Properties

Label 98.10.c.l.67.1
Level $98$
Weight $10$
Character 98.67
Analytic conductor $50.474$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(67,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.67"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,48,-71] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.4735119441\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 4038x^{4} - 137923x^{3} + 16368349x^{2} - 286546260x + 5038160400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(-35.2598 - 61.0717i\) of defining polynomial
Character \(\chi\) \(=\) 98.67
Dual form 98.10.c.l.79.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.00000 + 13.8564i) q^{2} +(-86.7292 + 150.219i) q^{3} +(-128.000 + 221.703i) q^{4} +(1172.77 + 2031.30i) q^{5} -2775.34 q^{6} -4096.00 q^{8} +(-5202.42 - 9010.85i) q^{9} +(-18764.4 + 32500.9i) q^{10} +(35554.8 - 61582.8i) q^{11} +(-22202.7 - 38456.2i) q^{12} -89420.8 q^{13} -406855. q^{15} +(-32768.0 - 56755.8i) q^{16} +(16147.2 - 27967.9i) q^{17} +(83238.7 - 144174. i) q^{18} +(-389534. - 674693. i) q^{19} -600460. q^{20} +1.13775e6 q^{22} +(-886420. - 1.53532e6i) q^{23} +(355243. - 615299. i) q^{24} +(-1.77424e6 + 3.07307e6i) q^{25} +(-715366. - 1.23905e6i) q^{26} -1.60938e6 q^{27} -212075. q^{29} +(-3.25484e6 - 5.63755e6i) q^{30} +(-2.15631e6 + 3.73483e6i) q^{31} +(524288. - 908093. i) q^{32} +(6.16728e6 + 1.06821e7i) q^{33} +516712. q^{34} +2.66364e6 q^{36} +(-3.10051e6 - 5.37024e6i) q^{37} +(6.23254e6 - 1.07951e7i) q^{38} +(7.75540e6 - 1.34327e7i) q^{39} +(-4.80368e6 - 8.32022e6i) q^{40} -6.40835e6 q^{41} -6.99951e6 q^{43} +(9.10203e6 + 1.57652e7i) q^{44} +(1.22025e7 - 2.11354e7i) q^{45} +(1.41827e7 - 2.45652e7i) q^{46} +(-1.75422e7 - 3.03840e7i) q^{47} +1.13678e7 q^{48} -5.67755e7 q^{50} +(2.80088e6 + 4.85126e6i) q^{51} +(1.14459e7 - 1.98248e7i) q^{52} +(2.13451e7 - 3.69707e7i) q^{53} +(-1.28750e7 - 2.23002e7i) q^{54} +1.66791e8 q^{55} +1.35136e8 q^{57} +(-1.69660e6 - 2.93860e6i) q^{58} +(-1.45327e7 + 2.51714e7i) q^{59} +(5.20775e7 - 9.02008e7i) q^{60} +(3.09391e7 + 5.35880e7i) q^{61} -6.90018e7 q^{62} +1.67772e7 q^{64} +(-1.04870e8 - 1.81641e8i) q^{65} +(-9.86766e7 + 1.70913e8i) q^{66} +(-1.00325e8 + 1.73767e8i) q^{67} +(4.13370e6 + 7.15977e6i) q^{68} +3.07514e8 q^{69} +3.03014e7 q^{71} +(2.13091e7 + 3.69085e7i) q^{72} +(-1.45923e8 + 2.52746e8i) q^{73} +(4.96082e7 - 8.59239e7i) q^{74} +(-3.07756e8 - 5.33049e8i) q^{75} +1.99441e8 q^{76} +2.48173e8 q^{78} +(5.44357e7 + 9.42854e7i) q^{79} +(7.68589e7 - 1.33124e8i) q^{80} +(2.41979e8 - 4.19120e8i) q^{81} +(-5.12668e7 - 8.87966e7i) q^{82} -2.16661e8 q^{83} +7.57483e7 q^{85} +(-5.59961e7 - 9.69880e7i) q^{86} +(1.83931e7 - 3.18578e7i) q^{87} +(-1.45633e8 + 2.52243e8i) q^{88} +(-9.32523e7 - 1.61518e8i) q^{89} +3.90481e8 q^{90} +4.53847e8 q^{92} +(-3.74030e8 - 6.47838e8i) q^{93} +(2.80675e8 - 4.86144e8i) q^{94} +(9.13671e8 - 1.58252e9i) q^{95} +(9.09422e7 + 1.57516e8i) q^{96} +9.53814e8 q^{97} -7.39884e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 48 q^{2} - 71 q^{3} - 768 q^{4} + 1085 q^{5} - 2272 q^{6} - 24576 q^{8} - 9106 q^{9} - 17360 q^{10} + 2555 q^{11} - 18176 q^{12} - 36140 q^{13} - 706146 q^{15} - 196608 q^{16} - 20759 q^{17} + 145696 q^{18}+ \cdots - 2607425268 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 + 13.8564i 0.353553 + 0.612372i
\(3\) −86.7292 + 150.219i −0.618187 + 1.07073i 0.371629 + 0.928381i \(0.378799\pi\)
−0.989816 + 0.142350i \(0.954534\pi\)
\(4\) −128.000 + 221.703i −0.250000 + 0.433013i
\(5\) 1172.77 + 2031.30i 0.839169 + 1.45348i 0.890591 + 0.454806i \(0.150291\pi\)
−0.0514219 + 0.998677i \(0.516375\pi\)
\(6\) −2775.34 −0.874248
\(7\) 0 0
\(8\) −4096.00 −0.353553
\(9\) −5202.42 9010.85i −0.264310 0.457799i
\(10\) −18764.4 + 32500.9i −0.593382 + 1.02777i
\(11\) 35554.8 61582.8i 0.732203 1.26821i −0.223737 0.974650i \(-0.571826\pi\)
0.955940 0.293563i \(-0.0948410\pi\)
\(12\) −22202.7 38456.2i −0.309093 0.535366i
\(13\) −89420.8 −0.868347 −0.434174 0.900829i \(-0.642960\pi\)
−0.434174 + 0.900829i \(0.642960\pi\)
\(14\) 0 0
\(15\) −406855. −2.07505
\(16\) −32768.0 56755.8i −0.125000 0.216506i
\(17\) 16147.2 27967.9i 0.0468898 0.0812155i −0.841628 0.540058i \(-0.818402\pi\)
0.888518 + 0.458842i \(0.151736\pi\)
\(18\) 83238.7 144174.i 0.186896 0.323713i
