Properties

Label 98.10.a.h.1.3
Level $98$
Weight $10$
Character 98.1
Self dual yes
Analytic conductor $50.474$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-48,71] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.4735119441\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4037x + 70980 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 7 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-70.5196\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +173.458 q^{3} +256.000 q^{4} -2345.55 q^{5} -2775.34 q^{6} -4096.00 q^{8} +10404.8 q^{9} +37528.8 q^{10} -71109.6 q^{11} +44405.4 q^{12} -89420.8 q^{13} -406855. q^{15} +65536.0 q^{16} -32294.5 q^{17} -166477. q^{18} +779068. q^{19} -600460. q^{20} +1.13775e6 q^{22} +1.77284e6 q^{23} -710486. q^{24} +3.54847e6 q^{25} +1.43073e6 q^{26} -1.60938e6 q^{27} -212075. q^{29} +6.50968e6 q^{30} +4.31261e6 q^{31} -1.04858e6 q^{32} -1.23346e7 q^{33} +516712. q^{34} +2.66364e6 q^{36} +6.20102e6 q^{37} -1.24651e7 q^{38} -1.55108e7 q^{39} +9.60736e6 q^{40} -6.40835e6 q^{41} -6.99951e6 q^{43} -1.82041e7 q^{44} -2.44050e7 q^{45} -2.83654e7 q^{46} +3.50844e7 q^{47} +1.13678e7 q^{48} -5.67755e7 q^{50} -5.60175e6 q^{51} -2.28917e7 q^{52} -4.26901e7 q^{53} +2.57500e7 q^{54} +1.66791e8 q^{55} +1.35136e8 q^{57} +3.39320e6 q^{58} +2.90654e7 q^{59} -1.04155e8 q^{60} -6.18781e7 q^{61} -6.90018e7 q^{62} +1.67772e7 q^{64} +2.09741e8 q^{65} +1.97353e8 q^{66} +2.00649e8 q^{67} -8.26739e6 q^{68} +3.07514e8 q^{69} +3.03014e7 q^{71} -4.26182e7 q^{72} +2.91846e8 q^{73} -9.92164e7 q^{74} +6.15512e8 q^{75} +1.99441e8 q^{76} +2.48173e8 q^{78} -1.08871e8 q^{79} -1.53718e8 q^{80} -4.83958e8 q^{81} +1.02534e8 q^{82} -2.16661e8 q^{83} +7.57483e7 q^{85} +1.11992e8 q^{86} -3.67862e7 q^{87} +2.91265e8 q^{88} +1.86505e8 q^{89} +3.90481e8 q^{90} +4.53847e8 q^{92} +7.48059e8 q^{93} -5.61350e8 q^{94} -1.82734e9 q^{95} -1.81884e8 q^{96} +9.53814e8 q^{97} -7.39884e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 48 q^{2} + 71 q^{3} + 768 q^{4} - 1085 q^{5} - 1136 q^{6} - 12288 q^{8} + 9106 q^{9} + 17360 q^{10} - 2555 q^{11} + 18176 q^{12} - 18070 q^{13} - 353073 q^{15} + 196608 q^{16} + 20759 q^{17} - 145696 q^{18}+ \cdots - 1303712634 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 173.458 1.23637 0.618187 0.786031i \(-0.287867\pi\)
0.618187 + 0.786031i \(0.287867\pi\)
\(4\) 256.000 0.500000
\(5\) −2345.55 −1.67834 −0.839169 0.543871i \(-0.816958\pi\)
−0.839169 + 0.543871i \(0.816958\pi\)
\(6\) −2775.34 −0.874248
\(7\) 0 0
\(8\) −4096.00 −0.353553
\(9\) 10404.8 0.528621
\(10\) 37528.8 1.18676
\(11\) −71109.6 −1.46441 −0.732203 0.681087i \(-0.761508\pi\)
−0.732203 + 0.681087i \(0.761508\pi\)
\(12\) 44405.4 0.618187
\(13\) −89420.8 −0.868347 −0.434174 0.900829i \(-0.642960\pi\)
−0.434174 + 0.900829i \(0.642960\pi\)
\(14\) 0 0
\(15\) −406855. −2.07505
\(16\) 65536.0 0.250000
\(17\) −32294.5 −0.0937796 −0.0468898 0.998900i \(-0.514931\pi\)
−0.0468898 + 0.998900i \(0.514931\pi\)
\(18\) −166477. −0.373791
\(19\) 779068. 1.37146 0.685732 0.727854i \(-0.259482\pi\)
0.685732 + 0.727854i \(0.259482\pi\)
\(20\) −600460. −0.839169
\(21\) 0 0
\(22\) 1.13775e6 1.03549
\(23\) 1.77284e6 1.32097 0.660487 0.750837i \(-0.270350\pi\)
0.660487 + 0.750837i \(0.270350\pi\)
\(24\) −710486. −0.437124
\(25\) 3.54847e6 1.81682
\(26\) 1.43073e6 0.614014
\(27\) −1.60938e6 −0.582801
\(28\) 0 0
\(29\) −212075. −0.0556799 −0.0278399 0.999612i \(-0.508863\pi\)
−0.0278399 + 0.999612i \(0.508863\pi\)
\(30\) 6.50968e6 1.46728
\(31\) 4.31261e6 0.838712 0.419356 0.907822i \(-0.362256\pi\)
0.419356 + 0.907822i \(0.362256\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) −1.23346e7 −1.81055
\(34\) 516712. 0.0663122
\(35\) 0 0
\(36\) 2.66364e6 0.264310
\(37\) 6.20102e6 0.543946 0.271973 0.962305i \(-0.412324\pi\)
0.271973 + 0.962305i \(0.412324\pi\)
\(38\) −1.24651e7 −0.969771
\(39\) −1.55108e7 −1.07360
\(40\) 9.60736e6 0.593382
\(41\) −6.40835e6 −0.354176 −0.177088 0.984195i \(-0.556668\pi\)
−0.177088 + 0.984195i \(0.556668\pi\)
\(42\) 0 0
\(43\) −6.99951e6 −0.312219 −0.156110 0.987740i \(-0.549895\pi\)
−0.156110 + 0.987740i \(0.549895\pi\)
\(44\) −1.82041e7 −0.732203
\(45\) −2.44050e7 −0.887204
\(46\) −2.83654e7 −0.934070
\(47\) 3.50844e7 1.04875 0.524377 0.851486i \(-0.324298\pi\)
0.524377 + 0.851486i \(0.324298\pi\)
\(48\) 1.13678e7 0.309093
\(49\) 0 0
\(50\) −5.67755e7 −1.28468
\(51\) −5.60175e6 −0.115947
\(52\) −2.28917e7 −0.434174
\(53\) −4.26901e7 −0.743166 −0.371583 0.928400i \(-0.621185\pi\)
−0.371583 + 0.928400i \(0.621185\pi\)
\(54\) 2.57500e7 0.412103
\(55\) 1.66791e8 2.45777
\(56\) 0 0
\(57\) 1.35136e8 1.69564
\(58\) 3.39320e6 0.0393716
\(59\) 2.90654e7 0.312279 0.156139 0.987735i \(-0.450095\pi\)
0.156139 + 0.987735i \(0.450095\pi\)
\(60\) −1.04155e8 −1.03753
\(61\) −6.18781e7 −0.572207 −0.286103 0.958199i \(-0.592360\pi\)
−0.286103 + 0.958199i \(0.592360\pi\)
\(62\) −6.90018e7 −0.593059
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) 2.09741e8 1.45738
\(66\) 1.97353e8 1.28025
\(67\) 2.00649e8 1.21647 0.608234 0.793758i \(-0.291878\pi\)
0.608234 + 0.793758i \(0.291878\pi\)
\(68\) −8.26739e6 −0.0468898
\(69\) 3.07514e8 1.63322
\(70\) 0 0
