i
\(153\) −2.88966 2.88966i −0.233615 0.233615i
\(154\) 0 0
\(155\) −0.448212 0.794463i −0.0360013 0.0638128i
\(156\) 10.9925 + 5.71089i 0.880104 + 0.457237i
\(157\) −2.21196 8.25515i −0.176534 0.658832i −0.996285 0.0861134i \(-0.972555\pi\)
0.819752 0.572719i \(-0.194111\pi\)
\(158\) −0.271389 0.0662908i −0.0215906 0.00527381i
\(159\) −0.767279 1.32897i −0.0608492 0.105394i
\(160\) 11.8249 4.49132i 0.934840 0.355070i
\(161\) 0 0
\(162\) −1.54579 5.29530i −0.121449 0.416038i
\(163\) 19.0319 + 5.09959i 1.49069 + 0.399430i 0.909972 0.414671i \(-0.136103\pi\)
0.580723 + 0.814101i \(0.302770\pi\)
\(164\) −0.504308 11.3374i −0.0393798 0.885300i
\(165\) −10.6868 + 10.4764i −0.831970 + 0.815590i
\(166\) −0.0829927 3.73337i −0.00644149 0.289766i
\(167\) −8.56192 8.56192i −0.662541 0.662541i 0.293437 0.955978i \(-0.405201\pi\)
−0.955978 + 0.293437i \(0.905201\pi\)
\(168\) 0 0
\(169\) 8.44313i 0.649471i
\(170\) 5.44890 + 9.17558i 0.417911 + 0.703735i
\(171\) 0.449654 + 0.259608i 0.0343859 + 0.0198527i
\(172\) 8.37333 + 7.66013i 0.638461 + 0.584080i
\(173\) 4.79365 17.8901i 0.364454 1.36016i −0.503705 0.863876i \(-0.668030\pi\)
0.868159 0.496286i \(-0.165303\pi\)
\(174\) −6.83506 + 12.4708i −0.518165 + 0.945407i
\(175\) 0 0
\(176\) 18.1536 + 8.42898i 1.36838 + 0.635358i
\(177\) −5.00669 1.34154i −0.376326 0.100836i
\(178\) −2.36877 + 9.69755i −0.177546 + 0.726862i
\(179\) −11.8144 + 20.4632i −0.883050 + 1.52949i −0.0351179 + 0.999383i \(0.511181\pi\)
−0.847932 + 0.530105i \(0.822153\pi\)
\(180\) −0.186862 5.41241i −0.0139279 0.403418i
\(181\) −0.943069 −0.0700978 −0.0350489 0.999386i \(-0.511159\pi\)
−0.0350489 + 0.999386i \(0.511159\pi\)
\(182\) 0 0
\(183\) −11.5712 + 11.5712i −0.855368 + 0.855368i
\(184\) −5.66505 8.45583i −0.417633 0.623372i
\(185\) −7.02806 7.16921i −0.516713 0.527091i
\(186\) −0.400579 0.659524i −0.0293719 0.0483587i
\(187\) −4.37038 + 16.3105i −0.319594 + 1.19274i
\(188\) −19.6930 4.34892i −1.43626 0.317177i
\(189\) 0 0
\(190\) −0.970440 0.946885i −0.0704031 0.0686942i
\(191\) 14.9539 8.63366i 1.08203 0.624710i 0.150586 0.988597i \(-0.451884\pi\)
0.931443 + 0.363887i \(0.118551\pi\)
\(192\) 9.87575 4.11914i 0.712721 0.297273i
\(193\) 5.76504 1.54474i 0.414977 0.111193i −0.0452888 0.998974i \(-0.514421\pi\)
0.460266 + 0.887781i \(0.347754\pi\)
\(194\) −0.233334 10.4964i −0.0167524 0.753597i
\(195\) −12.0624 + 6.80522i −0.863804 + 0.487332i
\(196\) 0 0
\(197\) 5.72538 5.72538i 0.407917 0.407917i −0.473095 0.881012i \(-0.656863\pi\)
0.881012 + 0.473095i \(0.156863\pi\)
\(198\) 5.92325 6.19259i 0.420947 0.440088i
\(199\) 9.97026 17.2690i 0.706773 1.22417i −0.259275 0.965804i \(-0.583483\pi\)
0.966048 0.258363i \(-0.0831832\pi\)
\(200\) −3.01724 + 13.8165i −0.213351 + 0.976976i
\(201\) 7.84634 + 13.5903i 0.553438 + 0.958583i
\(202\) 3.85006 + 13.1888i 0.270889 + 0.927963i
\(203\) 0 0
\(204\) 4.85668 + 7.60970i 0.340036 + 0.532786i
\(205\) 10.9246 + 6.45298i 0.763008 + 0.450695i
\(206\) −0.149875 + 0.0910303i −0.0104423 + 0.00634238i
\(207\) −4.20921 + 1.12785i −0.292560 + 0.0783913i
\(208\) 14.2087 + 11.8829i 0.985196 + 0.823930i
\(209\) 2.14541i 0.148401i
\(210\) 0 0
\(211\) 7.74837i 0.533420i −0.963777 0.266710i \(-0.914063\pi\)
0.963777 0.266710i \(-0.0859365\pi\)
\(212\) −0.691789 2.18782i −0.0475123 0.150260i
\(213\) −15.8524 + 4.24765i −1.08619 + 0.291044i
\(214\) −1.74027 2.86523i −0.118962 0.195863i
\(215\) −12.2878 + 3.16192i −0.838022 + 0.215641i
\(216\) −1.06146 15.8953i −0.0722230 1.08154i
\(217\) 0 0
\(218\) −13.7309 + 4.00830i −0.929975 + 0.271476i
\(219\) 3.58162 + 6.20355i 0.242023 + 0.419197i
\(220\) −18.9819 + 11.8508i −1.27976 + 0.798977i
\(221\) −7.81342 + 13.5332i −0.525587 + 0.910344i
\(222\) −6.13728 5.87035i −0.411907 0.393992i
\(223\) 11.1091 11.1091i 0.743923 0.743923i −0.229407 0.973331i \(-0.573679\pi\)
0.973331 + 0.229407i \(0.0736787\pi\)
\(224\) 0 0
\(225\) 5.18244 + 3.13109i 0.345496 + 0.208739i
\(226\) 15.3379 0.340962i 1.02026 0.0226804i
\(227\) 6.66488 1.78585i 0.442364 0.118531i −0.0307604 0.999527i \(-0.509793\pi\)
0.473124 + 0.880996i \(0.343126\pi\)
\(228\) −0.846269 0.774188i −0.0560455 0.0512718i
\(229\) −4.37314 + 2.52483i −0.288985 + 0.166846i −0.637484 0.770463i \(-0.720025\pi\)
0.348499 + 0.937309i \(0.386692\pi\)
\(230\) 11.3786 0.139791i 0.750283 0.00921752i
\(231\) 0 0
\(232\) −14.0009 + 16.0047i −0.919207 + 1.05076i
\(233\) 0.898620 3.35370i 0.0588706 0.219708i −0.930223 0.366994i \(-0.880387\pi\)
0.989094 + 0.147286i \(0.0470537\pi\)
\(234\) 6.77809 4.11684i 0.443097 0.269127i
\(235\) 16.1015 15.7845i 1.05035 1.02967i
\(236\) −6.87769 3.57314i −0.447699 0.232592i
\(237\) 0.186834 0.186834i 0.0121362 0.0121362i
\(238\) 0 0
\(239\) 11.2814 0.729734 0.364867 0.931060i \(-0.381114\pi\)
0.364867 + 0.931060i \(0.381114\pi\)
\(240\) −2.17516 + 11.7640i −0.140406 + 0.759360i
\(241\) −13.0568 + 22.6150i −0.841062 + 1.45676i 0.0479359 + 0.998850i \(0.484736\pi\)
−0.888998 + 0.457912i \(0.848598\pi\)
\(242\) −19.2851 4.71067i −1.23970 0.302813i
\(243\) −11.2819 3.02297i −0.723732 0.193923i
\(244\) −20.6261 + 13.1641i −1.32045 + 0.842742i
\(245\) 0 0
\(246\) 9.41232 + 5.15876i 0.600108 + 0.328911i
\(247\) 0.513870 1.91779i 0.0326968 0.122026i
\(248\) −0.372227 1.09213i −0.0236364 0.0693505i
\(249\) 3.05867 + 1.76592i 0.193835 + 0.111911i
\(250\) −11.0951 11.2650i −0.701714 0.712459i
\(251\) 26.0311i 1.64307i 0.570157 + 0.821536i \(0.306882\pi\)
−0.570157 + 0.821536i \(0.693118\pi\)
\(252\) 0 0
\(253\) 12.7322 + 12.7322i 0.800466 + 0.800466i
\(254\) −13.6179 + 0.302726i −0.854465 + 0.0189947i
\(255\) −10.0925 0.100338i −0.632017 0.00628342i
\(256\) 15.7477 2.83000i 0.984233 0.176875i
\(257\) −5.34936 1.43336i −0.333684 0.0894104i 0.0880868 0.996113i \(-0.471925\pi\)
−0.421771 + 0.906702i \(0.638591\pi\)
\(258\) −10.3033 + 3.00772i −0.641456 + 0.187253i
\(259\) 0 0