\(19\) −389534. 674693.i −0.685732 1.18772i −0.973206 0.229934i \(-0.926149\pi\)
0.287475 0.957788i \(-0.407184\pi\)
\(20\) −600460. −0.839169
\(21\) 0 0
\(22\) 1.13775e6 1.03549
\(23\) −886420. 1.53532e6i −0.660487 1.14400i −0.980488 0.196580i \(-0.937016\pi\)
0.320001 0.947417i \(-0.396317\pi\)
\(24\) 355243. 615299.i 0.218562 0.378561i
\(25\) −1.77424e6 + 3.07307e6i −0.908408 + 1.57341i
\(26\) −715366. 1.23905e6i −0.307007 0.531752i
\(27\) −1.60938e6 −0.582801
\(28\) 0 0
\(29\) −212075. −0.0556799 −0.0278399 0.999612i \(-0.508863\pi\)
−0.0278399 + 0.999612i \(0.508863\pi\)
\(30\) −3.25484e6 5.63755e6i −0.733642 1.27071i
\(31\) −2.15631e6 + 3.73483e6i −0.419356 + 0.726346i −0.995875 0.0907380i \(-0.971077\pi\)
0.576519 + 0.817084i \(0.304411\pi\)
\(32\) 524288. 908093.i 0.0883883 0.153093i
\(33\) 6.16728e6 + 1.06821e7i 0.905277 + 1.56799i
\(34\) 516712. 0.0663122
\(35\) 0 0
\(36\) 2.66364e6 0.264310
\(37\) −3.10051e6 5.37024e6i −0.271973 0.471071i 0.697394 0.716688i \(-0.254343\pi\)
−0.969367 + 0.245617i \(0.921009\pi\)
\(38\) 6.23254e6 1.07951e7i 0.484886 0.839846i
\(39\) 7.75540e6 1.34327e7i 0.536801 0.929766i
\(40\) −4.80368e6 8.32022e6i −0.296691 0.513884i
\(41\) −6.40835e6 −0.354176 −0.177088 0.984195i \(-0.556668\pi\)
−0.177088 + 0.984195i \(0.556668\pi\)
\(42\) 0 0
\(43\) −6.99951e6 −0.312219 −0.156110 0.987740i \(-0.549895\pi\)
−0.156110 + 0.987740i \(0.549895\pi\)
\(44\) 9.10203e6 + 1.57652e7i 0.366101 + 0.634106i
\(45\) 1.22025e7 2.11354e7i 0.443602 0.768341i
\(46\) 1.41827e7 2.45652e7i 0.467035 0.808928i
\(47\) −1.75422e7 3.03840e7i −0.524377 0.908248i −0.999597 0.0283808i \(-0.990965\pi\)
0.475220 0.879867i \(-0.342368\pi\)
\(48\) 1.13678e7 0.309093
\(49\) 0 0
\(50\) −5.67755e7 −1.28468
\(51\) 2.80088e6 + 4.85126e6i 0.0579733 + 0.100413i
\(52\) 1.14459e7 1.98248e7i 0.217087 0.376005i
\(53\) 2.13451e7 3.69707e7i 0.371583 0.643601i −0.618226 0.786000i \(-0.712148\pi\)
0.989809 + 0.142400i \(0.0454818\pi\)
\(54\) −1.28750e7 2.23002e7i −0.206051 0.356891i
\(55\) 1.66791e8 2.45777
\(56\) 0 0
\(57\) 1.35136e8 1.69564
\(58\) −1.69660e6 2.93860e6i −0.0196858 0.0340968i
\(59\) −1.45327e7 + 2.51714e7i −0.156139 + 0.270441i −0.933473 0.358647i \(-0.883238\pi\)
0.777334 + 0.629088i \(0.216572\pi\)
\(60\) 5.20775e7 9.02008e7i 0.518763 0.898524i
\(61\) 3.09391e7 + 5.35880e7i 0.286103 + 0.495546i 0.972876 0.231327i \(-0.0743066\pi\)
−0.686773 + 0.726872i \(0.740973\pi\)
\(62\) −6.90018e7 −0.593059
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −1.04870e8 1.81641e8i −0.728690 1.26213i
\(66\) −9.86766e7 + 1.70913e8i −0.640127 + 1.10873i
\(67\) −1.00325e8 + 1.73767e8i −0.608234 + 1.05349i 0.383297 + 0.923625i \(0.374789\pi\)
−0.991531 + 0.129867i \(0.958545\pi\)
\(68\) 4.13370e6 + 7.15977e6i 0.0234449 + 0.0406078i
\(69\) 3.07514e8 1.63322
\(70\) 0 0
\(71\) 3.03014e7 0.141514 0.0707571 0.997494i \(-0.477458\pi\)
0.0707571 + 0.997494i \(0.477458\pi\)
\(72\) 2.13091e7 + 3.69085e7i 0.0934478 + 0.161856i
\(73\) −1.45923e8 + 2.52746e8i −0.601411 + 1.04167i 0.391197 + 0.920307i \(0.372061\pi\)
−0.992608 + 0.121367i \(0.961272\pi\)
\(74\) 4.96082e7 8.59239e7i 0.192314 0.333097i
\(75\) −3.07756e8 5.33049e8i −1.12313 1.94532i
\(76\) 1.99441e8 0.685732
\(77\) 0 0
\(78\) 2.48173e8 0.759151
\(79\) 5.44357e7 + 9.42854e7i 0.157240 + 0.272347i 0.933872 0.357607i \(-0.116407\pi\)
−0.776633 + 0.629954i \(0.783074\pi\)
\(80\) 7.68589e7 1.33124e8i 0.209792 0.363371i
\(81\) 2.41979e8 4.19120e8i 0.624590 1.08182i
\(82\) −5.12668e7 8.87966e7i −0.125220 0.216887i
\(83\) −2.16661e8 −0.501106 −0.250553 0.968103i \(-0.580612\pi\)
−0.250553 + 0.968103i \(0.580612\pi\)
\(84\) 0 0
\(85\) 7.57483e7 0.157394
\(86\) −5.59961e7 9.69880e7i −0.110386 0.191194i
\(87\) 1.83931e7 3.18578e7i 0.0344206 0.0596182i
\(88\) −1.45633e8 + 2.52243e8i −0.258873 + 0.448381i
\(89\) −9.32523e7 1.61518e8i −0.157545 0.272876i 0.776438 0.630194i \(-0.217025\pi\)
−0.933983 + 0.357318i \(0.883691\pi\)
\(90\) 3.90481e8 0.627348
\(91\) 0 0
\(92\) 4.53847e8 0.660487
\(93\) −3.74030e8 6.47838e8i −0.518481 0.898035i
\(94\) 2.80675e8 4.86144e8i 0.370791 0.642228i
\(95\) 9.13671e8 1.58252e9i 1.15089 1.99340i
\(96\) 9.09422e7 + 1.57516e8i 0.109281 + 0.189280i
\(97\) 9.53814e8 1.09393 0.546966 0.837155i \(-0.315783\pi\)
0.546966 + 0.837155i \(0.315783\pi\)
\(98\) 0 0