\(71\) 3.03014e7 0.141514 0.0707571 0.997494i \(-0.477458\pi\)
0.0707571 + 0.997494i \(0.477458\pi\)
\(72\) −4.26182e7 −0.186896
\(73\) 2.91846e8 1.20282 0.601411 0.798940i \(-0.294606\pi\)
0.601411 + 0.798940i \(0.294606\pi\)
\(74\) −9.92164e7 −0.384628
\(75\) 6.15512e8 2.24626
\(76\) 1.99441e8 0.685732
\(77\) 0 0
\(78\) 2.48173e8 0.759151
\(79\) −1.08871e8 −0.314479 −0.157240 0.987560i \(-0.550260\pi\)
−0.157240 + 0.987560i \(0.550260\pi\)
\(80\) −1.53718e8 −0.419584
\(81\) −4.83958e8 −1.24918
\(82\) 1.02534e8 0.250440
\(83\) −2.16661e8 −0.501106 −0.250553 0.968103i \(-0.580612\pi\)
−0.250553 + 0.968103i \(0.580612\pi\)
\(84\) 0 0
\(85\) 7.57483e7 0.157394
\(86\) 1.11992e8 0.220772
\(87\) −3.67862e7 −0.0688412
\(88\) 2.91265e8 0.517746
\(89\) 1.86505e8 0.315090 0.157545 0.987512i \(-0.449642\pi\)
0.157545 + 0.987512i \(0.449642\pi\)
\(90\) 3.90481e8 0.627348
\(91\) 0 0
\(92\) 4.53847e8 0.660487
\(93\) 7.48059e8 1.03696
\(94\) −5.61350e8 −0.741581
\(95\) −1.82734e9 −2.30178
\(96\) −1.81884e8 −0.218562
\(97\) 9.53814e8 1.09393 0.546966 0.837155i \(-0.315783\pi\)
0.546966 + 0.837155i \(0.315783\pi\)
\(98\) 0 0
\(99\) −7.39884e8 −0.774115
\(100\) 9.08408e8 0.908408
\(101\) 1.94749e9 1.86221 0.931105 0.364750i \(-0.118846\pi\)
0.931105 + 0.364750i \(0.118846\pi\)
\(102\) 8.96281e7 0.0819867
\(103\) 1.38319e9 1.21092 0.605458 0.795877i \(-0.292990\pi\)
0.605458 + 0.795877i \(0.292990\pi\)
\(104\) 3.66268e8 0.307007
\(105\) 0 0
\(106\) 6.83042e8 0.525498
\(107\) −1.91831e9 −1.41479 −0.707396 0.706817i \(-0.750130\pi\)
−0.707396 + 0.706817i \(0.750130\pi\)
\(108\) −4.12000e8 −0.291401
\(109\) 1.88505e9 1.27910 0.639548 0.768751i \(-0.279121\pi\)
0.639548 + 0.768751i \(0.279121\pi\)
\(110\) −2.66866e9 −1.73790
\(111\) 1.07562e9 0.672520
\(112\) 0 0
\(113\) −1.65917e9 −0.957277 −0.478639 0.878012i \(-0.658870\pi\)
−0.478639 + 0.878012i \(0.658870\pi\)
\(114\) −2.16218e9 −1.19900
\(115\) −4.15828e9 −2.21704
\(116\) −5.42912e7 −0.0278399
\(117\) −9.30409e8 −0.459026
\(118\) −4.65046e8 −0.220814
\(119\) 0 0
\(120\) 1.66648e9 0.733642
\(121\) 2.69863e9 1.14448
\(122\) 9.90050e8 0.404611
\(123\) −1.11158e9 −0.437893
\(124\) 1.10403e9 0.419356
\(125\) −3.74196e9 −1.37089
\(126\) 0 0
\(127\) −2.50752e9 −0.855319 −0.427659 0.903940i \(-0.640662\pi\)
−0.427659 + 0.903940i \(0.640662\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −1.21412e9 −0.386020
\(130\) −3.35585e9 −1.03052
\(131\) 3.05147e9 0.905290 0.452645 0.891691i \(-0.350480\pi\)
0.452645 + 0.891691i \(0.350480\pi\)
\(132\) −3.15765e9 −0.905277
\(133\) 0 0
\(134\) −3.21039e9 −0.860173
\(135\) 3.77487e9 0.978137
\(136\) 1.32278e8 0.0331561
\(137\) 7.30548e9 1.77176 0.885882 0.463910i \(-0.153554\pi\)
0.885882 + 0.463910i \(0.153554\pi\)
\(138\) −4.92023e9 −1.15486
\(139\) −2.79289e9 −0.634581 −0.317290 0.948328i \(-0.602773\pi\)
−0.317290 + 0.948328i \(0.602773\pi\)
\(140\) 0 0
\(141\) 6.08569e9 1.29665
\(142\) −4.84822e8 −0.100066
\(143\) 6.35868e9 1.27161
\(144\) 6.81892e8 0.132155
\(145\) 4.97432e8 0.0934496
\(146\) −4.66954e9 −0.850523
\(147\) 0 0
\(148\) 1.58746e9 0.271973
\(149\) −2.53425e9 −0.421223 −0.210611 0.977570i \(-0.567545\pi\)
−0.210611 + 0.977570i \(0.567545\pi\)
\(150\) −9.84819e9 −1.58835
\(151\) 3.10856e9 0.486591 0.243295 0.969952i \(-0.421772\pi\)
0.243295 + 0.969952i \(0.421772\pi\)
\(152\) −3.19106e9 −0.484886
\(153\) −3.36019e8 −0.0495738
\(154\) 0 0
\(155\) −1.01154e10 −1.40764
\(156\) −3.97076e9 −0.536801
\(157\) 1.16398e10 1.52896 0.764481 0.644646i \(-0.222995\pi\)
0.764481 + 0.644646i \(0.222995\pi\)
\(158\) 1.74194e9 0.222370
\(159\) −7.40496e9 −0.918831
\(160\) 2.45949e9 0.296691
\(161\) 0 0
\(162\) 7.74333e9 0.883304
\(163\) −1.23726e10 −1.37283 −0.686417 0.727208i \(-0.740818\pi\)
−0.686417 + 0.727208i \(0.740818\pi\)
\(164\) −1.64054e9 −0.177088
\(165\) 2.89313e10 3.03872
\(166\) 3.46658e9 0.354336
\(167\) −6.26181e9 −0.622982 −0.311491 0.950249i \(-0.600828\pi\)
−0.311491 + 0.950249i \(0.600828\pi\)
\(168\) 0 0
\(169\) −2.60842e9 −0.245973
\(170\) −1.21197e9 −0.111294
\(171\) 8.10608e9 0.724984
\(172\) −1.79187e9 −0.156110
\(173\) 8.79129e8 0.0746183 0.0373091 0.999304i \(-0.488121\pi\)
0.0373091 + 0.999304i \(0.488121\pi\)
\(174\) 5.88579e8 0.0486780
\(175\) 0 0
\(176\) −4.66024e9 −0.366101
\(177\) 5.04164e9 0.386093
\(178\) −2.98407e9 −0.222802
\(179\) −1.67343e10 −1.21834 −0.609170 0.793039i \(-0.708497\pi\)
−0.609170 + 0.793039i \(0.708497\pi\)
\(180\) −6.24769e9 −0.443602
\(181\) 3.33844e9 0.231201 0.115601 0.993296i \(-0.463121\pi\)
0.115601 + 0.993296i \(0.463121\pi\)
\(182\) 0 0
\(183\) −1.07333e10 −0.707462
\(184\) −7.26155e9 −0.467035
\(185\) −1.45448e10 −0.912924
\(186\) −1.19689e10 −0.733243
\(187\) 2.29645e9 0.137331
\(188\) 8.98161e9 0.524377
\(189\) 0 0
\(190\) 2.92375e10 1.62760
\(191\) −1.17806e10 −0.640498 −0.320249 0.947333i \(-0.603767\pi\)
−0.320249 + 0.947333i \(0.603767\pi\)
\(192\) 2.91015e9 0.154547
\(193\) −3.21873e10 −1.66985 −0.834923 0.550367i \(-0.814488\pi\)
−0.834923 + 0.550367i \(0.814488\pi\)
\(194\) −1.52610e10 −0.773527
\(195\) 3.63813e10 1.80187
\(196\) 0 0
\(197\) −2.41075e10 −1.14039 −0.570195 0.821509i \(-0.693132\pi\)
−0.570195 + 0.821509i \(0.693132\pi\)