\(260\) −19.8065 + 6.04689i −1.22835 + 0.375012i
\(261\) 4.55212 + 7.88449i 0.281769 + 0.488038i
\(262\) −0.728827 + 2.98377i −0.0450271 + 0.184338i
\(263\) 3.78833 + 14.1383i 0.233599 + 0.871802i 0.978776 + 0.204935i \(0.0656984\pi\)
−0.745177 + 0.666867i \(0.767635\pi\)
\(264\) −15.7267 + 10.5363i −0.967914 + 0.648462i
\(265\) 2.47129 + 0.688584i 0.151810 + 0.0422994i
\(266\) 0 0
\(267\) −6.67613 6.67613i −0.408572 0.408572i
\(268\) 7.07436 + 22.3731i 0.432136 + 1.36665i
\(269\) 17.0194 + 9.82616i 1.03769 + 0.599112i 0.919179 0.393841i \(-0.128854\pi\)
0.118513 + 0.992953i \(0.462187\pi\)
\(270\) 15.5331 + 8.71539i 0.945315 + 0.530402i
\(271\) −11.8744 + 6.85570i −0.721320 + 0.416454i −0.815238 0.579126i \(-0.803394\pi\)
0.0939185 + 0.995580i \(0.470061\pi\)
\(272\) 4.63755 + 12.6769i 0.281193 + 0.768650i
\(273\) 0 0
\(274\) 14.4665 + 7.92889i 0.873954 + 0.479002i
\(275\) 0.497417 25.0138i 0.0299954 1.50839i
\(276\) 9.61681 0.427774i 0.578864 0.0257490i
\(277\) 1.82693 + 6.81819i 0.109770 + 0.409666i 0.998843 0.0481000i \(-0.0153166\pi\)
−0.889073 + 0.457765i \(0.848650\pi\)
\(278\) −14.6637 + 15.3305i −0.879470 + 0.919460i
\(279\) −0.494002 −0.0295751
\(280\) 0 0
\(281\) 15.9701 0.952697 0.476348 0.879257i \(-0.341960\pi\)
0.476348 + 0.879257i \(0.341960\pi\)
\(282\) 13.1844 13.7839i 0.785119 0.820819i
\(283\) 5.58000 + 20.8249i 0.331697 + 1.23791i 0.907406 + 0.420255i \(0.138059\pi\)
−0.575710 + 0.817654i \(0.695274\pi\)
\(284\) −24.5157 + 1.09051i −1.45474 + 0.0647096i
\(285\) 1.24189 0.319566i 0.0735634 0.0189295i
\(286\) −28.7354 15.7495i −1.69916 0.931285i
\(287\) 0 0
\(288\) 1.02822 6.77270i 0.0605885 0.399085i
\(289\) 4.85999 2.80592i 0.285882 0.165054i
\(290\) −6.43489 22.8869i −0.377870 1.34397i
\(291\) 8.59946 + 4.96490i 0.504109 + 0.291048i
\(292\) 3.22924 + 10.2126i 0.188977 + 0.597650i
\(293\) −19.8931 19.8931i −1.16217 1.16217i −0.984000 0.178170i \(-0.942982\pi\)
−0.178170 0.984000i \(-0.557018\pi\)
\(294\) 0 0
\(295\) 7.54707 4.25783i 0.439408 0.247901i
\(296\) −7.06819 10.5502i −0.410830 0.613218i
\(297\) 7.29429 + 27.2227i 0.423258 + 1.57962i
\(298\) 3.01899 12.3595i 0.174885 0.715968i
\(299\) 8.33175 + 14.4310i 0.481837 + 0.834567i
\(300\) −9.68737 9.22266i −0.559300 0.532471i
\(301\) 0 0
\(302\) 0.861873 0.251596i 0.0495952 0.0144777i
\(303\) −12.5517 3.36321i −0.721075 0.193211i
\(304\) −0.986005 1.40326i −0.0565513 0.0804826i
\(305\) 0.271967 27.3557i 0.0155728 1.56639i
\(306\) 5.77789 0.128442i 0.330300 0.00734256i
\(307\) 14.1084 + 14.1084i 0.805207 + 0.805207i 0.983904 0.178697i \(-0.0571882\pi\)
−0.178697 + 0.983904i \(0.557188\pi\)
\(308\) 0 0
\(309\) 0.165847i 0.00943473i
\(310\) 1.25006 + 0.318548i 0.0709989 + 0.0180923i
\(311\) −14.4861 8.36354i −0.821430 0.474253i 0.0294794 0.999565i \(-0.490615\pi\)
−0.850909 + 0.525313i \(0.823948\pi\)
\(312\) −16.5819 + 5.65153i −0.938764 + 0.319955i
\(313\) 2.09639 7.82385i 0.118495 0.442230i −0.881029 0.473062i \(-0.843149\pi\)
0.999525 + 0.0308314i \(0.00981550\pi\)
\(314\) 10.5988 + 5.80907i 0.598127 + 0.327825i
\(315\) 0 0
\(316\) 0.333039 0.212553i 0.0187349 0.0119570i
\(317\) −5.91723 1.58552i −0.332345 0.0890516i 0.0887878 0.996051i \(-0.471701\pi\)
−0.421133 + 0.906999i \(0.638367\pi\)
\(318\) 2.10821 + 0.514961i 0.118223 + 0.0288776i
\(319\) 18.8094 32.5788i 1.05312 1.82406i
\(320\) −6.96913 + 16.4752i −0.389586 + 0.920990i
\(321\) 3.17059 0.176965
\(322\) 0 0
\(323\) 1.02312 1.02312i 0.0569278 0.0569278i
\(324\) 6.92274 + 3.59654i 0.384596 + 0.199808i
\(325\) 6.43599 22.2409i 0.357005 1.23370i
\(326\) −23.8159 + 14.4652i −1.31904 + 0.801153i
\(327\) 3.50144 13.0676i 0.193630 0.722638i
\(328\) 12.0795 + 10.5672i 0.666980 + 0.583477i
\(329\) 0 0
\(330\) −0.259992 21.1627i −0.0143121 1.16497i
\(331\) −26.9329 + 15.5497i −1.48036 + 0.854689i −0.999753 0.0222445i \(-0.992919\pi\)
−0.480612 + 0.876933i \(0.659585\pi\)
\(332\) 3.89655 + 3.56466i 0.213851 + 0.195636i
\(333\) −5.25176 + 1.40720i −0.287795 + 0.0771143i
\(334\) 17.1196 0.380568i 0.936743 0.0208238i
\(335\) −25.2719 7.04159i −1.38075 0.384723i
\(336\) 0 0
\(337\) −9.43123 + 9.43123i −0.513752 + 0.513752i −0.915674 0.401922i \(-0.868342\pi\)
0.401922 + 0.915674i \(0.368342\pi\)
\(338\) −8.62869 8.25340i −0.469339 0.448926i
\(339\) −7.25500 + 12.5660i −0.394038 + 0.682493i
\(340\) −14.7037 3.40074i −0.797419 0.184431i
\(341\) 1.02061 + 1.76775i 0.0552692 + 0.0957290i
\(342\) −0.704863 + 0.205762i −0.0381147 + 0.0111264i
\(343\) 0 0
\(344\) −16.0137 + 1.06936i −0.863399 + 0.0576559i
\(345\) −5.47367 + 9.26669i −0.294693 + 0.498902i
\(346\) 13.5974 + 22.3871i 0.731000 + 1.20354i
\(347\) 30.6251 8.20598i 1.64404 0.440520i 0.686107 0.727500i \(-0.259318\pi\)
0.957936 + 0.286980i \(0.0926514\pi\)
\(348\) −6.06339 19.1758i −0.325032 1.02793i
\(349\) 13.8389i 0.740778i −0.928877 0.370389i \(-0.879224\pi\)
0.928877 0.370389i \(-0.120776\pi\)
\(350\) 0 0
\(351\) 26.0816i 1.39214i
\(352\) −26.3599 + 10.3130i −1.40499 + 0.549686i
\(353\) 1.67242 0.448123i 0.0890139 0.0238512i −0.214037 0.976826i \(-0.568661\pi\)
0.303051 + 0.952974i \(0.401995\pi\)
\(354\) 6.26521 3.80533i 0.332992 0.202251i
\(355\) 13.9538 23.6232i 0.740591 1.25379i
\(356\) −7.59514 11.9005i −0.402542 0.630723i
\(357\) 0 0
\(358\) −9.36396 32.0774i −0.494901 1.69534i
\(359\) 15.4616 + 26.7802i 0.816031 + 1.41341i 0.908585 + 0.417699i \(0.137163\pi\)
−0.0925546 + 0.995708i \(0.529503\pi\)
\(360\) 5.71403 + 5.09982i 0.301156 + 0.268784i
\(361\) 9.40808 16.2953i 0.495162 0.857646i
\(362\) 0.921877 0.963795i 0.0484528 0.0506559i
\(363\) 13.2766 13.2766i 0.696839 0.696839i
\(364\) 0 0
\(365\) −11.5359 3.21428i −0.603815 0.168243i
\(366\) −0.514327 23.1367i −0.0268843 1.20937i
\(367\) −11.9867 + 3.21183i −0.625700 + 0.167656i −0.557718 0.830031i \(-0.688323\pi\)
−0.0679826 + 0.997687i \(0.521656\pi\)
\(368\) 14.1794 + 2.47626i 0.739153 + 0.129084i