\(99\) −7.39884e8 −0.774115
\(100\) −4.54204e8 7.86705e8i −0.454204 0.786705i
\(101\) −9.73745e8 + 1.68657e9i −0.931105 + 1.61272i −0.149670 + 0.988736i \(0.547821\pi\)
−0.781436 + 0.623986i \(0.785512\pi\)
\(102\) −4.48140e7 + 7.76202e7i −0.0409933 + 0.0710025i
\(103\) −6.91594e8 1.19788e9i −0.605458 1.04868i −0.991979 0.126403i \(-0.959657\pi\)
0.386521 0.922281i \(-0.373677\pi\)
\(104\) 3.66268e8 0.307007
\(105\) 0 0
\(106\) 6.83042e8 0.525498
\(107\) 9.59157e8 + 1.66131e9i 0.707396 + 1.22525i 0.965820 + 0.259214i \(0.0834636\pi\)
−0.258424 + 0.966032i \(0.583203\pi\)
\(108\) 2.06000e8 3.56803e8i 0.145700 0.252360i
\(109\) −9.42525e8 + 1.63250e9i −0.639548 + 1.10773i 0.345983 + 0.938241i \(0.387545\pi\)
−0.985532 + 0.169490i \(0.945788\pi\)
\(110\) 1.33433e9 + 2.31113e9i 0.868952 + 1.50507i
\(111\) 1.07562e9 0.672520
\(112\) 0 0
\(113\) −1.65917e9 −0.957277 −0.478639 0.878012i \(-0.658870\pi\)
−0.478639 + 0.878012i \(0.658870\pi\)
\(114\) 1.08109e9 + 1.87250e9i 0.599500 + 1.03836i
\(115\) 2.07914e9 3.60118e9i 1.10852 1.92001i
\(116\) 2.71456e7 4.70175e7i 0.0139200 0.0241101i
\(117\) 4.65204e8 + 8.05758e8i 0.229513 + 0.397528i
\(118\) −4.65046e8 −0.220814
\(119\) 0 0
\(120\) 1.66648e9 0.733642
\(121\) −1.34932e9 2.33709e9i −0.572242 0.991152i
\(122\) −4.95025e8 + 8.57409e8i −0.202306 + 0.350404i
\(123\) 5.55791e8 9.62658e8i 0.218947 0.379227i
\(124\) −5.52014e8 9.56117e8i −0.209678 0.363173i
\(125\) −3.74196e9 −1.37089
\(126\) 0 0
\(127\) −2.50752e9 −0.855319 −0.427659 0.903940i \(-0.640662\pi\)
−0.427659 + 0.903940i \(0.640662\pi\)
\(128\) 1.34218e8 + 2.32472e8i 0.0441942 + 0.0765466i
\(129\) 6.07062e8 1.05146e9i 0.193010 0.334303i
\(130\) 1.67793e9 2.90625e9i 0.515261 0.892459i
\(131\) −1.52573e9 2.64265e9i −0.452645 0.784004i 0.545904 0.837848i \(-0.316186\pi\)
−0.998549 + 0.0538433i \(0.982853\pi\)
\(132\) −3.15765e9 −0.905277
\(133\) 0 0
\(134\) −3.21039e9 −0.860173
\(135\) −1.88743e9 3.26913e9i −0.489069 0.847092i
\(136\) −6.61391e7 + 1.14556e8i −0.0165780 + 0.0287140i
\(137\) −3.65274e9 + 6.32673e9i −0.885882 + 1.53439i −0.0411834 + 0.999152i \(0.513113\pi\)
−0.844699 + 0.535242i \(0.820221\pi\)
\(138\) 2.46011e9 + 4.26104e9i 0.577430 + 1.00014i
\(139\) −2.79289e9 −0.634581 −0.317290 0.948328i \(-0.602773\pi\)
−0.317290 + 0.948328i \(0.602773\pi\)
\(140\) 0 0
\(141\) 6.08569e9 1.29665
\(142\) 2.42411e8 + 4.19868e8i 0.0500328 + 0.0866594i
\(143\) −3.17934e9 + 5.50678e9i −0.635806 + 1.10125i
\(144\) −3.40946e8 + 5.90535e8i −0.0660776 + 0.114450i
\(145\) −2.48716e8 4.30789e8i −0.0467248 0.0809298i
\(146\) −4.66954e9 −0.850523
\(147\) 0 0
\(148\) 1.58746e9 0.271973
\(149\) 1.26713e9 + 2.19473e9i 0.210611 + 0.364789i 0.951906 0.306390i \(-0.0991212\pi\)
−0.741295 + 0.671180i \(0.765788\pi\)
\(150\) 4.92410e9 8.52879e9i 0.794175 1.37555i
\(151\) −1.55428e9 + 2.69210e9i −0.243295 + 0.421400i −0.961651 0.274276i \(-0.911562\pi\)
0.718356 + 0.695676i \(0.244895\pi\)
\(152\) 1.59553e9 + 2.76354e9i 0.242443 + 0.419923i
\(153\) −3.36019e8 −0.0495738
\(154\) 0 0
\(155\) −1.01154e10 −1.40764
\(156\) 1.98538e9 + 3.43878e9i 0.268400 + 0.464883i
\(157\) −5.81990e9 + 1.00804e10i −0.764481 + 1.32412i 0.176039 + 0.984383i \(0.443671\pi\)
−0.940520 + 0.339737i \(0.889662\pi\)
\(158\) −8.70971e8 + 1.50857e9i −0.111185 + 0.192578i
\(159\) 3.70248e9 + 6.41288e9i 0.459415 + 0.795731i
\(160\) 2.45949e9 0.296691
\(161\) 0 0
\(162\) 7.74333e9 0.883304
\(163\) 6.18632e9 + 1.07150e10i 0.686417 + 1.18891i 0.972989 + 0.230851i \(0.0741510\pi\)
−0.286572 + 0.958059i \(0.592516\pi\)
\(164\) 8.20268e8 1.42075e9i 0.0885439 0.153363i
\(165\) −1.44657e10 + 2.50553e10i −1.51936 + 2.63161i
\(166\) −1.73329e9 3.00215e9i −0.177168 0.306864i
\(167\) −6.26181e9 −0.622982 −0.311491 0.950249i \(-0.600828\pi\)
−0.311491 + 0.950249i \(0.600828\pi\)
\(168\) 0 0
\(169\) −2.60842e9 −0.245973
\(170\) 6.05986e8 + 1.04960e9i 0.0556471 + 0.0963836i
\(171\) −4.05304e9 + 7.02007e9i −0.362492 + 0.627854i
\(172\) 8.95937e8 1.55181e9i 0.0780548 0.135195i
\(173\) −4.39565e8 7.61348e8i −0.0373091 0.0646213i 0.846768 0.531963i \(-0.178545\pi\)
−0.884077 + 0.467341i \(0.845212\pi\)
\(174\) 5.88579e8 0.0486780
\(175\) 0 0
\(176\) −4.66024e9 −0.366101
\(177\) −2.52082e9 4.36619e9i −0.193047 0.334367i
\(178\) 1.49204e9 2.58428e9i 0.111401 0.192952i