\(198\) 1.18382e10 0.547382
\(199\) −1.14558e10 −0.517828 −0.258914 0.965900i \(-0.583365\pi\)
−0.258914 + 0.965900i \(0.583365\pi\)
\(200\) −1.45345e10 −0.642342
\(201\) 3.48043e10 1.50401
\(202\) −3.11598e10 −1.31678
\(203\) 0 0
\(204\) −1.43405e9 −0.0579733
\(205\) 1.50311e10 0.594426
\(206\) −2.21310e10 −0.856247
\(207\) 1.84461e10 0.698294
\(208\) −5.86028e9 −0.217087
\(209\) −5.53993e10 −2.00838
\(210\) 0 0
\(211\) 2.03945e10 0.708339 0.354169 0.935181i \(-0.384764\pi\)
0.354169 + 0.935181i \(0.384764\pi\)
\(212\) −1.09287e10 −0.371583
\(213\) 5.25603e9 0.174964
\(214\) 3.06930e10 1.00041
\(215\) 1.64177e10 0.524009
\(216\) 6.59200e9 0.206051
\(217\) 0 0
\(218\) −3.01608e10 −0.904458
\(219\) 5.06232e10 1.48714
\(220\) 4.26985e10 1.22888
\(221\) 2.88780e9 0.0814332
\(222\) −1.72099e10 −0.475544
\(223\) 5.72310e10 1.54974 0.774871 0.632119i \(-0.217815\pi\)
0.774871 + 0.632119i \(0.217815\pi\)
\(224\) 0 0
\(225\) 3.69213e10 0.960407
\(226\) 2.65467e10 0.676897
\(227\) −1.52497e10 −0.381193 −0.190596 0.981669i \(-0.561042\pi\)
−0.190596 + 0.981669i \(0.561042\pi\)
\(228\) 3.45948e10 0.847821
\(229\) 3.48029e10 0.836287 0.418144 0.908381i \(-0.362681\pi\)
0.418144 + 0.908381i \(0.362681\pi\)
\(230\) 6.65325e10 1.56768
\(231\) 0 0
\(232\) 8.68659e8 0.0196858
\(233\) 7.42782e10 1.65105 0.825524 0.564367i \(-0.190880\pi\)
0.825524 + 0.564367i \(0.190880\pi\)
\(234\) 1.48865e10 0.324580
\(235\) −8.22921e10 −1.76016
\(236\) 7.44074e9 0.156139
\(237\) −1.88847e10 −0.388814
\(238\) 0 0
\(239\) 6.12890e10 1.21504 0.607522 0.794303i \(-0.292164\pi\)
0.607522 + 0.794303i \(0.292164\pi\)
\(240\) −2.66637e10 −0.518763
\(241\) 4.28739e10 0.818683 0.409342 0.912381i \(-0.365758\pi\)
0.409342 + 0.912381i \(0.365758\pi\)
\(242\) −4.31781e10 −0.809273
\(243\) −5.22693e10 −0.961653
\(244\) −1.58408e10 −0.286103
\(245\) 0 0
\(246\) 1.77853e10 0.309637
\(247\) −6.96649e10 −1.19091
\(248\) −1.76645e10 −0.296529
\(249\) −3.75817e10 −0.619555
\(250\) 5.98713e10 0.969368
\(251\) 2.70921e10 0.430835 0.215417 0.976522i \(-0.430889\pi\)
0.215417 + 0.976522i \(0.430889\pi\)
\(252\) 0 0
\(253\) −1.26066e11 −1.93444
\(254\) 4.01204e10 0.604802
\(255\) 1.31392e10 0.194598
\(256\) 4.29497e9 0.0625000
\(257\) 8.34743e10 1.19359 0.596793 0.802395i \(-0.296441\pi\)
0.596793 + 0.802395i \(0.296441\pi\)
\(258\) 1.94260e10 0.272957
\(259\) 0 0
\(260\) 5.36936e10 0.728690
\(261\) −2.20661e9 −0.0294335
\(262\) −4.88235e10 −0.640137
\(263\) 5.03326e10 0.648707 0.324354 0.945936i \(-0.394853\pi\)
0.324354 + 0.945936i \(0.394853\pi\)
\(264\) 5.05224e10 0.640127
\(265\) 1.00132e11 1.24728
\(266\) 0 0
\(267\) 3.23508e10 0.389569
\(268\) 5.13662e10 0.608234
\(269\) −3.29687e10 −0.383898 −0.191949 0.981405i \(-0.561481\pi\)
−0.191949 + 0.981405i \(0.561481\pi\)
\(270\) −6.03979e10 −0.691647
\(271\) −2.37345e10 −0.267312 −0.133656 0.991028i \(-0.542672\pi\)
−0.133656 + 0.991028i \(0.542672\pi\)
\(272\) −2.11645e9 −0.0234449
\(273\) 0 0
\(274\) −1.16888e11 −1.25283
\(275\) −2.52330e11 −2.66056
\(276\) 7.87236e10 0.816609
\(277\) −8.31501e10 −0.848602 −0.424301 0.905521i \(-0.639480\pi\)
−0.424301 + 0.905521i \(0.639480\pi\)
\(278\) 4.46862e10 0.448716
\(279\) 4.48720e10 0.443360
\(280\) 0 0
\(281\) 1.48862e11 1.42431 0.712154 0.702023i \(-0.247720\pi\)
0.712154 + 0.702023i \(0.247720\pi\)
\(282\) −9.73710e10 −0.916872
\(283\) −5.93552e10 −0.550072 −0.275036 0.961434i \(-0.588690\pi\)
−0.275036 + 0.961434i \(0.588690\pi\)
\(284\) 7.75715e9 0.0707571
\(285\) −3.16968e11 −2.84586
\(286\) −1.01739e11 −0.899166
\(287\) 0 0
\(288\) −1.09103e10 −0.0934478
\(289\) −1.17545e11 −0.991205
\(290\) −7.95891e9 −0.0660789
\(291\) 1.65447e11 1.35251
\(292\) 7.47126e10 0.601411
\(293\) −9.10565e10 −0.721783 −0.360892 0.932608i \(-0.617528\pi\)
−0.360892 + 0.932608i \(0.617528\pi\)
\(294\) 0 0
\(295\) −6.81743e10 −0.524109
\(296\) −2.53994e10 −0.192314
\(297\) 1.14442e11 0.853458
\(298\) 4.05480e10 0.297849
\(299\) −1.58529e11 −1.14706
\(300\) 1.57571e11 1.12313
\(301\) 0 0
\(302\) −4.97370e10 −0.344071
\(303\) 3.37808e11 2.30239
\(304\) 5.10570e10 0.342866
\(305\) 1.45138e11 0.960356
\(306\) 5.37630e9 0.0350540
\(307\) −6.61649e10 −0.425114 −0.212557 0.977149i \(-0.568179\pi\)
−0.212557 + 0.977149i \(0.568179\pi\)
\(308\) 0 0
\(309\) 2.39926e11 1.49714
\(310\) 1.61847e11 0.995353
\(311\) −8.84316e9 −0.0536026 −0.0268013 0.999641i \(-0.508532\pi\)
−0.0268013 + 0.999641i \(0.508532\pi\)
\(312\) 6.35322e10 0.379576
\(313\) −1.58157e10 −0.0931406 −0.0465703 0.998915i \(-0.514829\pi\)
−0.0465703 + 0.998915i \(0.514829\pi\)
\(314\) −1.86237e11 −1.08114
\(315\) 0 0
\(316\) −2.78711e10 −0.157240
\(317\) 2.15403e11 1.19808 0.599039 0.800720i \(-0.295550\pi\)
0.599039 + 0.800720i \(0.295550\pi\)
\(318\) 1.18479e11 0.649712
\(319\) 1.50806e10 0.0815379
\(320\) −3.93518e10 −0.209792
\(321\) −3.32748e11 −1.74921
\(322\) 0 0
\(323\) −2.51596e10 −0.128615
\(324\) −1.23893e11 −0.624590
\(325\) −3.17307e11 −1.57763
\(326\) 1.97962e11 0.970741
\(327\) 3.26978e11 1.58144
\(328\) 2.62486e10 0.125220
\(329\) 0 0
\(330\) −4.62901e11 −2.14870
\(331\) −4.03133e10 −0.184596 −0.0922980 0.995731i \(-0.529421\pi\)
−0.0922980 + 0.995731i \(0.529421\pi\)
\(332\) −5.54653e10 −0.250553