\(369\) 5.95082 3.43571i 0.309788 0.178856i
\(370\) 14.1969 0.174414i 0.738062 0.00906737i
\(371\) 0 0
\(372\) 1.06560 + 0.235321i 0.0552486 + 0.0122008i
\(373\) 5.80479 21.6638i 0.300561 1.12171i −0.636139 0.771574i \(-0.719470\pi\)
0.936700 0.350133i \(-0.113864\pi\)
\(374\) −12.3968 20.4104i −0.641022 1.05540i
\(375\) 14.5536 3.43797i 0.751547 0.177536i
\(376\) 23.6950 15.8747i 1.22198 0.818673i
\(377\) 24.6171 24.6171i 1.26785 1.26785i
\(378\) 0 0
\(379\) 6.09622 0.313142 0.156571 0.987667i \(-0.449956\pi\)
0.156571 + 0.987667i \(0.449956\pi\)
\(380\) 1.91633 0.0661608i 0.0983055 0.00339398i
\(381\) 6.44142 11.1569i 0.330004 0.571584i
\(382\) −5.79450 + 23.7222i −0.296472 + 1.21374i
\(383\) 26.6446 + 7.13940i 1.36148 + 0.364806i 0.864358 0.502877i \(-0.167725\pi\)
0.497118 + 0.867683i \(0.334392\pi\)
\(384\) −5.44416 + 14.1194i −0.277821 + 0.720526i
\(385\) 0 0
\(386\) −4.05681 + 7.40177i −0.206486 + 0.376740i
\(387\) −1.77845 + 6.63728i −0.0904039 + 0.337392i
\(388\) 10.9552 + 10.0221i 0.556164 + 0.508793i
\(389\) −18.2694 10.5478i −0.926296 0.534797i −0.0406576 0.999173i \(-0.512945\pi\)
−0.885638 + 0.464376i \(0.846279\pi\)
\(390\) 4.83652 18.9798i 0.244907 0.961078i
\(391\) 12.1436i 0.614130i
\(392\) 0 0
\(393\) −2.05413 2.05413i −0.103617 0.103617i
\(394\) 0.254487 + 11.4479i 0.0128209 + 0.576739i
\(395\) −0.00439130 + 0.441698i −0.000220950 + 0.0222243i
\(396\) 0.538536 + 12.1069i 0.0270625 + 0.608393i
\(397\) 5.02710 + 1.34701i 0.252303 + 0.0676043i 0.382754 0.923850i \(-0.374976\pi\)
−0.130451 + 0.991455i \(0.541642\pi\)
\(398\) 7.90231 + 27.0703i 0.396107 + 1.35691i
\(399\) 0 0
\(400\) −11.1707 16.5896i −0.558537 0.829480i
\(401\) 5.78504 + 10.0200i 0.288891 + 0.500374i 0.973545 0.228494i \(-0.0733801\pi\)
−0.684654 + 0.728868i \(0.740047\pi\)
\(402\) −21.5590 5.26608i −1.07526 0.262648i
\(403\) 0.488916 + 1.82466i 0.0243546 + 0.0908928i
\(404\) −17.2422 8.95779i −0.857833 0.445667i
\(405\) −7.59650 + 4.28572i −0.377473 + 0.212959i
\(406\) 0 0
\(407\) 15.8857 + 15.8857i 0.787427 + 0.787427i
\(408\) −12.5245 2.47528i −0.620055 0.122545i
\(409\) −3.86895 2.23374i −0.191307 0.110451i 0.401287 0.915952i \(-0.368563\pi\)
−0.592594 + 0.805501i \(0.701896\pi\)
\(410\) −17.2739 + 4.85674i −0.853098 + 0.239857i
\(411\) −13.5122 + 7.80127i −0.666508 + 0.384808i
\(412\) 0.0534760 0.242153i 0.00263457 0.0119300i
\(413\) 0 0
\(414\) 2.96198 5.40423i 0.145573 0.265603i
\(415\) −5.71816 + 1.47141i −0.280694 + 0.0722286i
\(416\) −26.0334 + 2.90511i −1.27639 + 0.142434i
\(417\) −5.19300 19.3805i −0.254302 0.949069i
\(418\) 2.19256 + 2.09720i 0.107241 + 0.102577i
\(419\) 25.3590 1.23887 0.619433 0.785049i \(-0.287362\pi\)
0.619433 + 0.785049i \(0.287362\pi\)
\(420\) 0 0
\(421\) −11.7614 −0.573218 −0.286609 0.958048i \(-0.592528\pi\)
−0.286609 + 0.958048i \(0.592528\pi\)
\(422\) 7.91866 + 7.57425i 0.385474 + 0.368709i
\(423\) −3.16048 11.7951i −0.153668 0.573497i
\(424\) 2.91215 + 1.43167i 0.141427 + 0.0695279i
\(425\) 12.1660 11.6916i 0.590137 0.567124i
\(426\) 11.1552 20.3530i 0.540472 0.986108i
\(427\) 0 0
\(428\) 4.62937 + 1.02233i 0.223769 + 0.0494160i
\(429\) 26.8398 15.4960i 1.29584 0.748152i
\(430\) 8.78027 15.6487i 0.423422 0.754649i
\(431\) −14.4038 8.31606i −0.693809 0.400571i 0.111229 0.993795i \(-0.464521\pi\)
−0.805037 + 0.593224i \(0.797855\pi\)
\(432\) 17.2823 + 14.4534i 0.831494 + 0.695388i
\(433\) 25.8715 + 25.8715i 1.24330 + 1.24330i 0.958623 + 0.284680i \(0.0918874\pi\)
0.284680 + 0.958623i \(0.408113\pi\)
\(434\) 0 0
\(435\) 21.6604 + 6.03530i 1.03853 + 0.289370i
\(436\) 9.32597 17.9509i 0.446633 0.859693i
\(437\) −0.399330 1.49032i −0.0191025 0.0712916i
\(438\) −9.84102 2.40381i −0.470222 0.114858i
\(439\) 12.7134 + 22.0202i 0.606775 + 1.05097i 0.991768 + 0.128046i \(0.0408706\pi\)
−0.384993 + 0.922920i \(0.625796\pi\)
\(440\) 6.44412 30.9835i 0.307211 1.47708i
\(441\) 0 0
\(442\) −6.19282 21.2143i −0.294563 1.00906i
\(443\) 1.73983 + 0.466187i 0.0826619 + 0.0221492i 0.299913 0.953967i \(-0.403042\pi\)
−0.217251 + 0.976116i \(0.569709\pi\)
\(444\) 11.9987 0.533726i 0.569435 0.0253295i
\(445\) 15.7832 + 0.156914i 0.748195 + 0.00743845i
\(446\) 0.493790 + 22.2128i 0.0233816 + 1.05181i
\(447\) 8.50872 + 8.50872i 0.402449 + 0.402449i
\(448\) 0 0
\(449\) 27.3838i 1.29232i −0.763202 0.646160i \(-0.776374\pi\)
0.763202 0.646160i \(-0.223626\pi\)
\(450\) −8.26589 + 2.23561i −0.389658 + 0.105388i
\(451\) −24.5889 14.1964i −1.15784 0.668482i
\(452\) −14.6448 + 16.0083i −0.688834 + 0.752969i
\(453\) −0.219781 + 0.820236i −0.0103262 + 0.0385380i
\(454\) −4.69001 + 8.55708i −0.220113 + 0.401604i
\(455\) 0 0
\(456\) 1.61845 0.108077i 0.0757911 0.00506117i
\(457\) −3.69520 0.990127i −0.172854 0.0463162i 0.171354 0.985210i \(-0.445186\pi\)
−0.344208 + 0.938893i \(0.611853\pi\)
\(458\) 1.69455 6.93735i 0.0791810 0.324161i
\(459\) −9.50359 + 16.4607i −0.443590 + 0.768320i
\(460\) −10.9801 + 11.7653i −0.511948 + 0.548561i
\(461\) 24.8145 1.15573 0.577864 0.816133i \(-0.303886\pi\)
0.577864 + 0.816133i \(0.303886\pi\)
\(462\) 0 0
\(463\) −10.3704 + 10.3704i −0.481955 + 0.481955i −0.905755 0.423801i \(-0.860696\pi\)
0.423801 + 0.905755i \(0.360696\pi\)
\(464\) −2.67007 29.9537i −0.123955 1.39056i
\(465\) −0.871259 + 0.854106i −0.0404037 + 0.0396082i
\(466\) 2.54897 + 4.19670i 0.118079 + 0.194409i
\(467\) −1.32853 + 4.95815i −0.0614772 + 0.229436i −0.989828 0.142269i \(-0.954560\pi\)
0.928351 + 0.371705i \(0.121227\pi\)
\(468\) −2.41845 + 10.9514i −0.111793 + 0.506228i
\(469\) 0 0
\(470\) 0.391722 + 31.8852i 0.0180688 + 1.47076i
\(471\) −9.89965 + 5.71557i −0.456152 + 0.263359i
\(472\) 10.3748 3.53600i 0.477539 0.162758i
\(473\) 27.4253 7.34859i 1.26102 0.337889i
\(474\) 0.00830457 + 0.373576i 0.000381441 + 0.0171589i
\(475\) −1.10860 + 1.83490i −0.0508660 + 0.0841911i
\(476\) 0 0
\(477\) 0.982415 0.982415i 0.0449817 0.0449817i
