Properties

Label 98.10.a.h
Level $98$
Weight $10$
Character orbit 98.a
Self dual yes
Analytic conductor $50.474$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-48,71] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.4735119441\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4037x + 70980 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 7 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 16 q^{2} + (\beta_1 + 24) q^{3} + 256 q^{4} + (\beta_{2} - 5 \beta_1 - 363) q^{5} + ( - 16 \beta_1 - 384) q^{6} - 4096 q^{8} + ( - 9 \beta_{2} - 25 \beta_1 + 3024) q^{9} + ( - 16 \beta_{2} + 80 \beta_1 + 5808) q^{10}+ \cdots + ( - 93411 \beta_{2} - 2808357 \beta_1 - 435538134) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 48 q^{2} + 71 q^{3} + 768 q^{4} - 1085 q^{5} - 1136 q^{6} - 12288 q^{8} + 9106 q^{9} + 17360 q^{10} - 2555 q^{11} + 18176 q^{12} - 18070 q^{13} - 353073 q^{15} + 196608 q^{16} + 20759 q^{17} - 145696 q^{18}+ \cdots - 1303712634 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4037x + 70980 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{2} + 20\nu - 5397 ) / 21 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 10\nu^{2} + 688\nu - 27153 ) / 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 5\beta _1 + 8 ) / 28 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -5\beta_{2} + 172\beta _1 + 37739 ) / 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.2603
52.2593
−70.5196
−16.0000 −179.327 256.000 168.288 2869.24 0 −4096.00 12475.3 −2692.61
1.2 −16.0000 76.8690 256.000 1092.26 −1229.90 0 −4096.00 −13774.2 −17476.2
1.3 −16.0000 173.458 256.000 −2345.55 −2775.34 0 −4096.00 10404.8 37528.8
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.10.a.h 3
7.b odd 2 1 98.10.a.g 3
7.c even 3 2 98.10.c.l 6
7.d odd 6 2 14.10.c.b 6
21.g even 6 2 126.10.g.e 6
28.f even 6 2 112.10.i.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.10.c.b 6 7.d odd 6 2
98.10.a.g 3 7.b odd 2 1
98.10.a.h 3 1.a even 1 1 trivial
98.10.c.l 6 7.c even 3 2
112.10.i.a 6 28.f even 6 2
126.10.g.e 6 21.g even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 71T_{3}^{2} - 31557T_{3} + 2391075 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 16)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 71 T^{2} + \cdots + 2391075 \) Copy content Toggle raw display
$5$ \( T^{3} + 1085 T^{2} + \cdots + 431145855 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 55717735209129 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 368974841338200 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 34\!\cdots\!65 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 19\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 98\!\cdots\!19 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 11\!\cdots\!32 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 19\!\cdots\!53 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 47\!\cdots\!87 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 12\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 85\!\cdots\!92 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 46\!\cdots\!85 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 10\!\cdots\!89 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 94\!\cdots\!25 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 17\!\cdots\!55 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 54\!\cdots\!95 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 12\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 49\!\cdots\!79 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 27\!\cdots\!85 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 87\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 10\!\cdots\!75 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 14\!\cdots\!40 \) Copy content Toggle raw display
show more
show less