\(333\) 6.45206e10 0.287541
\(334\) 1.00189e11 0.440515
\(335\) −4.70632e11 −2.04164
\(336\) 0 0
\(337\) −1.47587e11 −0.623324 −0.311662 0.950193i \(-0.600886\pi\)
−0.311662 + 0.950193i \(0.600886\pi\)
\(338\) 4.17348e10 0.173929
\(339\) −2.87797e11 −1.18355
\(340\) 1.93916e10 0.0786969
\(341\) −3.06668e11 −1.22821
\(342\) −1.29697e11 −0.512641
\(343\) 0 0
\(344\) 2.86700e10 0.110386
\(345\) −7.21289e11 −2.74109
\(346\) −1.40661e10 −0.0527631
\(347\) −3.90127e11 −1.44452 −0.722259 0.691623i \(-0.756896\pi\)
−0.722259 + 0.691623i \(0.756896\pi\)
\(348\) −9.41726e9 −0.0344206
\(349\) 2.60554e10 0.0940119 0.0470059 0.998895i \(-0.485032\pi\)
0.0470059 + 0.998895i \(0.485032\pi\)
\(350\) 0 0
\(351\) 1.43912e11 0.506074
\(352\) 7.45639e10 0.258873
\(353\) −7.51585e10 −0.257627 −0.128814 0.991669i \(-0.541117\pi\)
−0.128814 + 0.991669i \(0.541117\pi\)
\(354\) −8.06662e10 −0.273009
\(355\) −7.10733e10 −0.237508
\(356\) 4.77452e10 0.157545
\(357\) 0 0
\(358\) 2.67749e11 0.861497
\(359\) 2.87238e11 0.912676 0.456338 0.889807i \(-0.349161\pi\)
0.456338 + 0.889807i \(0.349161\pi\)
\(360\) 9.99631e10 0.313674
\(361\) 2.84259e11 0.880912
\(362\) −5.34151e10 −0.163484
\(363\) 4.68101e11 1.41501
\(364\) 0 0
\(365\) −6.84539e11 −2.01874
\(366\) 1.71733e11 0.500251
\(367\) 5.08906e11 1.46434 0.732168 0.681124i \(-0.238509\pi\)
0.732168 + 0.681124i \(0.238509\pi\)
\(368\) 1.16185e11 0.330244
\(369\) −6.66778e10 −0.187224
\(370\) 2.32717e11 0.645535
\(371\) 0 0
\(372\) 1.91503e11 0.518481
\(373\) 1.03452e11 0.276726 0.138363 0.990382i \(-0.455816\pi\)
0.138363 + 0.990382i \(0.455816\pi\)
\(374\) −3.67432e10 −0.0971080
\(375\) −6.49074e11 −1.69494
\(376\) −1.43706e11 −0.370791
\(377\) 1.89639e10 0.0483495
\(378\) 0 0
\(379\) 1.10894e11 0.276078 0.138039 0.990427i \(-0.455920\pi\)
0.138039 + 0.990427i \(0.455920\pi\)
\(380\) −4.67799e11 −1.15089
\(381\) −4.34951e11 −1.05749
\(382\) 1.88490e11 0.452901
\(383\) −2.59944e11 −0.617284 −0.308642 0.951178i \(-0.599875\pi\)
−0.308642 + 0.951178i \(0.599875\pi\)
\(384\) −4.65624e10 −0.109281
\(385\) 0 0
\(386\) 5.14997e11 1.18076
\(387\) −7.28288e10 −0.165045
\(388\) 2.44176e11 0.546966
\(389\) 5.82556e11 1.28993 0.644963 0.764214i \(-0.276873\pi\)
0.644963 + 0.764214i \(0.276873\pi\)
\(390\) −5.82101e11 −1.27411
\(391\) −5.72530e10 −0.123880
\(392\) 0 0
\(393\) 5.29303e11 1.11928
\(394\) 3.85719e11 0.806377
\(395\) 2.55363e11 0.527802
\(396\) −1.89410e11 −0.387058
\(397\) 1.87073e11 0.377967 0.188983 0.981980i \(-0.439481\pi\)
0.188983 + 0.981980i \(0.439481\pi\)
\(398\) 1.83292e11 0.366159
\(399\) 0 0
\(400\) 2.32553e11 0.454204
\(401\) −8.82741e11 −1.70484 −0.852420 0.522857i \(-0.824866\pi\)
−0.852420 + 0.522857i \(0.824866\pi\)
\(402\) −5.56869e11 −1.06350
\(403\) −3.85637e11 −0.728293
\(404\) 4.98557e11 0.931105
\(405\) 1.13515e12 2.09655
\(406\) 0 0
\(407\) −4.40953e11 −0.796557
\(408\) 2.29448e10 0.0409933
\(409\) 3.94325e11 0.696785 0.348393 0.937349i \(-0.386728\pi\)
0.348393 + 0.937349i \(0.386728\pi\)
\(410\) −2.40497e11 −0.420323
\(411\) 1.26720e12 2.19056
\(412\) 3.54096e11 0.605458
\(413\) 0 0
\(414\) −2.95138e11 −0.493769
\(415\) 5.08189e11 0.841025
\(416\) 9.37645e10 0.153504
\(417\) −4.84450e11 −0.784579
\(418\) 8.86388e11 1.42014
\(419\) 1.77960e11 0.282072 0.141036 0.990004i \(-0.454957\pi\)
0.141036 + 0.990004i \(0.454957\pi\)
\(420\) 0 0
\(421\) 3.94445e11 0.611952 0.305976 0.952039i \(-0.401017\pi\)
0.305976 + 0.952039i \(0.401017\pi\)
\(422\) −3.26311e11 −0.500871
\(423\) 3.65048e11 0.554393
\(424\) 1.74859e11 0.262749
\(425\) −1.14596e11 −0.170380
\(426\) −8.40965e10 −0.123719
\(427\) 0 0
\(428\) −4.91088e11 −0.707396
\(429\) 1.10297e12 1.57219
\(430\) −2.62683e11 −0.370530
\(431\) 8.07791e11 1.12759 0.563795 0.825915i \(-0.309341\pi\)
0.563795 + 0.825915i \(0.309341\pi\)
\(432\) −1.05472e11 −0.145700
\(433\) −5.77686e11 −0.789763 −0.394881 0.918732i \(-0.629214\pi\)
−0.394881 + 0.918732i \(0.629214\pi\)
\(434\) 0 0
\(435\) 8.62838e10 0.115539
\(436\) 4.82573e11 0.639548
\(437\) 1.38116e12 1.81167
\(438\) −8.09971e11 −1.05156
\(439\) 1.32828e12 1.70687 0.853436 0.521198i \(-0.174515\pi\)
0.853436 + 0.521198i \(0.174515\pi\)
\(440\) −6.83176e11 −0.868952
\(441\) 0 0
\(442\) −4.62048e10 −0.0575820
\(443\) 4.99467e11 0.616155 0.308077 0.951361i \(-0.400314\pi\)
0.308077 + 0.951361i \(0.400314\pi\)
\(444\) 2.75359e11 0.336260
\(445\) −4.37455e11 −0.528827
\(446\) −9.15696e11 −1.09583
\(447\) −4.39588e11 −0.520789
\(448\) 0 0
\(449\) −4.51211e10 −0.0523927 −0.0261964 0.999657i \(-0.508340\pi\)
−0.0261964 + 0.999657i \(0.508340\pi\)
\(450\) −5.90740e11 −0.679110
\(451\) 4.55695e11 0.518657
\(452\) −4.24747e11 −0.478639
\(453\) 5.39207e11 0.601608
\(454\) 2.43995e11 0.269544
\(455\) 0 0
\(456\) −5.53517e11 −0.599500
\(457\) 6.35220e11 0.681242 0.340621 0.940201i \(-0.389363\pi\)
0.340621 + 0.940201i \(0.389363\pi\)
\(458\) −5.56846e11 −0.591344
\(459\) 5.19740e10 0.0546549
\(460\) −1.06452e12 −1.10852
\(461\) 1.21010e12 1.24786 0.623932 0.781479i \(-0.285534\pi\)
0.623932 + 0.781479i \(0.285534\pi\)
\(462\) 0 0
\(463\) 9.73087e11 0.984095 0.492047 0.870568i \(-0.336249\pi\)
0.492047 + 0.870568i \(0.336249\pi\)