\(478\) −11.0279 + 11.5294i −0.504405 + 0.527341i
\(479\) −2.11175 + 3.65765i −0.0964882 + 0.167122i −0.910229 0.414106i \(-0.864094\pi\)
0.813741 + 0.581228i \(0.197428\pi\)
\(480\) −9.89622 13.7226i −0.451698 0.626347i
\(481\) 10.3954 + 18.0053i 0.473988 + 0.820972i
\(482\) −10.3487 35.4506i −0.471369 1.61473i
\(483\) 0 0
\(484\) 23.6660 15.1042i 1.07573 0.686553i
\(485\) −16.0766 + 4.13687i −0.730002 + 0.187845i
\(486\) 14.1177 8.57477i 0.640394 0.388960i
\(487\) 22.6422 6.06695i 1.02601 0.274920i 0.293708 0.955895i \(-0.405111\pi\)
0.732306 + 0.680975i \(0.238444\pi\)
\(488\) 6.70924 33.9477i 0.303713 1.53674i
\(489\) 26.3540i 1.19177i
\(490\) 0 0
\(491\) 43.0124i 1.94112i −0.240851 0.970562i \(-0.577427\pi\)
0.240851 0.970562i \(-0.422573\pi\)
\(492\) −14.4730 + 4.57635i −0.652491 + 0.206318i
\(493\) 24.5064 6.56647i 1.10371 0.295739i
\(494\) 1.45762 + 2.39986i 0.0655812 + 0.107975i
\(495\) −11.6661 6.89095i −0.524351 0.309725i
\(496\) 1.48000 + 0.687184i 0.0664538 + 0.0308555i
\(497\) 0 0
\(498\) −4.79467 + 1.39965i −0.214854 + 0.0627199i
\(499\) 0.280975 + 0.486663i 0.0125782 + 0.0217860i 0.872246 0.489067i \(-0.162663\pi\)
−0.859668 + 0.510853i \(0.829329\pi\)
\(500\) 22.3583 0.327080i 0.999893 0.0146275i
\(501\) −8.09775 + 14.0257i −0.361781 + 0.626623i
\(502\) −26.6032 25.4462i −1.18736 1.13572i
\(503\) −9.37781 + 9.37781i −0.418136 + 0.418136i −0.884561 0.466425i \(-0.845542\pi\)
0.466425 + 0.884561i \(0.345542\pi\)
\(504\) 0 0
\(505\) 18.9204 10.6743i 0.841945 0.475000i
\(506\) −25.4581 + 0.565932i −1.13175 + 0.0251588i
\(507\) 10.9083 2.92286i 0.484453 0.129809i
\(508\) 13.0025 14.2131i 0.576894 0.630606i
\(509\) −15.9743 + 9.22275i −0.708047 + 0.408791i −0.810338 0.585963i \(-0.800716\pi\)
0.102290 + 0.994755i \(0.467383\pi\)
\(510\) 9.96825 10.2162i 0.441402 0.452382i
\(511\) 0 0
\(512\) −12.5017 + 18.8602i −0.552501 + 0.833512i
\(513\) 0.625029 2.33264i 0.0275957 0.102989i
\(514\) 6.69402 4.06578i 0.295260 0.179334i
\(515\) 0.194093 + 0.197991i 0.00855276 + 0.00872453i
\(516\) 6.99796 13.4699i 0.308068 0.592979i
\(517\) −35.6783 + 35.6783i −1.56913 + 1.56913i
\(518\) 0 0
\(519\) −24.7730 −1.08741
\(520\) 13.1816 26.1528i 0.578053 1.14688i
\(521\) 6.90441 11.9588i 0.302488 0.523924i −0.674211 0.738539i \(-0.735516\pi\)
0.976699 + 0.214614i \(0.0688495\pi\)
\(522\) −12.5076 3.05516i −0.547443 0.133721i
\(523\) −12.2607 3.28525i −0.536124 0.143654i −0.0194092 0.999812i \(-0.506179\pi\)
−0.516715 + 0.856158i \(0.672845\pi\)
\(524\) −2.33689 3.66156i −0.102088 0.159956i
\(525\) 0 0
\(526\) −18.1522 9.94896i −0.791473 0.433795i
\(527\) −0.356301 + 1.32973i −0.0155207 + 0.0579241i
\(528\) 4.60552 26.3719i 0.200430 1.14769i
\(529\) −8.70422 5.02539i −0.378444 0.218495i
\(530\) −3.11948 + 1.85249i −0.135501 + 0.0804672i
\(531\) 4.69281i 0.203651i
\(532\) 0 0
\(533\) −18.5798 18.5798i −0.804780 0.804780i
\(534\) 13.3490 0.296747i 0.577666 0.0128415i
\(535\) −3.78509 + 3.71057i −0.163644 + 0.160422i
\(536\) −29.7802 14.6405i −1.28631 0.632372i
\(537\) 30.5277 + 8.17987i 1.31737 + 0.352988i
\(538\) −26.6791 + 7.78810i −1.15022 + 0.335769i
\(539\) 0 0
\(540\) −24.0910 + 7.35494i −1.03671 + 0.316506i
\(541\) −11.6821 20.2340i −0.502254 0.869929i −0.999997 0.00260457i \(-0.999171\pi\)
0.497743 0.867325i \(-0.334162\pi\)
\(542\) 4.60121 18.8370i 0.197639 0.809120i
\(543\) 0.326474 + 1.21842i 0.0140103 + 0.0522872i
\(544\) −17.4888 7.65256i −0.749828 0.328101i
\(545\) 11.1130 + 19.6980i 0.476030 + 0.843770i
\(546\) 0 0
\(547\) 5.99240 + 5.99240i 0.256216 + 0.256216i 0.823513 0.567297i \(-0.192011\pi\)
−0.567297 + 0.823513i \(0.692011\pi\)
\(548\) −22.2446 + 7.03373i −0.950241 + 0.300466i
\(549\) −12.8307 7.40781i −0.547601 0.316158i
\(550\) 25.0773 + 24.9601i 1.06930 + 1.06430i
\(551\) −2.79160 + 1.61173i −0.118926 + 0.0686619i
\(552\) −8.96353 + 10.2463i −0.381513 + 0.436113i
\(553\) 0 0
\(554\) −8.75392 4.79790i −0.371918 0.203843i
\(555\) −6.82941 + 11.5619i −0.289892 + 0.490775i
\(556\) −1.33321 29.9719i −0.0565406 1.27109i
\(557\) 6.04931 + 22.5763i 0.256317 + 0.956589i 0.967353 + 0.253433i \(0.0815598\pi\)
−0.711036 + 0.703156i \(0.751773\pi\)
\(558\) 0.482901 0.504859i 0.0204428 0.0213724i
\(559\) 26.2758 1.11135
\(560\) 0 0
\(561\) 22.5856 0.953564
\(562\) −15.6112 + 16.3211i −0.658520 + 0.688464i
\(563\) −2.40734 8.98432i −0.101457 0.378644i 0.896462 0.443121i \(-0.146129\pi\)
−0.997919 + 0.0644770i \(0.979462\pi\)
\(564\) 1.19871 + 26.9483i 0.0504749 + 1.13473i
\(565\) −6.04503 23.4921i −0.254316 0.988321i
\(566\) −26.7371 14.6542i −1.12385 0.615964i
\(567\) 0 0
\(568\) 22.8504 26.1205i 0.958780 1.09599i
\(569\) 2.60258 1.50260i 0.109106 0.0629922i −0.444454 0.895802i \(-0.646602\pi\)
0.553560 + 0.832809i \(0.313269\pi\)
\(570\) −0.887397 + 1.58157i −0.0371690 + 0.0662448i
\(571\) −15.8499 9.15092i −0.663296 0.382954i 0.130236 0.991483i \(-0.458427\pi\)
−0.793532 + 0.608529i \(0.791760\pi\)
\(572\) 44.1853 13.9714i 1.84748 0.584172i
\(573\) −16.3312 16.3312i −0.682246 0.682246i
\(574\) 0 0
\(575\) −4.31035 17.4686i −0.179754 0.728491i
\(576\) 5.91643 + 7.67132i 0.246518 + 0.319638i
\(577\) −0.273102 1.01923i −0.0113694 0.0424312i 0.960008 0.279972i \(-0.0903253\pi\)
−0.971378 + 0.237541i \(0.923659\pi\)
\(578\) −1.88319 + 7.70966i −0.0783306 + 0.320680i
\(579\) −3.99151 6.91350i −0.165881 0.287315i
\(580\) 29.6802 + 15.7963i 1.23240 + 0.655906i
\(581\) 0 0
\(582\) −13.4802 + 3.93512i −0.558774 + 0.163116i
\(583\) −5.54517 1.48582i −0.229658 0.0615366i
\(584\) −13.5938 6.68295i −0.562514 0.276542i
\(585\) −8.77785 8.95414i −0.362919 0.370208i
\(586\) 39.7765 0.884229i 1.64315 0.0365272i
\(587\) −29.5589 29.5589i −1.22003 1.22003i −0.967621 0.252406i \(-0.918778\pi\)
−0.252406 0.967621i \(-0.581222\pi\)
\(588\) 0 0
\(589\) 0.174907i 0.00720692i
\(590\) −3.02607 + 11.8751i −0.124581 + 0.488890i
\(591\) −9.37905 5.41499i −0.385802 0.222743i