\(179\) 8.36715e9 1.44923e10i 0.609170 1.05511i −0.382207 0.924077i \(-0.624836\pi\)
0.991377 0.131037i \(-0.0418308\pi\)
\(180\) 3.12385e9 + 5.41066e9i 0.221801 + 0.384170i
\(181\) 3.33844e9 0.231201 0.115601 0.993296i \(-0.463121\pi\)
0.115601 + 0.993296i \(0.463121\pi\)
\(182\) 0 0
\(183\) −1.07333e10 −0.707462
\(184\) 3.63078e9 + 6.28869e9i 0.233517 + 0.404464i
\(185\) 7.27240e9 1.25962e10i 0.456462 0.790616i
\(186\) 5.98447e9 1.03654e10i 0.366621 0.635007i
\(187\) −1.14823e9 1.98878e9i −0.0686657 0.118932i
\(188\) 8.98161e9 0.524377
\(189\) 0 0
\(190\) 2.92375e10 1.62760
\(191\) 5.89031e9 + 1.02023e10i 0.320249 + 0.554688i 0.980539 0.196323i \(-0.0629000\pi\)
−0.660290 + 0.751011i \(0.729567\pi\)
\(192\) −1.45508e9 + 2.52026e9i −0.0772734 + 0.133841i
\(193\) 1.60936e10 2.78750e10i 0.834923 1.44613i −0.0591699 0.998248i \(-0.518845\pi\)
0.894093 0.447881i \(-0.147821\pi\)
\(194\) 7.63051e9 + 1.32164e10i 0.386764 + 0.669894i
\(195\) 3.63813e10 1.80187
\(196\) 0 0
\(197\) −2.41075e10 −1.14039 −0.570195 0.821509i \(-0.693132\pi\)
−0.570195 + 0.821509i \(0.693132\pi\)
\(198\) −5.91908e9 1.02521e10i −0.273691 0.474047i
\(199\) 5.72788e9 9.92098e9i 0.258914 0.448452i −0.707037 0.707176i \(-0.749969\pi\)
0.965951 + 0.258724i \(0.0833021\pi\)
\(200\) 7.26727e9 1.25873e10i 0.321171 0.556284i
\(201\) −1.74022e10 3.01414e10i −0.752005 1.30251i
\(202\) −3.11598e10 −1.31678
\(203\) 0 0
\(204\) −1.43405e9 −0.0579733
\(205\) −7.51554e9 1.30173e10i −0.297213 0.514788i
\(206\) 1.10655e10 1.91660e10i 0.428123 0.741531i
\(207\) −9.22306e9 + 1.59748e10i −0.349147 + 0.604740i
\(208\) 2.93014e9 + 5.07515e9i 0.108543 + 0.188003i
\(209\) −5.53993e10 −2.00838
\(210\) 0 0
\(211\) 2.03945e10 0.708339 0.354169 0.935181i \(-0.384764\pi\)
0.354169 + 0.935181i \(0.384764\pi\)
\(212\) 5.46433e9 + 9.46450e9i 0.185791 + 0.321800i
\(213\) −2.62802e9 + 4.55186e9i −0.0874822 + 0.151524i
\(214\) −1.53465e10 + 2.65809e10i −0.500205 + 0.866380i
\(215\) −8.20884e9 1.42181e10i −0.262005 0.453805i
\(216\) 6.59200e9 0.206051
\(217\) 0 0
\(218\) −3.01608e10 −0.904458
\(219\) −2.53116e10 4.38410e10i −0.743568 1.28790i
\(220\) −2.13493e10 + 3.69780e10i −0.614442 + 1.06424i
\(221\) −1.44390e9 + 2.50091e9i −0.0407166 + 0.0705233i
\(222\) 8.60496e9 + 1.49042e10i 0.237772 + 0.411833i
\(223\) 5.72310e10 1.54974 0.774871 0.632119i \(-0.217815\pi\)
0.774871 + 0.632119i \(0.217815\pi\)
\(224\) 0 0
\(225\) 3.69213e10 0.960407
\(226\) −1.32734e10 2.29901e10i −0.338449 0.586210i
\(227\) 7.62484e9 1.32066e10i 0.190596 0.330122i −0.754852 0.655895i \(-0.772291\pi\)
0.945448 + 0.325773i \(0.105625\pi\)
\(228\) −1.72974e10 + 2.99600e10i −0.423910 + 0.734234i
\(229\) −1.74014e10 3.01402e10i −0.418144 0.724246i 0.577609 0.816313i \(-0.303986\pi\)
−0.995753 + 0.0920674i \(0.970652\pi\)
\(230\) 6.65325e10 1.56768
\(231\) 0 0
\(232\) 8.68659e8 0.0196858
\(233\) −3.71391e10 6.43268e10i −0.825524 1.42985i −0.901518 0.432741i \(-0.857546\pi\)
0.0759945 0.997108i \(-0.475787\pi\)
\(234\) −7.44327e9 + 1.28921e10i −0.162290 + 0.281095i
\(235\) 4.11461e10 7.12671e10i 0.880082 1.52435i
\(236\) −3.72037e9 6.44387e9i −0.0780697 0.135221i
\(237\) −1.88847e10 −0.388814
\(238\) 0 0
\(239\) 6.12890e10 1.21504 0.607522 0.794303i \(-0.292164\pi\)
0.607522 + 0.794303i \(0.292164\pi\)
\(240\) 1.33318e10 + 2.30914e10i 0.259382 + 0.449262i
\(241\) −2.14369e10 + 3.71299e10i −0.409342 + 0.709001i −0.994816 0.101690i \(-0.967575\pi\)
0.585474 + 0.810691i \(0.300908\pi\)
\(242\) 2.15891e10 3.73934e10i 0.404636 0.700851i
\(243\) 2.61347e10 + 4.52666e10i 0.480827 + 0.832816i
\(244\) −1.58408e10 −0.286103
\(245\) 0 0
\(246\) 1.77853e10 0.309637
\(247\) 3.48324e10 + 6.03315e10i 0.595453 + 1.03136i
\(248\) 8.83223e9 1.52979e10i 0.148265 0.256802i
\(249\) 1.87909e10 3.25467e10i 0.309777 0.536550i
\(250\) −2.99357e10 5.18501e10i −0.484684 0.839498i
\(251\) 2.70921e10 0.430835 0.215417 0.976522i \(-0.430889\pi\)
0.215417 + 0.976522i \(0.430889\pi\)
\(252\) 0 0
\(253\) −1.26066e11 −1.93444
\(254\) −2.00602e10 3.47452e10i −0.302401 0.523774i
\(255\) −6.56959e9 + 1.13789e10i −0.0972988 + 0.168526i
\(256\) −2.14748e9 + 3.71955e9i −0.0312500 + 0.0541266i
\(257\) −4.17372e10 7.22909e10i −0.596793 1.03368i −0.993291 0.115641i \(-0.963108\pi\)
0.396498 0.918036i \(-0.370225\pi\)
\(258\) 1.94260e10 0.272957