\(464\) −1.38985e10 −0.0139200
\(465\) −1.75461e12 −1.74037
\(466\) −1.18845e12 −1.16747
\(467\) −1.68306e12 −1.63747 −0.818735 0.574171i \(-0.805324\pi\)
−0.818735 + 0.574171i \(0.805324\pi\)
\(468\) −2.38185e11 −0.229513
\(469\) 0 0
\(470\) 1.31667e12 1.24462
\(471\) 2.01902e12 1.89037
\(472\) −1.19052e11 −0.110407
\(473\) 4.97733e11 0.457215
\(474\) 3.02155e11 0.274933
\(475\) 2.76450e12 2.49170
\(476\) 0 0
\(477\) −4.44184e11 −0.392853
\(478\) −9.80624e11 −0.859165
\(479\) −1.16467e12 −1.01086 −0.505432 0.862866i \(-0.668667\pi\)
−0.505432 + 0.862866i \(0.668667\pi\)
\(480\) 4.26619e11 0.366821
\(481\) −5.54500e11 −0.472334
\(482\) −6.85982e11 −0.578897
\(483\) 0 0
\(484\) 6.90850e11 0.572242
\(485\) −2.23722e12 −1.83599
\(486\) 8.36309e11 0.679992
\(487\) 2.24154e12 1.80578 0.902891 0.429869i \(-0.141440\pi\)
0.902891 + 0.429869i \(0.141440\pi\)
\(488\) 2.53453e11 0.202306
\(489\) −2.14614e12 −1.69734
\(490\) 0 0
\(491\) 1.65508e11 0.128515 0.0642573 0.997933i \(-0.479532\pi\)
0.0642573 + 0.997933i \(0.479532\pi\)
\(492\) −2.84565e11 −0.218947
\(493\) 6.84885e9 0.00522164
\(494\) 1.11464e12 0.842098
\(495\) 1.73543e12 1.29923
\(496\) 2.82631e11 0.209678
\(497\) 0 0
\(498\) 6.01307e11 0.438091
\(499\) −1.21355e12 −0.876200 −0.438100 0.898926i \(-0.644348\pi\)
−0.438100 + 0.898926i \(0.644348\pi\)
\(500\) −9.57941e11 −0.685447
\(501\) −1.08616e12 −0.770239
\(502\) −4.33473e11 −0.304646
\(503\) −8.95258e10 −0.0623580 −0.0311790 0.999514i \(-0.509926\pi\)
−0.0311790 + 0.999514i \(0.509926\pi\)
\(504\) 0 0
\(505\) −4.56793e12 −3.12542
\(506\) 2.01706e12 1.36786
\(507\) −4.52453e11 −0.304115
\(508\) −6.41926e11 −0.427659
\(509\) −1.33391e12 −0.880838 −0.440419 0.897792i \(-0.645170\pi\)
−0.440419 + 0.897792i \(0.645170\pi\)
\(510\) −2.10227e11 −0.137601
\(511\) 0 0
\(512\) −6.87195e10 −0.0441942
\(513\) −1.25381e12 −0.799291
\(514\) −1.33559e12 −0.843993
\(515\) −3.24434e12 −2.03233
\(516\) −3.10816e11 −0.193010
\(517\) −2.49484e12 −1.53580
\(518\) 0 0
\(519\) 1.52492e11 0.0922561
\(520\) −8.59098e11 −0.515261
\(521\) 5.72090e11 0.340169 0.170084 0.985430i \(-0.445596\pi\)
0.170084 + 0.985430i \(0.445596\pi\)
\(522\) 3.53057e10 0.0208127
\(523\) 2.50016e12 1.46120 0.730602 0.682804i \(-0.239240\pi\)
0.730602 + 0.682804i \(0.239240\pi\)
\(524\) 7.81175e11 0.452645
\(525\) 0 0
\(526\) −8.05322e11 −0.458705
\(527\) −1.39274e11 −0.0786541
\(528\) −8.08358e11 −0.452638
\(529\) 1.34181e12 0.744973
\(530\) −1.60211e12 −0.881962
\(531\) 3.02421e11 0.165077
\(532\) 0 0
\(533\) 5.73039e11 0.307547
\(534\) −5.17613e11 −0.275467
\(535\) 4.49950e12 2.37450
\(536\) −8.21859e11 −0.430087
\(537\) −2.90271e12 −1.50632
\(538\) 5.27499e11 0.271457
\(539\) 0 0
\(540\) 9.66366e11 0.489069
\(541\) 1.04831e12 0.526140 0.263070 0.964777i \(-0.415265\pi\)
0.263070 + 0.964777i \(0.415265\pi\)
\(542\) 3.79752e11 0.189018
\(543\) 5.79081e11 0.285851
\(544\) 3.38632e10 0.0165780
\(545\) −4.42147e12 −2.14676
\(546\) 0 0
\(547\) −3.50622e12 −1.67454 −0.837272 0.546786i \(-0.815851\pi\)
−0.837272 + 0.546786i \(0.815851\pi\)
\(548\) 1.87020e12 0.885882
\(549\) −6.43832e11 −0.302480
\(550\) 4.03729e12 1.88130
\(551\) −1.65221e11 −0.0763629
\(552\) −1.25958e12 −0.577430
\(553\) 0 0
\(554\) 1.33040e12 0.600052
\(555\) −2.52292e12 −1.12872
\(556\) −7.14979e11 −0.317290
\(557\) 2.24275e12 0.987262 0.493631 0.869671i \(-0.335669\pi\)
0.493631 + 0.869671i \(0.335669\pi\)
\(558\) −7.17953e11 −0.313503
\(559\) 6.25901e11 0.271115
\(560\) 0 0
\(561\) 3.98339e11 0.169793
\(562\) −2.38178e12 −1.00714
\(563\) −2.03846e12 −0.855094 −0.427547 0.903993i \(-0.640622\pi\)
−0.427547 + 0.903993i \(0.640622\pi\)
\(564\) 1.55794e12 0.648326
\(565\) 3.89166e12 1.60663
\(566\) 9.49683e11 0.388960
\(567\) 0 0
\(568\) −1.24114e11 −0.0500328
\(569\) 1.24872e12 0.499414 0.249707 0.968321i \(-0.419666\pi\)
0.249707 + 0.968321i \(0.419666\pi\)
\(570\) 5.07149e12 2.01233
\(571\) 2.28673e12 0.900226 0.450113 0.892972i \(-0.351384\pi\)
0.450113 + 0.892972i \(0.351384\pi\)
\(572\) 1.62782e12 0.635806
\(573\) −2.04345e12 −0.791896
\(574\) 0 0
\(575\) 6.29087e12 2.39997
\(576\) 1.74564e11 0.0660776
\(577\) 2.61597e12 0.982521 0.491260 0.871013i \(-0.336536\pi\)
0.491260 + 0.871013i \(0.336536\pi\)
\(578\) 1.88072e12 0.700888
\(579\) −5.58316e12 −2.06455
\(580\) 1.27343e11 0.0467248
\(581\) 0 0
\(582\) −2.64715e12 −0.956369
\(583\) 3.03568e12 1.08830
\(584\) −1.19540e12 −0.425262
\(585\) 2.18232e12 0.770401
\(586\) 1.45690e12 0.510378
\(587\) 3.09779e12 1.07691 0.538457 0.842653i \(-0.319007\pi\)
0.538457 + 0.842653i \(0.319007\pi\)
\(588\) 0 0
\(589\) 3.35982e12 1.15026
\(590\) 1.09079e12 0.370601
\(591\) −4.18164e12 −1.40995
\(592\) 4.06390e11 0.135986
\(593\) 2.63952e12 0.876556 0.438278 0.898839i \(-0.355589\pi\)
0.438278 + 0.898839i \(0.355589\pi\)
\(594\) −1.83107e12 −0.603486
\(595\) 0 0
\(596\) −6.48769e11 −0.210611
\(597\) −1.98710e12 −0.640229
\(598\) 2.53646e12 0.811097
\(599\) −3.78448e12 −1.20112 −0.600558 0.799581i \(-0.705055\pi\)
−0.600558 + 0.799581i \(0.705055\pi\)
\(600\) −2.52114e12 −0.794175
\(601\) 5.10190e11 0.159513 0.0797567 0.996814i \(-0.474586\pi\)
0.0797567 + 0.996814i \(0.474586\pi\)
\(602\) 0 0
\(603\) 2.08772e12 0.643050