\(592\) 17.6914 + 3.08959i 0.727113 + 0.126981i
\(593\) −0.823702 + 3.07410i −0.0338254 + 0.126238i −0.980774 0.195147i \(-0.937482\pi\)
0.946949 + 0.321385i \(0.104148\pi\)
\(594\) −34.9513 19.1563i −1.43407 0.785994i
\(595\) 0 0
\(596\) 9.68000 + 15.1671i 0.396508 + 0.621269i
\(597\) −25.7625 6.90305i −1.05439 0.282523i
\(598\) −22.8927 5.59187i −0.936152 0.228668i
\(599\) −0.992946 + 1.71983i −0.0405707 + 0.0702705i −0.885598 0.464453i \(-0.846251\pi\)
0.845027 + 0.534724i \(0.179584\pi\)
\(600\) 18.8950 0.884855i 0.771386 0.0361240i
\(601\) 29.8474 1.21750 0.608750 0.793362i \(-0.291671\pi\)
0.608750 + 0.793362i \(0.291671\pi\)
\(602\) 0 0
\(603\) −10.0464 + 10.0464i −0.409119 + 0.409119i
\(604\) −0.585380 + 1.12676i −0.0238188 + 0.0458471i
\(605\) −0.312049 + 31.3874i −0.0126866 + 1.27608i
\(606\) 15.7067 9.53989i 0.638043 0.387532i
\(607\) −1.95663 + 7.30226i −0.0794173 + 0.296389i −0.994199 0.107560i \(-0.965696\pi\)
0.914781 + 0.403950i \(0.132363\pi\)
\(608\) 2.39795 + 0.364053i 0.0972497 + 0.0147643i
\(609\) 0 0
\(610\) 27.6911 + 27.0190i 1.12118 + 1.09397i
\(611\) −40.4387 + 23.3473i −1.63597 + 0.944530i
\(612\) −5.51679 + 6.03043i −0.223003 + 0.243766i
\(613\) −20.4572 + 5.48148i −0.826257 + 0.221395i −0.647080 0.762422i \(-0.724010\pi\)
−0.179177 + 0.983817i \(0.557343\pi\)
\(614\) −28.2098 + 0.627102i −1.13845 + 0.0253078i
\(615\) 4.55514 16.3482i 0.183681 0.659222i
\(616\) 0 0
\(617\) 3.15050 3.15050i 0.126835 0.126835i −0.640840 0.767675i \(-0.721414\pi\)
0.767675 + 0.640840i \(0.221414\pi\)
\(618\) 0.169492 + 0.162121i 0.00681798 + 0.00652145i
\(619\) −23.8051 + 41.2316i −0.956808 + 1.65724i −0.226631 + 0.973981i \(0.572771\pi\)
−0.730176 + 0.683259i \(0.760562\pi\)
\(620\) −1.54752 + 0.966148i −0.0621500 + 0.0388014i
\(621\) 10.1340 + 17.5527i 0.406665 + 0.704365i
\(622\) 22.7079 6.62884i 0.910504 0.265792i
\(623\) 0 0
\(624\) 10.4335 22.4708i 0.417675 0.899553i
\(625\) −13.3509 + 21.1366i −0.534034 + 0.845463i
\(626\) 5.94651 + 9.79050i 0.237670 + 0.391307i
\(627\) −2.77180 + 0.742701i −0.110695 + 0.0296606i
\(628\) −16.2974 + 5.15323i −0.650337 + 0.205636i
\(629\) 15.1514i 0.604126i
\(630\) 0 0
\(631\) 22.2381i 0.885285i −0.896698 0.442643i \(-0.854041\pi\)
0.896698 0.442643i \(-0.145959\pi\)
\(632\) −0.108331 + 0.548134i −0.00430916 + 0.0218036i
\(633\) −10.0107 + 2.68235i −0.397888 + 0.106614i
\(634\) 7.40463 4.49739i 0.294075 0.178614i
\(635\) 5.36714 + 20.8577i 0.212988 + 0.827712i
\(636\) −2.58712 + 1.65116i −0.102586 + 0.0654726i
\(637\) 0 0
\(638\) 14.9081 + 51.0695i 0.590217 + 2.02186i
\(639\) −7.42932 12.8680i −0.293899 0.509048i
\(640\) −10.0247 23.2272i −0.396262 0.918137i
\(641\) 11.7014 20.2673i 0.462176 0.800512i −0.536893 0.843650i \(-0.680402\pi\)
0.999069 + 0.0431381i \(0.0137355\pi\)
\(642\) −3.09934 + 3.24027i −0.122321 + 0.127883i
\(643\) 16.9251 16.9251i 0.667460 0.667460i −0.289668 0.957127i \(-0.593545\pi\)
0.957127 + 0.289668i \(0.0935447\pi\)
\(644\) 0 0
\(645\) 8.33892 + 14.7809i 0.328345 + 0.581996i
\(646\) 0.0454765 + 2.04573i 0.00178925 + 0.0804881i
\(647\) −8.65768 + 2.31982i −0.340369 + 0.0912015i −0.424955 0.905215i \(-0.639710\pi\)
0.0845859 + 0.996416i \(0.473043\pi\)
\(648\) −10.4428 + 3.55916i −0.410230 + 0.139817i
\(649\) −16.7929 + 9.69538i −0.659179 + 0.380577i
\(650\) 16.4383 + 28.3185i 0.644763 + 1.11074i
\(651\) 0 0
\(652\) 8.49762 38.4795i 0.332792 1.50697i
\(653\) 5.31582 19.8389i 0.208024 0.776356i −0.780483 0.625178i \(-0.785027\pi\)
0.988506 0.151178i \(-0.0483068\pi\)
\(654\) 9.93200 + 16.3523i 0.388372 + 0.639426i
\(655\) 4.85621 + 0.0482798i 0.189748 + 0.00188645i
\(656\) −22.6075 + 2.01524i −0.882676 + 0.0786819i
\(657\) −4.58586 + 4.58586i −0.178911 + 0.178911i
\(658\) 0 0
\(659\) 6.31956 0.246175 0.123088 0.992396i \(-0.460720\pi\)
0.123088 + 0.992396i \(0.460720\pi\)
\(660\) 21.8820 + 20.4215i 0.851755 + 0.794905i
\(661\) −15.0159 + 26.0082i −0.584049 + 1.01160i 0.410944 + 0.911661i \(0.365199\pi\)
−0.994993 + 0.0999425i \(0.968134\pi\)
\(662\) 10.4362 42.7251i 0.405615 1.66056i
\(663\) 20.1894 + 5.40973i 0.784091 + 0.210097i
\(664\) −7.45200 + 0.497628i −0.289193 + 0.0193117i
\(665\) 0 0
\(666\) 3.69561 6.74276i 0.143202 0.261277i
\(667\) 7.00207 26.1321i 0.271121 1.01184i
\(668\) −16.3460 + 17.8679i −0.632445 + 0.691329i
\(669\) −18.1985 10.5069i −0.703593 0.406220i
\(670\) 31.9003 18.9439i 1.23242 0.731868i
\(671\) 61.2183i 2.36331i
\(672\) 0 0
\(673\) 29.5868 + 29.5868i 1.14049 + 1.14049i 0.988361 + 0.152127i \(0.0486122\pi\)
0.152127 + 0.988361i \(0.451388\pi\)
\(674\) −0.419208 18.8578i −0.0161473 0.726375i
\(675\) 7.82821 27.0519i 0.301308 1.04123i
\(676\) 16.8696 0.750391i 0.648830 0.0288612i
\(677\) −9.83150 2.63434i −0.377855 0.101246i 0.0648924 0.997892i \(-0.479330\pi\)
−0.442748 + 0.896646i \(0.645996\pi\)
\(678\) −5.75023 19.6981i −0.220836 0.756501i
\(679\) 0 0
\(680\) 17.8488 11.7025i 0.684468 0.448771i
\(681\) −4.61453 7.99259i −0.176829 0.306277i
\(682\) −2.80428 0.684985i −0.107381 0.0262294i
\(683\) 0.862105 + 3.21742i 0.0329875 + 0.123111i 0.980456 0.196737i \(-0.0630346\pi\)
−0.947469 + 0.319849i \(0.896368\pi\)
\(684\) 0.478740 0.921493i 0.0183051 0.0352342i
\(685\) 7.00114 25.1267i 0.267500 0.960043i
\(686\) 0 0
\(687\) 4.77591 + 4.77591i 0.182212 + 0.182212i
\(688\) 14.5609 17.4109i 0.555131 0.663785i
\(689\) −4.60097 2.65637i −0.175283 0.101200i
\(690\) −4.11968 14.6524i −0.156833 0.557808i
\(691\) −2.37720 + 1.37248i −0.0904331 + 0.0522116i −0.544535 0.838738i \(-0.683294\pi\)
0.454101 + 0.890950i \(0.349960\pi\)
\(692\) −36.1710 7.98782i −1.37501 0.303652i
\(693\) 0 0
\(694\) −21.5506 + 39.3198i −0.818050 + 1.49256i
\(695\) 28.8807 + 17.0593i 1.09551 + 0.647098i
\(696\) 25.5244 + 12.5483i 0.967500 + 0.475641i
\(697\) −4.95604 18.4962i −0.187723 0.700593i
\(698\) 14.1430 + 13.5279i 0.535321 + 0.512038i
\(699\) −4.64396 −0.175651