\(259\) 0 0
\(260\) 5.36936e10 0.728690
\(261\) 1.10330e9 + 1.91098e9i 0.0147168 + 0.0254902i
\(262\) 2.44117e10 4.22824e10i 0.320068 0.554375i
\(263\) −2.51663e10 + 4.35893e10i −0.324354 + 0.561797i −0.981381 0.192070i \(-0.938480\pi\)
0.657028 + 0.753866i \(0.271813\pi\)
\(264\) −2.52612e10 4.37537e10i −0.320064 0.554366i
\(265\) 1.00132e11 1.24728
\(266\) 0 0
\(267\) 3.23508e10 0.389569
\(268\) −2.56831e10 4.44844e10i −0.304117 0.526746i
\(269\) 1.64843e10 2.85517e10i 0.191949 0.332466i −0.753947 0.656935i \(-0.771852\pi\)
0.945896 + 0.324470i \(0.105186\pi\)
\(270\) 3.01989e10 5.23061e10i 0.345824 0.598984i
\(271\) 1.18673e10 + 2.05547e10i 0.133656 + 0.231499i 0.925083 0.379764i \(-0.123995\pi\)
−0.791427 + 0.611263i \(0.790662\pi\)
\(272\) −2.11645e9 −0.0234449
\(273\) 0 0
\(274\) −1.16888e11 −1.25283
\(275\) 1.26165e11 + 2.18525e11i 1.33028 + 2.30411i
\(276\) −3.93618e10 + 6.81767e10i −0.408305 + 0.707204i
\(277\) 4.15751e10 7.20101e10i 0.424301 0.734911i −0.572054 0.820216i \(-0.693853\pi\)
0.996355 + 0.0853053i \(0.0271866\pi\)
\(278\) −2.23431e10 3.86994e10i −0.224358 0.388600i
\(279\) 4.48720e10 0.443360
\(280\) 0 0
\(281\) 1.48862e11 1.42431 0.712154 0.702023i \(-0.247720\pi\)
0.712154 + 0.702023i \(0.247720\pi\)
\(282\) 4.86855e10 + 8.43257e10i 0.458436 + 0.794034i
\(283\) 2.96776e10 5.14031e10i 0.275036 0.476377i −0.695108 0.718905i \(-0.744644\pi\)
0.970144 + 0.242529i \(0.0779769\pi\)
\(284\) −3.87858e9 + 6.71789e9i −0.0353785 + 0.0612774i
\(285\) 1.58484e11 + 2.74502e11i 1.42293 + 2.46459i
\(286\) −1.01739e11 −0.899166
\(287\) 0 0
\(288\) −1.09103e10 −0.0934478
\(289\) 5.87725e10 + 1.01797e11i 0.495603 + 0.858409i
\(290\) 3.97946e9 6.89262e9i 0.0330394 0.0572260i
\(291\) −8.27235e10 + 1.43281e11i −0.676255 + 1.17131i
\(292\) −3.73563e10 6.47030e10i −0.300705 0.520837i
\(293\) −9.10565e10 −0.721783 −0.360892 0.932608i \(-0.617528\pi\)
−0.360892 + 0.932608i \(0.617528\pi\)
\(294\) 0 0
\(295\) −6.81743e10 −0.524109
\(296\) 1.26997e10 + 2.19965e10i 0.0961569 + 0.166549i
\(297\) −5.72211e10 + 9.91098e10i −0.426729 + 0.739116i
\(298\) −2.02740e10 + 3.51156e10i −0.148925 + 0.257945i
\(299\) 7.92644e10 + 1.37290e11i 0.573532 + 0.993387i
\(300\) 1.57571e11 1.12313
\(301\) 0 0
\(302\) −4.97370e10 −0.344071
\(303\) −1.68904e11 2.92551e11i −1.15119 1.99393i
\(304\) −2.55285e10 + 4.42167e10i −0.171433 + 0.296931i
\(305\) −7.25691e10 + 1.25693e11i −0.480178 + 0.831693i
\(306\) −2.68815e9 4.65602e9i −0.0175270 0.0303576i
\(307\) −6.61649e10 −0.425114 −0.212557 0.977149i \(-0.568179\pi\)
−0.212557 + 0.977149i \(0.568179\pi\)
\(308\) 0 0
\(309\) 2.39926e11 1.49714
\(310\) −8.09235e10 1.40164e11i −0.497676 0.862001i
\(311\) 4.42158e9 7.65840e9i 0.0268013 0.0464212i −0.852314 0.523031i \(-0.824801\pi\)
0.879115 + 0.476610i \(0.158135\pi\)
\(312\) −3.17661e10 + 5.50205e10i −0.189788 + 0.328722i
\(313\) 7.90785e9 + 1.36968e10i 0.0465703 + 0.0806621i 0.888371 0.459126i \(-0.151838\pi\)
−0.841801 + 0.539789i \(0.818504\pi\)
\(314\) −1.86237e11 −1.08114
\(315\) 0 0
\(316\) −2.78711e10 −0.157240
\(317\) −1.07701e11 1.86544e11i −0.599039 1.03757i −0.992963 0.118423i \(-0.962216\pi\)
0.393924 0.919143i \(-0.371117\pi\)
\(318\) −5.92397e10 + 1.02606e11i −0.324856 + 0.562667i
\(319\) −7.54029e9 + 1.30602e10i −0.0407690 + 0.0706139i
\(320\) 1.96759e10 + 3.40796e10i 0.104896 + 0.181685i
\(321\) −3.32748e11 −1.74921
\(322\) 0 0
\(323\) −2.51596e10 −0.128615
\(324\) 6.19467e10 + 1.07295e11i 0.312295 + 0.540911i
\(325\) 1.58653e11 2.74796e11i 0.788814 1.36627i
\(326\) −9.89812e10 + 1.71440e11i −0.485370 + 0.840686i
\(327\) −1.63489e11 2.83171e11i −0.790721 1.36957i
\(328\) 2.62486e10 0.125220
\(329\) 0 0
\(330\) −4.62901e11 −2.14870
\(331\) 2.01566e10 + 3.49123e10i 0.0922980 + 0.159865i 0.908478 0.417933i \(-0.137245\pi\)
−0.816180 + 0.577798i \(0.803912\pi\)
\(332\) 2.77326e10 4.80343e10i 0.125277 0.216985i
\(333\) −3.22603e10 + 5.58765e10i −0.143770 + 0.249018i
\(334\) −5.00945e10 8.67662e10i −0.220258 0.381497i
\(335\) −4.70632e11 −2.04164
\(336\) 0 0
\(337\) −1.47587e11 −0.623324 −0.311662 0.950193i \(-0.600886\pi\)
−0.311662 + 0.950193i \(0.600886\pi\)
\(338\) −2.08674e10 3.61434e10i −0.0869647 0.150627i
\(339\) 1.43898e11 2.49239e11i 0.591776 1.02499i
\(340\) −9.69578e9 + 1.67936e10i −0.0393485 + 0.0681535i