\(604\) 7.95793e11 0.243295
\(605\) −6.32978e12 −1.92083
\(606\) −5.40494e12 −1.62803
\(607\) −4.89855e12 −1.46460 −0.732299 0.680984i \(-0.761552\pi\)
−0.732299 + 0.680984i \(0.761552\pi\)
\(608\) −8.16912e11 −0.242443
\(609\) 0 0
\(610\) −2.32221e12 −0.679074
\(611\) −3.13727e12 −0.910683
\(612\) −8.60209e10 −0.0247869
\(613\) 4.36492e12 1.24854 0.624272 0.781207i \(-0.285396\pi\)
0.624272 + 0.781207i \(0.285396\pi\)
\(614\) 1.05864e12 0.300601
\(615\) 2.60727e12 0.734933
\(616\) 0 0
\(617\) −3.81081e12 −1.05861 −0.529303 0.848433i \(-0.677547\pi\)
−0.529303 + 0.848433i \(0.677547\pi\)
\(618\) −3.83881e12 −1.05864
\(619\) 1.52564e12 0.417680 0.208840 0.977950i \(-0.433031\pi\)
0.208840 + 0.977950i \(0.433031\pi\)
\(620\) −2.58955e12 −0.703821
\(621\) −2.85317e12 −0.769865
\(622\) 1.41491e11 0.0379028
\(623\) 0 0
\(624\) −1.01652e12 −0.268400
\(625\) 1.84634e12 0.484006
\(626\) 2.53051e11 0.0658603
\(627\) −9.60947e12 −2.48311
\(628\) 2.97979e12 0.764481
\(629\) −2.00259e11 −0.0510110
\(630\) 0 0
\(631\) −6.08153e12 −1.52715 −0.763573 0.645721i \(-0.776557\pi\)
−0.763573 + 0.645721i \(0.776557\pi\)
\(632\) 4.45937e11 0.111185
\(633\) 3.53759e12 0.875772
\(634\) −3.44645e12 −0.847169
\(635\) 5.88151e12 1.43551
\(636\) −1.89567e12 −0.459415
\(637\) 0 0
\(638\) −2.41289e11 −0.0576560
\(639\) 3.15281e11 0.0748073
\(640\) 6.29628e11 0.148345
\(641\) −1.36816e12 −0.320093 −0.160047 0.987109i \(-0.551164\pi\)
−0.160047 + 0.987109i \(0.551164\pi\)
\(642\) 5.32396e12 1.23688
\(643\) 2.94301e12 0.678958 0.339479 0.940614i \(-0.389749\pi\)
0.339479 + 0.940614i \(0.389749\pi\)
\(644\) 0 0
\(645\) 2.84779e12 0.647871
\(646\) 4.02554e11 0.0909447
\(647\) 4.40334e12 0.987901 0.493951 0.869490i \(-0.335552\pi\)
0.493951 + 0.869490i \(0.335552\pi\)
\(648\) 1.98229e12 0.441652
\(649\) −2.06683e12 −0.457303
\(650\) 5.07691e12 1.11555
\(651\) 0 0
\(652\) −3.16740e12 −0.686417
\(653\) 6.87439e11 0.147953 0.0739767 0.997260i \(-0.476431\pi\)
0.0739767 + 0.997260i \(0.476431\pi\)
\(654\) −5.23164e12 −1.11825
\(655\) −7.15736e12 −1.51938
\(656\) −4.19977e11 −0.0885439
\(657\) 3.03661e12 0.635836
\(658\) 0 0
\(659\) 7.48190e12 1.54535 0.772676 0.634800i \(-0.218918\pi\)
0.772676 + 0.634800i \(0.218918\pi\)
\(660\) 7.40642e12 1.51936
\(661\) −8.28772e12 −1.68861 −0.844303 0.535866i \(-0.819985\pi\)
−0.844303 + 0.535866i \(0.819985\pi\)
\(662\) 6.45012e11 0.130529
\(663\) 5.00913e11 0.100682
\(664\) 8.87444e11 0.177168
\(665\) 0 0
\(666\) −1.03233e12 −0.203322
\(667\) −3.75975e11 −0.0735517
\(668\) −1.60302e12 −0.311491
\(669\) 9.92721e12 1.91606
\(670\) 7.53012e12 1.44366
\(671\) 4.40013e12 0.837943
\(672\) 0 0
\(673\) −2.54077e11 −0.0477416 −0.0238708 0.999715i \(-0.507599\pi\)
−0.0238708 + 0.999715i \(0.507599\pi\)
\(674\) 2.36139e12 0.440757
\(675\) −5.71082e12 −1.05884
\(676\) −6.67757e11 −0.122987
\(677\) −9.71804e12 −1.77799 −0.888995 0.457916i \(-0.848596\pi\)
−0.888995 + 0.457916i \(0.848596\pi\)
\(678\) 4.60475e12 0.836898
\(679\) 0 0
\(680\) −3.10265e11 −0.0556471
\(681\) −2.64519e12 −0.471297
\(682\) 4.90669e12 0.868479
\(683\) −7.54116e12 −1.32601 −0.663003 0.748617i \(-0.730718\pi\)
−0.663003 + 0.748617i \(0.730718\pi\)
\(684\) 2.07516e12 0.362492
\(685\) −1.71353e13 −2.97362
\(686\) 0 0
\(687\) 6.03685e12 1.03396
\(688\) −4.58720e11 −0.0780548
\(689\) 3.81738e12 0.645326
\(690\) 1.15406e13 1.93824
\(691\) 1.02932e13 1.71752 0.858758 0.512382i \(-0.171237\pi\)
0.858758 + 0.512382i \(0.171237\pi\)
\(692\) 2.25057e11 0.0373091
\(693\) 0 0
\(694\) 6.24203e12 1.02143
\(695\) 6.55085e12 1.06504
\(696\) 1.50676e11 0.0243390
\(697\) 2.06954e11 0.0332144
\(698\) −4.16886e11 −0.0664764
\(699\) 1.28842e13 2.04131
\(700\) 0 0
\(701\) 9.10623e12 1.42432 0.712160 0.702017i \(-0.247717\pi\)
0.712160 + 0.702017i \(0.247717\pi\)
\(702\) −2.30259e12 −0.357848
\(703\) 4.83102e12 0.746002
\(704\) −1.19302e12 −0.183051
\(705\) −1.42743e13 −2.17622
\(706\) 1.20254e12 0.182170
\(707\) 0 0
\(708\) 1.29066e12 0.193047
\(709\) 6.52973e12 0.970481 0.485240 0.874381i \(-0.338732\pi\)
0.485240 + 0.874381i \(0.338732\pi\)
\(710\) 1.13717e12 0.167944
\(711\) −1.13279e12 −0.166240
\(712\) −7.63923e11 −0.111401
\(713\) 7.64557e12 1.10792
\(714\) 0 0
\(715\) −1.49146e13 −2.13419
\(716\) −4.28398e12 −0.609170
\(717\) 1.06311e13 1.50225
\(718\) −4.59580e12 −0.645359
\(719\) 1.04951e13 1.46455 0.732276 0.681007i \(-0.238458\pi\)
0.732276 + 0.681007i \(0.238458\pi\)
\(720\) −1.59941e12 −0.221801
\(721\) 0 0
\(722\) −4.54815e12 −0.622899
\(723\) 7.43684e12 1.01220
\(724\) 8.54641e11 0.115601
\(725\) −7.52541e11 −0.101160
\(726\) −7.48961e12 −1.00056
\(727\) −3.77271e12 −0.500898 −0.250449 0.968130i \(-0.580578\pi\)
−0.250449 + 0.968130i \(0.580578\pi\)
\(728\) 0 0
\(729\) 4.59195e11 0.0602176
\(730\) 1.09526e13 1.42746
\(731\) 2.26046e11 0.0292798
\(732\) −2.74772e12 −0.353731
\(733\) 1.38609e13 1.77347 0.886737 0.462275i \(-0.152967\pi\)
0.886737 + 0.462275i \(0.152967\pi\)
\(734\) −8.14250e12 −1.03544
\(735\) 0 0
\(736\) −1.85896e12 −0.233517
\(737\) −1.42681e13 −1.78140
\(738\) 1.06684e12 0.132388
\(739\) −1.46859e12 −0.181135 −0.0905673 0.995890i \(-0.528868\pi\)
−0.0905673 + 0.995890i \(0.528868\pi\)