\(700\) 0 0
\(701\) −45.4380 −1.71617 −0.858085 0.513508i \(-0.828346\pi\)
−0.858085 + 0.513508i \(0.828346\pi\)
\(702\) −26.6549 25.4956i −1.00602 0.962268i
\(703\) −0.498237 1.85945i −0.0187914 0.0701303i
\(704\) 15.2279 37.0205i 0.573922 1.39526i
\(705\) −25.9672 15.3384i −0.977981 0.577676i
\(706\) −1.17687 + 2.14723i −0.0442919 + 0.0808120i
\(707\) 0 0
\(708\) −2.23545 + 10.1227i −0.0840135 + 0.380435i
\(709\) −37.2819 + 21.5247i −1.40015 + 0.808377i −0.994408 0.105610i \(-0.966321\pi\)
−0.405743 + 0.913987i \(0.632987\pi\)
\(710\) 10.5021 + 37.3528i 0.394137 + 1.40183i
\(711\) 0.207170 + 0.119610i 0.00776950 + 0.00448572i
\(712\) 19.5865 + 3.87097i 0.734034 + 0.145071i
\(713\) 1.03801 + 1.03801i 0.0388737 + 0.0388737i
\(714\) 0 0
\(715\) −13.9066 + 49.9102i −0.520079 + 1.86653i
\(716\) 41.9359 + 21.7868i 1.56722 + 0.814211i
\(717\) −3.90543 14.5752i −0.145851 0.544323i
\(718\) −42.4829 10.3771i −1.58545 0.387269i
\(719\) −8.95406 15.5089i −0.333930 0.578384i 0.649349 0.760491i \(-0.275042\pi\)
−0.983279 + 0.182107i \(0.941708\pi\)
\(720\) −10.7975 + 0.854389i −0.402400 + 0.0318412i
\(721\) 0 0
\(722\) 7.45674 + 25.5439i 0.277511 + 0.950647i
\(723\) 33.7379 + 9.04005i 1.25473 + 0.336203i
\(724\) 0.0838161 + 1.88427i 0.00311500 + 0.0700285i
\(725\) −32.9216 + 18.1443i −1.22268 + 0.673863i
\(726\) 0.590129 + 26.5466i 0.0219017 + 0.985235i
\(727\) −9.20391 9.20391i −0.341354 0.341354i 0.515522 0.856876i \(-0.327598\pi\)
−0.856876 + 0.515522i \(0.827598\pi\)
\(728\) 0 0
\(729\) 27.3242i 1.01201i
\(730\) 14.5616 8.64734i 0.538947 0.320053i
\(731\) 16.5832 + 9.57434i 0.613353 + 0.354120i
\(732\) 24.1479 + 22.0911i 0.892533 + 0.816512i
\(733\) −4.81185 + 17.9581i −0.177730 + 0.663297i 0.818341 + 0.574734i \(0.194894\pi\)
−0.996071 + 0.0885635i \(0.971772\pi\)
\(734\) 8.43492 15.3898i 0.311339 0.568047i
\(735\) 0 0
\(736\) −16.3915 + 12.0704i −0.604197 + 0.444922i
\(737\) 56.7059 + 15.1943i 2.08879 + 0.559690i
\(738\) −2.30588 + 9.44011i −0.0848807 + 0.347495i
\(739\) 3.53772 6.12751i 0.130137 0.225404i −0.793592 0.608450i \(-0.791792\pi\)
0.923729 + 0.383046i \(0.125125\pi\)
\(740\) −13.6996 + 14.6794i −0.503608 + 0.539626i
\(741\) −2.65562 −0.0975566
\(742\) 0 0
\(743\) 34.5013 34.5013i 1.26573 1.26573i 0.317456 0.948273i \(-0.397172\pi\)
0.948273 0.317456i \(-0.102828\pi\)
\(744\) −1.28214 + 0.858982i −0.0470057 + 0.0314918i
\(745\) −20.1157 0.199987i −0.736981 0.00732696i
\(746\) 16.4655 + 27.1093i 0.602846 + 0.992542i
\(747\) −0.827608 + 3.08868i −0.0302806 + 0.113009i
\(748\) 32.9772 + 7.28252i 1.20576 + 0.266275i
\(749\) 0 0
\(750\) −10.7131 + 18.2342i −0.391186 + 0.665819i
\(751\) 7.29278 4.21049i 0.266117 0.153643i −0.361004 0.932564i \(-0.617566\pi\)
0.627122 + 0.778921i \(0.284233\pi\)
\(752\) −6.93900 + 39.7337i −0.253039 + 1.44894i
\(753\) 33.6314 9.01152i 1.22560 0.328398i
\(754\) 1.09421 + 49.2221i 0.0398486 + 1.79256i
\(755\) −0.697552 1.23642i −0.0253865 0.0449980i
\(756\) 0 0
\(757\) 0.487957 0.487957i 0.0177351 0.0177351i −0.698184 0.715919i \(-0.746008\pi\)
0.715919 + 0.698184i \(0.246008\pi\)
\(758\) −5.95923 + 6.23020i −0.216449 + 0.226291i
\(759\) 12.0419 20.8573i 0.437095 0.757070i
\(760\) −1.80565 + 2.02312i −0.0654978 + 0.0733862i
\(761\) −2.18495 3.78445i −0.0792044 0.137186i 0.823702 0.567022i \(-0.191905\pi\)
−0.902907 + 0.429836i \(0.858571\pi\)
\(762\) 5.10540 + 17.4892i 0.184949 + 0.633565i
\(763\) 0 0
\(764\) −18.5793 29.1110i −0.672176 1.05320i
\(765\) −2.27720 8.84962i −0.0823323 0.319959i
\(766\) −33.3422 + 20.2512i −1.20470 + 0.731706i
\(767\) −17.3335 + 4.64450i −0.625877 + 0.167703i
\(768\) −9.10785 19.3659i −0.328651 0.698806i
\(769\) 9.02388i 0.325409i −0.986675 0.162705i \(-0.947978\pi\)
0.986675 0.162705i \(-0.0520218\pi\)
\(770\) 0 0
\(771\) 7.40742i 0.266772i
\(772\) −3.59880 11.3814i −0.129524 0.409626i
\(773\) 33.7229 9.03604i 1.21293 0.325004i 0.405019 0.914308i \(-0.367265\pi\)
0.807911 + 0.589305i \(0.200598\pi\)
\(774\) −5.04466 8.30567i −0.181327 0.298541i
\(775\) 0.0405526 2.03929i 0.00145669 0.0732533i
\(776\) −20.9513 + 1.39908i −0.752108 + 0.0502242i
\(777\) 0 0
\(778\) 28.6385 8.36010i 1.02674 0.299724i
\(779\) 1.21645 + 2.10696i 0.0435839 + 0.0754896i
\(780\) 14.6691 + 23.4961i 0.525236 + 0.841294i
\(781\) −30.6980 + 53.1705i −1.09846 + 1.90259i
\(782\) −12.4105 11.8708i −0.443800 0.424497i
\(783\) 29.9422 29.9422i 1.07005 1.07005i
\(784\) 0 0
\(785\) 5.12936 18.4090i 0.183075 0.657045i
\(786\) 4.10724 0.0913038i 0.146500 0.00325670i
\(787\) −3.73542 + 1.00090i −0.133154 + 0.0356784i −0.324780 0.945789i \(-0.605290\pi\)
0.191627 + 0.981468i \(0.438624\pi\)
\(788\) −11.9483 10.9306i −0.425641 0.389387i
\(789\) 16.9547 9.78882i 0.603605 0.348491i
\(790\) −0.447113 0.436261i −0.0159076 0.0155215i
\(791\) 0 0
\(792\) −12.8994 11.2844i −0.458359 0.400975i
\(793\) −14.6631 + 54.7234i −0.520701 + 1.94328i
\(794\) −6.29074 + 3.82084i −0.223250 + 0.135597i
\(795\) 0.0341126 3.43121i 0.00120985 0.121692i
\(796\) −35.3900 18.3860i −1.25437 0.651675i
\(797\) −34.6913 + 34.6913i −1.22883 + 1.22883i −0.264420 + 0.964408i \(0.585181\pi\)
−0.964408 + 0.264420i \(0.914819\pi\)
\(798\) 0 0
\(799\) −34.0290 −1.20386
\(800\) 27.8739 + 4.80056i 0.985491 + 0.169725i
\(801\) 4.27402 7.40281i 0.151015 0.261566i
\(802\) −15.8952 3.88264i −0.561280 0.137101i
\(803\) 25.8846 + 6.93575i 0.913447 + 0.244757i
\(804\) 26.4563 16.8850i 0.933042 0.595489i
\(805\) 0 0
\(806\) −2.34269 1.28400i −0.0825177 0.0452268i
\(807\) 6.80328 25.3902i 0.239487 0.893777i
\(808\) 26.0094 8.86468i 0.915009 0.311858i
\(809\) 31.8064 + 18.3634i 1.11825 + 0.645624i 0.940955 0.338533i \(-0.109931\pi\)
0.177299 + 0.984157i \(0.443264\pi\)
\(810\) 3.04589 11.9529i 0.107022 0.419981i
\(811\) 9.04068i 0.317461i −0.987322 0.158731i \(-0.949260\pi\)
0.987322 0.158731i \(-0.0507401\pi\)
\(812\) 0 0
\(813\) 12.9681 + 12.9681i 0.454810 + 0.454810i