\(341\) 1.53334e11 + 2.65583e11i 0.614107 + 1.06367i
\(342\) −1.29697e11 −0.512641
\(343\) 0 0
\(344\) 2.86700e10 0.110386
\(345\) 3.60645e11 + 6.24655e11i 1.37055 + 2.37385i
\(346\) 7.03303e9 1.21816e10i 0.0263816 0.0456942i
\(347\) 1.95063e11 3.37860e11i 0.722259 1.25099i −0.237833 0.971306i \(-0.576437\pi\)
0.960092 0.279683i \(-0.0902295\pi\)
\(348\) 4.70863e9 + 8.15559e9i 0.0172103 + 0.0298091i
\(349\) 2.60554e10 0.0940119 0.0470059 0.998895i \(-0.485032\pi\)
0.0470059 + 0.998895i \(0.485032\pi\)
\(350\) 0 0
\(351\) 1.43912e11 0.506074
\(352\) −3.72819e10 6.45742e10i −0.129436 0.224190i
\(353\) 3.75792e10 6.50892e10i 0.128814 0.223112i −0.794404 0.607390i \(-0.792216\pi\)
0.923217 + 0.384279i \(0.125550\pi\)
\(354\) 4.03331e10 6.98590e10i 0.136505 0.236433i
\(355\) 3.55367e10 + 6.15513e10i 0.118754 + 0.205688i
\(356\) 4.77452e10 0.157545
\(357\) 0 0
\(358\) 2.67749e11 0.861497
\(359\) −1.43619e11 2.48755e11i −0.456338 0.790400i 0.542426 0.840103i \(-0.317506\pi\)
−0.998764 + 0.0497032i \(0.984172\pi\)
\(360\) −4.99815e10 + 8.65706e10i −0.156837 + 0.271650i
\(361\) −1.42130e11 + 2.46176e11i −0.440456 + 0.762892i
\(362\) 2.67075e10 + 4.62588e10i 0.0817420 + 0.141581i
\(363\) 4.68101e11 1.41501
\(364\) 0 0
\(365\) −6.84539e11 −2.01874
\(366\) −8.58663e10 1.48725e11i −0.250125 0.433230i
\(367\) −2.54453e11 + 4.40726e11i −0.732168 + 1.26815i 0.223787 + 0.974638i \(0.428158\pi\)
−0.955955 + 0.293514i \(0.905175\pi\)
\(368\) −5.80924e10 + 1.00619e11i −0.165122 + 0.285999i
\(369\) 3.33389e10 + 5.77447e10i 0.0936122 + 0.162141i
\(370\) 2.32717e11 0.645535
\(371\) 0 0
\(372\) 1.91503e11 0.518481
\(373\) −5.17260e10 8.95921e10i −0.138363 0.239651i 0.788514 0.615016i \(-0.210851\pi\)
−0.926877 + 0.375365i \(0.877517\pi\)
\(374\) 1.83716e10 3.18205e10i 0.0485540 0.0840980i
\(375\) 3.24537e11 5.62115e11i 0.847469 1.46786i
\(376\) 7.18528e10 + 1.24453e11i 0.185395 + 0.321114i
\(377\) 1.89639e10 0.0483495
\(378\) 0 0
\(379\) 1.10894e11 0.276078 0.138039 0.990427i \(-0.455920\pi\)
0.138039 + 0.990427i \(0.455920\pi\)
\(380\) 2.33900e11 + 4.05126e11i 0.575445 + 0.996699i
\(381\) 2.17475e11 3.76679e11i 0.528747 0.915817i
\(382\) −9.42450e10 + 1.63237e11i −0.226450 + 0.392224i
\(383\) 1.29972e11 + 2.25118e11i 0.308642 + 0.534584i 0.978066 0.208297i \(-0.0667922\pi\)
−0.669424 + 0.742881i \(0.733459\pi\)
\(384\) −4.65624e10 −0.109281
\(385\) 0 0
\(386\) 5.14997e11 1.18076
\(387\) 3.64144e10 + 6.30716e10i 0.0825227 + 0.142934i
\(388\) −1.22088e11 + 2.11463e11i −0.273483 + 0.473687i
\(389\) −2.91278e11 + 5.04508e11i −0.644963 + 1.11711i 0.339347 + 0.940661i \(0.389794\pi\)
−0.984310 + 0.176447i \(0.943540\pi\)
\(390\) 2.91050e11 + 5.04114e11i 0.637056 + 1.10341i
\(391\) −5.72530e10 −0.123880
\(392\) 0 0
\(393\) 5.29303e11 1.11928
\(394\) −1.92860e11 3.34043e11i −0.403189 0.698343i
\(395\) −1.27682e11 + 2.21151e11i −0.263901 + 0.457090i
\(396\) 9.47052e10 1.64034e11i 0.193529 0.335202i
\(397\) −9.35365e10 1.62010e11i −0.188983 0.327329i 0.755928 0.654655i \(-0.227186\pi\)
−0.944912 + 0.327326i \(0.893853\pi\)
\(398\) 1.83292e11 0.366159
\(399\) 0 0
\(400\) 2.32553e11 0.454204
\(401\) 4.41371e11 + 7.64477e11i 0.852420 + 1.47644i 0.879018 + 0.476789i \(0.158200\pi\)
−0.0265971 + 0.999646i \(0.508467\pi\)
\(402\) 2.78434e11 4.82263e11i 0.531748 0.921014i
\(403\) 1.92819e11 3.33972e11i 0.364147 0.630720i
\(404\) −2.49279e11 4.31763e11i −0.465553 0.806361i
\(405\) 1.13515e12 2.09655
\(406\) 0 0
\(407\) −4.40953e11 −0.796557
\(408\) −1.14724e10 1.98708e10i −0.0204967 0.0355013i
\(409\) −1.97162e11 + 3.41495e11i −0.348393 + 0.603434i −0.985964 0.166957i \(-0.946606\pi\)
0.637571 + 0.770391i \(0.279939\pi\)
\(410\) 1.20249e11 2.08277e11i 0.210161 0.364010i
\(411\) −6.33598e11 1.09742e12i −1.09528 1.89708i
\(412\) 3.54096e11 0.605458
\(413\) 0 0
\(414\) −2.95138e11 −0.493769
\(415\) −2.54095e11 4.40105e11i −0.420513 0.728349i
\(416\) −4.68822e10 + 8.12024e10i −0.0767518 + 0.132938i
\(417\) 2.42225e11 4.19546e11i 0.392290 0.679465i
\(418\) −4.43194e11 7.67635e11i −0.710069 1.22988i
\(419\) 1.77960e11 0.282072 0.141036 0.990004i \(-0.454957\pi\)
0.141036 + 0.990004i \(0.454957\pi\)
\(420\) 0 0
\(421\) 3.94445e11 0.611952 0.305976 0.952039i \(-0.401017\pi\)
0.305976 + 0.952039i \(0.401017\pi\)
\(422\) 1.63156e11 + 2.82594e11i 0.250436 + 0.433767i