\(740\) −3.72347e12 −0.456462
\(741\) −1.20840e13 −1.47241
\(742\) 0 0
\(743\) −4.86883e12 −0.586104 −0.293052 0.956096i \(-0.594671\pi\)
−0.293052 + 0.956096i \(0.594671\pi\)
\(744\) −3.06405e12 −0.366621
\(745\) 5.94421e12 0.706954
\(746\) −1.65523e12 −0.195674
\(747\) −2.25432e12 −0.264895
\(748\) 5.87891e11 0.0686657
\(749\) 0 0
\(750\) 1.03852e13 1.19850
\(751\) −1.14272e13 −1.31087 −0.655435 0.755252i \(-0.727515\pi\)
−0.655435 + 0.755252i \(0.727515\pi\)
\(752\) 2.29929e12 0.262189
\(753\) 4.69935e12 0.532673
\(754\) −3.03422e11 −0.0341882
\(755\) −7.29129e12 −0.816663
\(756\) 0 0
\(757\) 4.87971e12 0.540085 0.270043 0.962848i \(-0.412962\pi\)
0.270043 + 0.962848i \(0.412962\pi\)
\(758\) −1.77430e12 −0.195217
\(759\) −2.18672e13 −2.39169
\(760\) 7.48479e12 0.813802
\(761\) −1.12567e13 −1.21669 −0.608343 0.793674i \(-0.708166\pi\)
−0.608343 + 0.793674i \(0.708166\pi\)
\(762\) 6.95922e12 0.747761
\(763\) 0 0
\(764\) −3.01584e12 −0.320249
\(765\) 7.88149e11 0.0832016
\(766\) 4.15910e12 0.436486
\(767\) −2.59905e12 −0.271166
\(768\) 7.44998e11 0.0772734
\(769\) 1.61412e13 1.66444 0.832220 0.554446i \(-0.187070\pi\)
0.832220 + 0.554446i \(0.187070\pi\)
\(770\) 0 0
\(771\) 1.44793e13 1.47572
\(772\) −8.23995e12 −0.834923
\(773\) −1.40382e13 −1.41418 −0.707089 0.707125i \(-0.749992\pi\)
−0.707089 + 0.707125i \(0.749992\pi\)
\(774\) 1.16526e12 0.116705
\(775\) 1.53032e13 1.52379
\(776\) −3.90682e12 −0.386764
\(777\) 0 0
\(778\) −9.32090e12 −0.912115
\(779\) −4.99254e12 −0.485739
\(780\) 9.31361e12 0.900933
\(781\) −2.15472e12 −0.207234
\(782\) 9.16048e11 0.0875967
\(783\) 3.41308e11 0.0324503
\(784\) 0 0
\(785\) −2.73017e13 −2.56612
\(786\) −8.46884e12 −0.791448
\(787\) −1.34428e12 −0.124912 −0.0624560 0.998048i \(-0.519893\pi\)
−0.0624560 + 0.998048i \(0.519893\pi\)
\(788\) −6.17151e12 −0.570195
\(789\) 8.73062e12 0.802045
\(790\) −4.08581e12 −0.373213
\(791\) 0 0
\(792\) 3.03057e12 0.273691
\(793\) 5.53319e12 0.496874
\(794\) −2.99317e12 −0.267263
\(795\) 1.73687e13 1.54211
\(796\) −2.93268e12 −0.258914
\(797\) 9.34992e12 0.820815 0.410408 0.911902i \(-0.365386\pi\)
0.410408 + 0.911902i \(0.365386\pi\)
\(798\) 0 0
\(799\) −1.13303e12 −0.0983517
\(800\) −3.72084e12 −0.321171
\(801\) 1.94055e12 0.166563
\(802\) 1.41239e13 1.20550
\(803\) −2.07531e13 −1.76142
\(804\) 8.90990e12 0.752005
\(805\) 0 0
\(806\) 6.17019e12 0.514981
\(807\) −5.71869e12 −0.474642
\(808\) −7.97691e12 −0.658391
\(809\) −5.46916e12 −0.448902 −0.224451 0.974485i \(-0.572059\pi\)
−0.224451 + 0.974485i \(0.572059\pi\)
\(810\) −1.81624e13 −1.48248
\(811\) −6.82318e12 −0.553851 −0.276925 0.960891i \(-0.589315\pi\)
−0.276925 + 0.960891i \(0.589315\pi\)
\(812\) 0 0
\(813\) −4.11695e12 −0.330498
\(814\) 7.05524e12 0.563251
\(815\) 2.90206e13 2.30408
\(816\) −3.67117e11 −0.0289867
\(817\) −5.45309e12 −0.428197
\(818\) −6.30919e12 −0.492702
\(819\) 0 0
\(820\) 3.84796e12 0.297213
\(821\) 2.27679e12 0.174896 0.0874479 0.996169i \(-0.472129\pi\)
0.0874479 + 0.996169i \(0.472129\pi\)
\(822\) −2.02752e13 −1.54896
\(823\) 2.17924e13 1.65579 0.827897 0.560879i \(-0.189537\pi\)
0.827897 + 0.560879i \(0.189537\pi\)
\(824\) −5.66554e12 −0.428123
\(825\) −4.37689e13 −3.28944
\(826\) 0 0
\(827\) 1.32468e13 0.984772 0.492386 0.870377i \(-0.336125\pi\)
0.492386 + 0.870377i \(0.336125\pi\)
\(828\) 4.72221e12 0.349147
\(829\) −6.43837e12 −0.473457 −0.236729 0.971576i \(-0.576075\pi\)
−0.236729 + 0.971576i \(0.576075\pi\)
\(830\) −8.13103e12 −0.594695
\(831\) −1.44231e13 −1.04919
\(832\) −1.50023e12 −0.108543
\(833\) 0 0
\(834\) 7.75120e12 0.554781
\(835\) 1.46874e13 1.04557
\(836\) −1.41822e13 −1.00419
\(837\) −6.94061e12 −0.488802
\(838\) −2.84736e12 −0.199455
\(839\) −2.25634e12 −0.157208 −0.0786041 0.996906i \(-0.525046\pi\)
−0.0786041 + 0.996906i \(0.525046\pi\)
\(840\) 0 0
\(841\) −1.44622e13 −0.996900
\(842\) −6.31112e12 −0.432715
\(843\) 2.58213e13 1.76098
\(844\) 5.22098e12 0.354169
\(845\) 6.11818e12 0.412826
\(846\) −5.84076e12 −0.392015
\(847\) 0 0
\(848\) −2.79774e12 −0.185791
\(849\) −1.02957e13 −0.680095
\(850\) 1.83354e12 0.120477
\(851\) 1.09934e13 0.718538
\(852\) 1.34554e12 0.0874822
\(853\) 2.07580e13 1.34250 0.671252 0.741229i \(-0.265757\pi\)
0.671252 + 0.741229i \(0.265757\pi\)
\(854\) 0 0
\(855\) −1.90132e13 −1.21677
\(856\) 7.85741e12 0.500205
\(857\) −3.17253e12 −0.200906 −0.100453 0.994942i \(-0.532029\pi\)
−0.100453 + 0.994942i \(0.532029\pi\)
\(858\) −1.76475e13 −1.11171
\(859\) 2.93119e11 0.0183685 0.00918426 0.999958i \(-0.497077\pi\)
0.00918426 + 0.999958i \(0.497077\pi\)
\(860\) 4.20293e12 0.262005
\(861\) 0 0
\(862\) −1.29247e13 −0.797326
\(863\) 1.21943e13 0.748355 0.374178 0.927357i \(-0.377925\pi\)
0.374178 + 0.927357i \(0.377925\pi\)
\(864\) 1.68755e12 0.103026
\(865\) −2.06204e12 −0.125235
\(866\) 9.24298e12 0.558447
\(867\) −2.03892e13 −1.22550
\(868\) 0 0
\(869\) 7.74181e12 0.460525
\(870\) −1.38054e12 −0.0816982
\(871\) −1.79422e13 −1.05632
\(872\) −7.72116e12 −0.452229
\(873\) 9.92428e12 0.578275
\(874\) −2.20986e13 −1.28104
\(875\) 0 0
\(876\) 1.29595e13 0.743568
\(877\) −1.84735e13 −1.05451 −0.527255 0.849707i \(-0.676779\pi\)
−0.527255 + 0.849707i \(0.676779\pi\)
\(878\) −2.12526e13 −1.20694