\(814\) −31.7636 + 0.706104i −1.11331 + 0.0247489i
\(815\) 30.8424 + 31.4618i 1.08036 + 1.10206i
\(816\) 14.7727 10.3801i 0.517149 0.363376i
\(817\) −2.35001 0.629682i −0.0822163 0.0220298i
\(818\) 6.06484 1.77044i 0.212052 0.0619019i
\(819\) 0 0
\(820\) 11.9223 22.4011i 0.416344 0.782282i
\(821\) 0.285380 + 0.494293i 0.00995984 + 0.0172510i 0.870962 0.491350i \(-0.163496\pi\)
−0.861003 + 0.508601i \(0.830163\pi\)
\(822\) 5.23584 21.4351i 0.182621 0.747636i
\(823\) −1.69940 6.34226i −0.0592375 0.221077i 0.929961 0.367657i \(-0.119840\pi\)
−0.989199 + 0.146580i \(0.953173\pi\)
\(824\) 0.195201 + 0.291363i 0.00680015 + 0.0101501i
\(825\) −32.4893 + 8.01669i −1.13113 + 0.279105i
\(826\) 0 0
\(827\) 6.28320 + 6.28320i 0.218488 + 0.218488i 0.807861 0.589373i \(-0.200625\pi\)
−0.589373 + 0.807861i \(0.700625\pi\)
\(828\) 2.62758 + 8.30986i 0.0913146 + 0.288788i
\(829\) −21.8135 12.5940i −0.757613 0.437408i 0.0708254 0.997489i \(-0.477437\pi\)
−0.828438 + 0.560081i \(0.810770\pi\)
\(830\) 4.08592 7.28218i 0.141824 0.252768i
\(831\) 8.17644 4.72067i 0.283638 0.163758i
\(832\) 22.4795 29.4454i 0.779336 1.02084i
\(833\) 0 0
\(834\) 24.8828 + 13.6379i 0.861621 + 0.472242i
\(835\) −6.74723 26.2210i −0.233498 0.907414i
\(836\) −4.28657 + 0.190675i −0.148254 + 0.00659463i
\(837\) 0.594677 + 2.21936i 0.0205550 + 0.0767125i
\(838\) −24.7891 + 25.9163i −0.856326 + 0.895264i
\(839\) 0.275469 0.00951026 0.00475513 0.999989i \(-0.498486\pi\)
0.00475513 + 0.999989i \(0.498486\pi\)
\(840\) 0 0
\(841\) −27.5219 −0.949032
\(842\) 11.4971 12.0199i 0.396218 0.414234i
\(843\) −5.52857 20.6329i −0.190414 0.710635i
\(844\) −15.4814 + 0.688643i −0.532893 + 0.0237041i
\(845\) −9.60178 + 16.2554i −0.330311 + 0.559203i
\(846\) 15.1438 + 8.30009i 0.520654 + 0.285363i
\(847\) 0 0
\(848\) −4.30984 + 1.57666i −0.148001 + 0.0541426i
\(849\) 24.9734 14.4184i 0.857084 0.494838i
\(850\) 0.0559150 + 23.8622i 0.00191787 + 0.818467i
\(851\) 13.9920 + 8.07827i 0.479638 + 0.276919i
\(852\) 9.89581 + 31.2961i 0.339025 + 1.07219i
\(853\) −20.8769 20.8769i −0.714813 0.714813i 0.252725 0.967538i \(-0.418673\pi\)
−0.967538 + 0.252725i \(0.918673\pi\)
\(854\) 0 0
\(855\) 0.570477 + 1.01118i 0.0195099 + 0.0345816i
\(856\) −5.57013 + 3.73175i −0.190383 + 0.127549i
\(857\) 6.30707 + 23.5383i 0.215445 + 0.804053i 0.986009 + 0.166690i \(0.0533079\pi\)
−0.770564 + 0.637363i \(0.780025\pi\)
\(858\) −10.4001 + 42.5774i −0.355055 + 1.45357i
\(859\) −28.1658 48.7846i −0.961004 1.66451i −0.719988 0.693987i \(-0.755853\pi\)
−0.241017 0.970521i \(-0.577481\pi\)
\(860\) 7.40969 + 24.2703i 0.252668 + 0.827611i
\(861\) 0 0
\(862\) 22.5790 6.59121i 0.769044 0.224498i
\(863\) 14.3793 + 3.85293i 0.489479 + 0.131155i 0.495113 0.868829i \(-0.335127\pi\)
−0.00563418 + 0.999984i \(0.501793\pi\)
\(864\) −31.6649 + 3.53353i −1.07726 + 0.120213i
\(865\) 29.5743 28.9921i 1.00556 0.985760i
\(866\) −51.7301 + 1.14996i −1.75786 + 0.0390772i
\(867\) −5.30760 5.30760i −0.180255 0.180255i
\(868\) 0 0
\(869\) 0.988459i 0.0335312i
\(870\) −27.3416 + 16.2367i −0.926966 + 0.550477i
\(871\) 47.0504 + 27.1646i 1.59424 + 0.920436i
\(872\) 9.22903 + 27.0785i 0.312534 + 0.916993i
\(873\) −2.32682 + 8.68382i −0.0787510 + 0.293903i
\(874\) 1.91343 + 1.04872i 0.0647227 + 0.0354736i
\(875\) 0 0
\(876\) 12.0765 7.70751i 0.408028 0.260413i
\(877\) 45.3079 + 12.1402i 1.52994 + 0.409946i 0.922999 0.384803i \(-0.125730\pi\)
0.606939 + 0.794748i \(0.292397\pi\)
\(878\) −34.9318 8.53259i −1.17889 0.287961i
\(879\) −18.8147 + 32.5880i −0.634603 + 1.09917i
\(880\) 25.3651 + 36.8730i 0.855058 + 1.24299i
\(881\) −8.94374 −0.301322 −0.150661 0.988585i \(-0.548140\pi\)
−0.150661 + 0.988585i \(0.548140\pi\)
\(882\) 0 0
\(883\) −13.6439 + 13.6439i −0.459153 + 0.459153i −0.898377 0.439224i \(-0.855253\pi\)
0.439224 + 0.898377i \(0.355253\pi\)
\(884\) 27.7342 + 14.4086i 0.932801 + 0.484614i
\(885\) −8.11365 8.27660i −0.272737 0.278215i
\(886\) −2.17717 + 1.32236i −0.0731434 + 0.0444255i
\(887\) 8.52105 31.8010i 0.286109 1.06777i −0.661917 0.749578i \(-0.730257\pi\)
0.948025 0.318195i \(-0.103077\pi\)
\(888\) −11.1836 + 12.7842i −0.375299 + 0.429009i
\(889\) 0 0
\(890\) −15.5889 + 15.9767i −0.522541 + 0.535540i
\(891\) 16.9029 9.75888i 0.566268 0.326935i
\(892\) −23.1837 21.2090i −0.776247 0.710130i
\(893\) 4.17618 1.11901i 0.139751 0.0374461i
\(894\) −17.0132 + 0.378203i −0.569008 + 0.0126490i
\(895\) −46.0174 + 25.9616i −1.53819 + 0.867801i
\(896\) 0 0
\(897\) 15.7601 15.7601i 0.526215 0.526215i
\(898\) 27.9856 + 26.7684i 0.933891 + 0.893273i
\(899\) 1.53346 2.65603i 0.0511438 0.0885836i
\(900\) 5.79540 10.6329i 0.193180 0.354431i
\(901\) −1.93585 3.35299i −0.0644926 0.111704i
\(902\) 38.5447 11.2519i 1.28340 0.374647i
\(903\) 0 0
\(904\) −2.04442 30.6153i −0.0679965 1.01825i
\(905\) −1.81567 1.07249i −0.0603550 0.0356507i
\(906\) −0.623420 1.02642i −0.0207117 0.0341004i
\(907\) −13.8355 + 3.70721i −0.459400 + 0.123096i −0.481095 0.876669i \(-0.659761\pi\)
0.0216943 + 0.999765i \(0.493094\pi\)
\(908\) −4.16052 13.1579i −0.138072 0.436659i
\(909\) 11.7648i 0.390214i
\(910\) 0 0
\(911\) 1.96705i 0.0651712i 0.999469 + 0.0325856i \(0.0103742\pi\)
−0.999469 + 0.0325856i \(0.989626\pi\)
\(912\) −1.47163 + 1.75967i −0.0487307 + 0.0582686i
\(913\) 12.7624 3.41969i 0.422375 0.113175i
\(914\) 4.62406 2.80854i 0.152950 0.0928982i
\(915\) −35.4369 + 9.11870i −1.17151 + 0.301455i
\(916\) 5.43335 + 8.51325i 0.179523 + 0.281286i
\(917\) 0 0
\(918\) −7.53244 25.8033i −0.248607 0.851635i
\(919\) 4.25783 + 7.37478i 0.140453 + 0.243271i 0.927667 0.373408i \(-0.121811\pi\)
−0.787214 + 0.616679i \(0.788477\pi\)
\(920\) −1.29059 22.7223i −0.0425495 0.749133i
\(921\) 13.3435 23.1116i 0.439684 0.761555i
\(922\) −24.2569 + 25.3599i −0.798859 + 0.835184i
\(923\) −40.1766 + 40.1766i −1.32243 + 1.32243i
\(924\) 0 0
\(925\) −5.37795 21.7953i −0.176826 0.716624i