\(423\) −1.82524e11 + 3.16140e11i −0.277196 + 0.480118i
\(424\) −8.74293e10 + 1.51432e11i −0.131374 + 0.227547i
\(425\) 5.72980e10 + 9.92431e10i 0.0851902 + 0.147554i
\(426\) −8.40965e10 −0.123719
\(427\) 0 0
\(428\) −4.91088e11 −0.707396
\(429\) −5.51483e11 9.55197e11i −0.786094 1.36156i
\(430\) 1.31341e11 2.27490e11i 0.185265 0.320889i
\(431\) −4.03895e11 + 6.99567e11i −0.563795 + 0.976521i 0.433366 + 0.901218i \(0.357326\pi\)
−0.997161 + 0.0753033i \(0.976008\pi\)
\(432\) 5.27360e10 + 9.13415e10i 0.0728502 + 0.126180i
\(433\) −5.77686e11 −0.789763 −0.394881 0.918732i \(-0.629214\pi\)
−0.394881 + 0.918732i \(0.629214\pi\)
\(434\) 0 0
\(435\) 8.62838e10 0.115539
\(436\) −2.41286e11 4.17920e11i −0.319774 0.553865i
\(437\) −6.90582e11 + 1.19612e12i −0.905834 + 1.56895i
\(438\) 4.04985e11 7.01455e11i 0.525782 0.910682i
\(439\) −6.64142e11 1.15033e12i −0.853436 1.47819i −0.878089 0.478498i \(-0.841181\pi\)
0.0246530 0.999696i \(-0.492152\pi\)
\(440\) −6.83176e11 −0.868952
\(441\) 0 0
\(442\) −4.62048e10 −0.0575820
\(443\) −2.49733e11 4.32551e11i −0.308077 0.533606i 0.669864 0.742483i \(-0.266352\pi\)
−0.977942 + 0.208878i \(0.933019\pi\)
\(444\) −1.37679e11 + 2.38468e11i −0.168130 + 0.291210i
\(445\) 2.18728e11 3.78848e11i 0.264414 0.457978i
\(446\) 4.57848e11 + 7.93016e11i 0.547917 + 0.949020i
\(447\) −4.39588e11 −0.520789
\(448\) 0 0
\(449\) −4.51211e10 −0.0523927 −0.0261964 0.999657i \(-0.508340\pi\)
−0.0261964 + 0.999657i \(0.508340\pi\)
\(450\) 2.95370e11 + 5.11596e11i 0.339555 + 0.588127i
\(451\) −2.27848e11 + 3.94644e11i −0.259328 + 0.449170i
\(452\) 2.12374e11 3.67842e11i 0.239319 0.414513i
\(453\) −2.69603e11 4.66967e11i −0.300804 0.521008i
\(454\) 2.43995e11 0.269544
\(455\) 0 0
\(456\) −5.53517e11 −0.599500
\(457\) −3.17610e11 5.50117e11i −0.340621 0.589973i 0.643927 0.765087i \(-0.277304\pi\)
−0.984548 + 0.175114i \(0.943971\pi\)
\(458\) 2.78423e11 4.82243e11i 0.295672 0.512119i
\(459\) −2.59870e10 + 4.50108e10i −0.0273274 + 0.0473325i
\(460\) 5.32260e11 + 9.21901e11i 0.554260 + 0.960007i
\(461\) 1.21010e12 1.24786 0.623932 0.781479i \(-0.285534\pi\)
0.623932 + 0.781479i \(0.285534\pi\)
\(462\) 0 0
\(463\) 9.73087e11 0.984095 0.492047 0.870568i \(-0.336249\pi\)
0.492047 + 0.870568i \(0.336249\pi\)
\(464\) 6.94927e9 + 1.20365e10i 0.00695999 + 0.0120550i
\(465\) 8.77304e11 1.51954e12i 0.870186 1.50721i
\(466\) 5.94225e11 1.02923e12i 0.583733 1.01106i
\(467\) 8.41530e11 + 1.45757e12i 0.818735 + 1.41809i 0.906614 + 0.421960i \(0.138658\pi\)
−0.0878789 + 0.996131i \(0.528009\pi\)
\(468\) −2.38185e11 −0.229513
\(469\) 0 0
\(470\) 1.31667e12 1.24462
\(471\) −1.00951e12 1.74852e12i −0.945185 1.63711i
\(472\) 5.95259e10 1.03102e11i 0.0552036 0.0956154i
\(473\) −2.48866e11 + 4.31049e11i −0.228608 + 0.395960i
\(474\) −1.51077e11 2.61674e11i −0.137466 0.238099i
\(475\) 2.76450e12 2.49170
\(476\) 0 0
\(477\) −4.44184e11 −0.392853
\(478\) 4.90312e11 + 8.49245e11i 0.429583 + 0.744059i
\(479\) 5.82335e11 1.00863e12i 0.505432 0.875434i −0.494548 0.869150i \(-0.664666\pi\)
0.999980 0.00628383i \(-0.00200022\pi\)
\(480\) −2.13309e11 + 3.69462e11i −0.183410 + 0.317676i
\(481\) 2.77250e11 + 4.80211e11i 0.236167 + 0.409053i
\(482\) −6.85982e11 −0.578897
\(483\) 0 0
\(484\) 6.90850e11 0.572242
\(485\) 1.11861e12 + 1.93749e12i 0.917994 + 1.59001i
\(486\) −4.18155e11 + 7.24265e11i −0.339996 + 0.588890i
\(487\) −1.12077e12 + 1.94123e12i −0.902891 + 1.56385i −0.0791677 + 0.996861i \(0.525226\pi\)
−0.823723 + 0.566992i \(0.808107\pi\)
\(488\) −1.26726e11 2.19497e11i −0.101153 0.175202i
\(489\) −2.14614e12 −1.69734
\(490\) 0 0
\(491\) 1.65508e11 0.128515 0.0642573 0.997933i \(-0.479532\pi\)
0.0642573 + 0.997933i \(0.479532\pi\)
\(492\) 1.42282e11 + 2.46440e11i 0.109473 + 0.189613i
\(493\) −3.42443e9 + 5.93128e9i −0.00261082 + 0.00452207i
\(494\) −5.57319e11 + 9.65305e11i −0.421049 + 0.729278i
\(495\) −8.67717e11 1.50293e12i −0.649613 1.12516i
\(496\) 2.82631e11 0.209678
\(497\) 0 0
\(498\) 6.01307e11 0.438091
\(499\) 6.06773e11 + 1.05096e12i 0.438100 + 0.758812i 0.997543 0.0700572i \(-0.0223182\pi\)
−0.559443 + 0.828869i \(0.688985\pi\)
\(500\) 4.78971e11 8.29602e11i 0.342724 0.593615i
\(501\) 5.43082e11 9.40646e11i 0.385120 0.667047i
\(502\) 2.16737e11 + 3.75399e11i 0.152323 + 0.263831i