\(879\) −1.57945e13 −0.892394
\(880\) 1.09308e13 0.614442
\(881\) −2.16016e13 −1.20808 −0.604039 0.796955i \(-0.706443\pi\)
−0.604039 + 0.796955i \(0.706443\pi\)
\(882\) 0 0
\(883\) −1.00085e13 −0.554043 −0.277022 0.960864i \(-0.589347\pi\)
−0.277022 + 0.960864i \(0.589347\pi\)
\(884\) 7.39277e11 0.0407166
\(885\) −1.18254e13 −0.647995
\(886\) −7.99147e12 −0.435687
\(887\) 1.50548e13 0.816615 0.408307 0.912844i \(-0.366119\pi\)
0.408307 + 0.912844i \(0.366119\pi\)
\(888\) −4.40574e12 −0.237772
\(889\) 0 0
\(890\) 6.99929e12 0.373937
\(891\) 3.44141e13 1.82931
\(892\) 1.46511e13 0.774871
\(893\) 2.73331e13 1.43833
\(894\) 7.03340e12 0.368253
\(895\) 3.92511e13 2.04479
\(896\) 0 0
\(897\) −2.74982e13 −1.41820
\(898\) 7.21938e11 0.0370473
\(899\) −9.14597e11 −0.0466994
\(900\) 9.45184e12 0.480203
\(901\) 1.37866e12 0.0696938
\(902\) −7.29112e12 −0.366746
\(903\) 0 0
\(904\) 6.79596e12 0.338449
\(905\) −7.83048e12 −0.388034
\(906\) −8.62731e12 −0.425401
\(907\) 2.29359e13 1.12534 0.562668 0.826683i \(-0.309775\pi\)
0.562668 + 0.826683i \(0.309775\pi\)
\(908\) −3.90392e12 −0.190596
\(909\) 2.02633e13 0.984403
\(910\) 0 0
\(911\) 4.04241e13 1.94450 0.972248 0.233952i \(-0.0751657\pi\)
0.972248 + 0.233952i \(0.0751657\pi\)
\(912\) 8.85627e12 0.423910
\(913\) 1.54067e13 0.733823
\(914\) −1.01635e13 −0.481711
\(915\) 2.51754e13 1.18736
\(916\) 8.90954e12 0.418144
\(917\) 0 0
\(918\) −8.31584e11 −0.0386468
\(919\) 4.18997e12 0.193772 0.0968859 0.995295i \(-0.469112\pi\)
0.0968859 + 0.995295i \(0.469112\pi\)
\(920\) 1.70323e13 0.783842
\(921\) −1.14769e13 −0.525599
\(922\) −1.93616e13 −0.882373
\(923\) −2.70957e12 −0.122883
\(924\) 0 0
\(925\) 2.20041e13 0.988250
\(926\) −1.55694e13 −0.695860
\(927\) 1.43919e13 0.640115
\(928\) 2.22377e11 0.00984291
\(929\) −4.83610e12 −0.213022 −0.106511 0.994312i \(-0.533968\pi\)
−0.106511 + 0.994312i \(0.533968\pi\)
\(930\) 2.80737e13 1.23063
\(931\) 0 0
\(932\) 1.90152e13 0.825524
\(933\) −1.53392e12 −0.0662729
\(934\) 2.69290e13 1.15787
\(935\) −5.38643e12 −0.230488
\(936\) 3.81095e12 0.162290
\(937\) 1.70190e12 0.0721282 0.0360641 0.999349i \(-0.488518\pi\)
0.0360641 + 0.999349i \(0.488518\pi\)
\(938\) 0 0
\(939\) −2.74337e12 −0.115157
\(940\) −2.10668e13 −0.880082
\(941\) −2.82987e12 −0.117656 −0.0588278 0.998268i \(-0.518736\pi\)
−0.0588278 + 0.998268i \(0.518736\pi\)
\(942\) −3.23043e13 −1.33669
\(943\) −1.13610e13 −0.467857
\(944\) 1.90483e12 0.0780697
\(945\) 0 0
\(946\) −7.96372e12 −0.323300
\(947\) 3.70636e13 1.49752 0.748761 0.662840i \(-0.230649\pi\)
0.748761 + 0.662840i \(0.230649\pi\)
\(948\) −4.83448e12 −0.194407
\(949\) −2.60971e13 −1.04447
\(950\) −4.42320e13 −1.76190
\(951\) 3.73635e13 1.48127
\(952\) 0 0
\(953\) −1.53995e12 −0.0604768 −0.0302384 0.999543i \(-0.509627\pi\)
−0.0302384 + 0.999543i \(0.509627\pi\)
\(954\) 7.10694e12 0.277789
\(955\) 2.76320e13 1.07497
\(956\) 1.56900e13 0.607522
\(957\) 2.61585e12 0.100811
\(958\) 1.86347e13 0.714789
\(959\) 0 0
\(960\) −6.82590e12 −0.259382
\(961\) −7.84100e12 −0.296562
\(962\) 8.87200e12 0.333990
\(963\) −1.99597e13 −0.747888
\(964\) 1.09757e13 0.409342
\(965\) 7.54968e13 2.80257
\(966\) 0 0
\(967\) −1.09919e13 −0.404254 −0.202127 0.979359i \(-0.564785\pi\)
−0.202127 + 0.979359i \(0.564785\pi\)
\(968\) −1.10536e13 −0.404636
\(969\) −4.36415e12 −0.159017
\(970\) 3.57954e13 1.29824
\(971\) 1.32559e12 0.0478544 0.0239272 0.999714i \(-0.492383\pi\)
0.0239272 + 0.999714i \(0.492383\pi\)
\(972\) −1.33809e13 −0.480827
\(973\) 0 0
\(974\) −3.58646e13 −1.27688
\(975\) −5.50396e13 −1.95054
\(976\) −4.05525e12 −0.143052
\(977\) −2.73317e12 −0.0959711 −0.0479856 0.998848i \(-0.515280\pi\)
−0.0479856 + 0.998848i \(0.515280\pi\)
\(978\) 3.43382e13 1.20020
\(979\) −1.32623e13 −0.461419
\(980\) 0 0
\(981\) 1.96136e13 0.676157
\(982\) −2.64813e12 −0.0908736
\(983\) −6.48654e11 −0.0221576 −0.0110788 0.999939i \(-0.503527\pi\)
−0.0110788 + 0.999939i \(0.503527\pi\)
\(984\) 4.55304e12 0.154819
\(985\) 5.65452e13 1.91396
\(986\) −1.09582e11 −0.00369226
\(987\) 0 0
\(988\) −1.78342e13 −0.595453
\(989\) −1.24090e13 −0.412433
\(990\) −2.77669e13 −0.918692
\(991\) −3.95845e13 −1.30375 −0.651874 0.758327i \(-0.726017\pi\)
−0.651874 + 0.758327i \(0.726017\pi\)
\(992\) −4.52210e12 −0.148265
\(993\) −6.99268e12 −0.228230
\(994\) 0 0
\(995\) 2.68700e13 0.869090
\(996\) −9.62092e12 −0.309777
\(997\) −2.11249e13 −0.677121 −0.338560 0.940945i \(-0.609940\pi\)
−0.338560 + 0.940945i \(0.609940\pi\)
\(998\) 1.94167e13 0.619567
\(999\) −9.97977e12 −0.317012
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.10.a.h.1.3 3
7.2 even 3 98.10.c.l.67.1 6
7.3 odd 6 14.10.c.b.9.3 6
7.4 even 3 98.10.c.l.79.1 6
7.5 odd 6 14.10.c.b.11.3 yes 6
7.6 odd 2 98.10.a.g.1.1 3
21.5 even 6 126.10.g.e.109.3 6
21.17 even 6 126.10.g.e.37.3 6
28.3 even 6 112.10.i.a.65.1 6
28.19 even 6 112.10.i.a.81.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.b.9.3 6 7.3 odd 6
14.10.c.b.11.3 yes 6 7.5 odd 6
98.10.a.g.1.1 3 7.6 odd 2
98.10.a.h.1.3 3 1.1 even 1 trivial
98.10.c.l.67.1 6 7.2 even 3
98.10.c.l.79.1 6 7.4 even 3
112.10.i.a.65.1 6 28.3 even 6
112.10.i.a.81.1 6 28.19 even 6
126.10.g.e.37.3 6 21.17 even 6
126.10.g.e.109.3 6 21.5 even 6