\(926\) −0.460954 20.7357i −0.0151479 0.681418i
\(927\) 0.145037 0.0388626i 0.00476364 0.00127641i
\(928\) 33.2220 + 26.5518i 1.09057 + 0.871605i
\(929\) 30.7662 17.7629i 1.00941 0.582781i 0.0983891 0.995148i \(-0.468631\pi\)
0.911018 + 0.412367i \(0.135298\pi\)
\(930\) −0.0211962 1.72532i −0.000695051 0.0565755i
\(931\) 0 0
\(932\) −6.78063 1.49740i −0.222107 0.0490490i
\(933\) −5.79062 + 21.6109i −0.189576 + 0.707508i
\(934\) −3.76844 6.20447i −0.123307 0.203016i
\(935\) −26.9630 + 26.4321i −0.881784 + 0.864423i
\(936\) −8.82796 13.1769i −0.288551 0.430700i
\(937\) 23.8007 23.8007i 0.777536 0.777536i −0.201876 0.979411i \(-0.564704\pi\)
0.979411 + 0.201876i \(0.0647037\pi\)
\(938\) 0 0
\(939\) −10.8339 −0.353551
\(940\) −32.9689 30.7684i −1.07533 1.00355i
\(941\) 6.79801 11.7745i 0.221609 0.383838i −0.733688 0.679487i \(-0.762203\pi\)
0.955297 + 0.295649i \(0.0955359\pi\)
\(942\) 3.83601 15.7044i 0.124984 0.511676i
\(943\) −19.7232 5.28482i −0.642276 0.172097i
\(944\) −6.52796 + 14.0594i −0.212467 + 0.457593i
\(945\) 0 0
\(946\) −19.2989 + 35.2115i −0.627463 + 1.14483i
\(947\) 9.45619 35.2910i 0.307285 1.14680i −0.623675 0.781683i \(-0.714361\pi\)
0.930960 0.365120i \(-0.118972\pi\)
\(948\) −0.389904 0.356694i −0.0126635 0.0115849i
\(949\) 21.4771 + 12.3998i 0.697177 + 0.402515i
\(950\) −0.791544 2.92663i −0.0256811 0.0949525i
\(951\) 8.19376i 0.265701i
\(952\) 0 0
\(953\) 4.64369 + 4.64369i 0.150424 + 0.150424i 0.778307 0.627883i \(-0.216079\pi\)
−0.627883 + 0.778307i \(0.716079\pi\)
\(954\) 0.0436673 + 1.96434i 0.00141378 + 0.0635980i
\(955\) 38.6090 + 0.383845i 1.24936 + 0.0124209i
\(956\) −1.00265 22.5406i −0.0324279 0.729014i
\(957\) −48.6023 13.0229i −1.57109 0.420972i
\(958\) −1.67375 5.73362i −0.0540763 0.185245i
\(959\) 0 0
\(960\) 23.6980 + 3.30050i 0.764850 + 0.106523i
\(961\) −15.4168 26.7027i −0.497316 0.861376i
\(962\) −28.5628 6.97688i −0.920902 0.224943i
\(963\) 0.742954 + 2.77274i 0.0239414 + 0.0893504i
\(964\) 46.3458 + 24.0779i 1.49270 + 0.775496i
\(965\) 12.8561 + 3.58212i 0.413851 + 0.115313i
\(966\) 0 0
\(967\) −24.8629 24.8629i −0.799538 0.799538i 0.183485 0.983023i \(-0.441262\pi\)
−0.983023 + 0.183485i \(0.941262\pi\)
\(968\) −7.69805 + 38.9509i −0.247425 + 1.25193i
\(969\) −1.67602 0.967651i −0.0538415 0.0310854i
\(970\) 11.4876 20.4739i 0.368844 0.657376i
\(971\) 33.6619 19.4347i 1.08026 0.623689i 0.149294 0.988793i \(-0.452300\pi\)
0.930967 + 0.365104i \(0.118966\pi\)
\(972\) −5.03727 + 22.8101i −0.161571 + 0.731634i
\(973\) 0 0
\(974\) −15.9331 + 29.0704i −0.510529 + 0.931476i
\(975\) −30.9625 0.615711i −0.991595 0.0197185i
\(976\) 28.1353 + 40.0415i 0.900588 + 1.28170i
\(977\) 13.8183 + 51.5706i 0.442087 + 1.64989i 0.723515 + 0.690309i \(0.242525\pi\)
−0.281428 + 0.959582i \(0.590808\pi\)
\(978\) 26.9332 + 25.7618i 0.861230 + 0.823772i
\(979\) −35.3206 −1.12885
\(980\) 0 0
\(981\) 12.2483 0.391060
\(982\) 43.9577 + 42.0459i 1.40275 + 1.34174i
\(983\) −10.3281 38.5452i −0.329417 1.22940i −0.909797 0.415054i \(-0.863763\pi\)
0.580380 0.814346i \(-0.302904\pi\)
\(984\) 9.47080 19.2645i 0.301918 0.614131i
\(985\) 17.5341 4.51190i 0.558681 0.143761i
\(986\) −17.2449 + 31.4639i −0.549190 + 1.00201i
\(987\) 0 0
\(988\) −3.87746 0.856280i −0.123359 0.0272419i
\(989\) 17.6833 10.2095i 0.562298 0.324643i
\(990\) 18.4463 5.18637i 0.586263 0.164834i
\(991\) −20.3753 11.7637i −0.647242 0.373685i 0.140157 0.990129i \(-0.455239\pi\)
−0.787399 + 0.616444i \(0.788573\pi\)
\(992\) −2.14903 + 0.840782i −0.0682316 + 0.0266949i
\(993\) 29.4134 + 29.4134i 0.933406 + 0.933406i
\(994\) 0 0
\(995\) 38.8344 21.9092i 1.23113 0.694568i
\(996\) 3.25652 6.26825i 0.103187 0.198617i
\(997\) −8.68766 32.4228i −0.275141 1.02684i −0.955747 0.294190i \(-0.904950\pi\)
0.680606 0.732650i \(-0.261717\pi\)
\(998\) −0.772020 0.188577i −0.0244379 0.00596930i
\(999\) 12.6441 + 21.9002i 0.400041 + 0.692891i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.k.263.5 72
4.3 odd 2 inner 980.2.x.k.263.7 72
5.2 odd 4 inner 980.2.x.k.67.5 72
7.2 even 3 inner 980.2.x.k.863.17 72
7.3 odd 6 980.2.k.l.883.8 36
7.4 even 3 140.2.k.a.43.8 36
7.5 odd 6 980.2.x.l.863.17 72
7.6 odd 2 980.2.x.l.263.5 72
20.7 even 4 inner 980.2.x.k.67.17 72
28.3 even 6 980.2.k.l.883.18 36
28.11 odd 6 140.2.k.a.43.18 yes 36
28.19 even 6 980.2.x.l.863.5 72
28.23 odd 6 inner 980.2.x.k.863.5 72
28.27 even 2 980.2.x.l.263.7 72
35.2 odd 12 inner 980.2.x.k.667.7 72
35.4 even 6 700.2.k.b.43.11 36
35.12 even 12 980.2.x.l.667.7 72
35.17 even 12 980.2.k.l.687.18 36
35.18 odd 12 700.2.k.b.407.1 36
35.27 even 4 980.2.x.l.67.5 72
35.32 odd 12 140.2.k.a.127.18 yes 36
140.27 odd 4 980.2.x.l.67.17 72
140.39 odd 6 700.2.k.b.43.1 36
140.47 odd 12 980.2.x.l.667.5 72
140.67 even 12 140.2.k.a.127.8 yes 36
140.87 odd 12 980.2.k.l.687.8 36
140.107 even 12 inner 980.2.x.k.667.5 72
140.123 even 12 700.2.k.b.407.11 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.k.a.43.8 36 7.4 even 3
140.2.k.a.43.18 yes 36 28.11 odd 6
140.2.k.a.127.8 yes 36 140.67 even 12
140.2.k.a.127.18 yes 36 35.32 odd 12
700.2.k.b.43.1 36 140.39 odd 6
700.2.k.b.43.11 36 35.4 even 6
700.2.k.b.407.1 36 35.18 odd 12
700.2.k.b.407.11 36 140.123 even 12
980.2.k.l.687.8 36 140.87 odd 12
980.2.k.l.687.18 36 35.17 even 12
980.2.k.l.883.8 36 7.3 odd 6
980.2.k.l.883.18 36 28.3 even 6
980.2.x.k.67.5 72 5.2 odd 4 inner
980.2.x.k.67.17 72 20.7 even 4 inner
980.2.x.k.263.5 72 1.1 even 1 trivial
980.2.x.k.263.7 72 4.3 odd 2 inner
980.2.x.k.667.5 72 140.107 even 12 inner
980.2.x.k.667.7 72 35.2 odd 12 inner
980.2.x.k.863.5 72 28.23 odd 6 inner
980.2.x.k.863.17 72 7.2 even 3 inner
980.2.x.l.67.5 72 35.27 even 4
980.2.x.l.67.17 72 140.27 odd 4
980.2.x.l.263.5 72 7.6 odd 2
980.2.x.l.263.7 72 28.27 even 2
980.2.x.l.667.5 72 140.47 odd 12
980.2.x.l.667.7 72 35.12 even 12
980.2.x.l.863.5 72 28.19 even 6
980.2.x.l.863.17 72 7.5 odd 6