\(503\) −8.95258e10 −0.0623580 −0.0311790 0.999514i \(-0.509926\pi\)
−0.0311790 + 0.999514i \(0.509926\pi\)
\(504\) 0 0
\(505\) −4.56793e12 −3.12542
\(506\) −1.00853e12 1.74682e12i −0.683929 1.18460i
\(507\) 2.26227e11 3.91836e11i 0.152058 0.263371i
\(508\) 3.20963e11 5.55924e11i 0.213830 0.370364i
\(509\) 6.66954e11 + 1.15520e12i 0.440419 + 0.762828i 0.997720 0.0674822i \(-0.0214966\pi\)
−0.557302 + 0.830310i \(0.688163\pi\)
\(510\) −2.10227e11 −0.137601
\(511\) 0 0
\(512\) −6.87195e10 −0.0441942
\(513\) 6.26907e11 + 1.08583e12i 0.399645 + 0.692206i
\(514\) 6.67795e11 1.15665e12i 0.421997 0.730919i
\(515\) 1.62217e12 2.80968e12i 1.01616 1.76005i
\(516\) 1.55408e11 + 2.69174e11i 0.0965049 + 0.167151i
\(517\) −2.49484e12 −1.53580
\(518\) 0 0
\(519\) 1.52492e11 0.0922561
\(520\) 4.29549e11 + 7.44001e11i 0.257631 + 0.446230i
\(521\) −2.86045e11 + 4.95444e11i −0.170084 + 0.294595i −0.938449 0.345417i \(-0.887737\pi\)
0.768365 + 0.640012i \(0.221071\pi\)
\(522\) −1.76528e10 + 3.05756e10i −0.0104063 + 0.0180243i
\(523\) −1.25008e12 2.16521e12i −0.730602 1.26544i −0.956626 0.291318i \(-0.905906\pi\)
0.226024 0.974122i \(-0.427427\pi\)
\(524\) 7.81175e11 0.452645
\(525\) 0 0
\(526\) −8.05322e11 −0.458705
\(527\) 6.96368e10 + 1.20615e11i 0.0393270 + 0.0681164i
\(528\) 4.04179e11 7.00059e11i 0.226319 0.391996i
\(529\) −6.70905e11 + 1.16204e12i −0.372486 + 0.645165i
\(530\) 8.01053e11 + 1.38747e12i 0.440981 + 0.763802i
\(531\) 3.02421e11 0.165077
\(532\) 0 0
\(533\) 5.73039e11 0.307547
\(534\) 2.58806e11 + 4.48266e11i 0.137733 + 0.238561i
\(535\) −2.24975e12 + 3.89668e12i −1.18725 + 2.05638i
\(536\) 4.10930e11 7.11751e11i 0.215043 0.372466i
\(537\) 1.45135e12 + 2.51382e12i 0.753162 + 1.30452i
\(538\) 5.27499e11 0.271457
\(539\) 0 0
\(540\) 9.66366e11 0.489069
\(541\) −5.24154e11 9.07861e11i −0.263070 0.455650i 0.703986 0.710213i \(-0.251402\pi\)
−0.967056 + 0.254563i \(0.918068\pi\)
\(542\) −1.89876e11 + 3.28875e11i −0.0945091 + 0.163694i
\(543\) −2.89541e11 + 5.01499e11i −0.142926 + 0.247554i
\(544\) −1.69316e10 2.93264e10i −0.00828902 0.0143570i
\(545\) −4.42147e12 −2.14676
\(546\) 0 0
\(547\) −3.50622e12 −1.67454 −0.837272 0.546786i \(-0.815851\pi\)
−0.837272 + 0.546786i \(0.815851\pi\)
\(548\) −9.35101e11 1.61964e12i −0.442941 0.767197i
\(549\) 3.21916e11 5.57575e11i 0.151240 0.261956i
\(550\) −2.01864e12 + 3.49639e12i −0.940649 + 1.62925i
\(551\) 8.26104e10 + 1.43085e11i 0.0381815 + 0.0661322i
\(552\) −1.25958e12 −0.577430
\(553\) 0 0
\(554\) 1.33040e12 0.600052
\(555\) 1.26146e12 + 2.18491e12i 0.564358 + 0.977497i
\(556\) 3.57490e11 6.19190e11i 0.158645 0.274782i
\(557\) −1.12138e12 + 1.94228e12i −0.493631 + 0.854994i −0.999973 0.00733847i \(-0.997664\pi\)
0.506342 + 0.862333i \(0.330997\pi\)
\(558\) 3.58976e11 + 6.21765e11i 0.156752 + 0.271502i
\(559\) 6.25901e11 0.271115
\(560\) 0 0
\(561\) 3.98339e11 0.169793
\(562\) 1.19089e12 + 2.06269e12i 0.503569 + 0.872207i
\(563\) 1.01923e12 1.76536e12i 0.427547 0.740533i −0.569107 0.822263i \(-0.692711\pi\)
0.996655 + 0.0817298i \(0.0260445\pi\)
\(564\) −7.78968e11 + 1.34921e12i −0.324163 + 0.561467i
\(565\) −1.94583e12 3.37028e12i −0.803317 1.39139i
\(566\) 9.49683e11 0.388960
\(567\) 0 0
\(568\) −1.24114e11 −0.0500328
\(569\) −6.24361e11 1.08142e12i −0.249707 0.432505i 0.713738 0.700413i \(-0.247001\pi\)
−0.963444 + 0.267908i \(0.913668\pi\)
\(570\) −2.53574e12 + 4.39204e12i −1.00616 + 1.74273i
\(571\) −1.14336e12 + 1.98036e12i −0.450113 + 0.779619i −0.998393 0.0566765i \(-0.981950\pi\)
0.548280 + 0.836295i \(0.315283\pi\)
\(572\) −8.13911e11 1.40974e12i −0.317903 0.550624i
\(573\) −2.04345e12 −0.791896
\(574\) 0 0
\(575\) 6.29087e12 2.39997
\(576\) −8.72821e10 1.51177e11i −0.0330388 0.0572249i
\(577\) −1.30799e12 + 2.26550e12i −0.491260 + 0.850888i −0.999949 0.0100624i \(-0.996797\pi\)
0.508689 + 0.860950i \(0.330130\pi\)
\(578\) −9.40360e11 + 1.62875e12i −0.350444 + 0.606987i
\(579\) 2.79158e12 + 4.83516e12i 1.03228 + 1.78796i
\(580\) 1.27343e11 0.0467248
\(581\) 0 0
\(582\) −2.64715e12 −0.956369
\(583\) −1.51784e12 2.62897e12i −0.544148 0.942492i
\(584\) 5.97701e11 1.03525e12i 0.212631 0.368287i
\(585\) −1.09116e12 + 1.88994e12i −0.385200 + 0.667187i
\(586\) −7.28452e11 1.26172e12i −0.255189 0.442000i
\(587\) 3.09779e12 1.07691 0.538457 0.842653i \(-0.319007\pi\)
0.538457 + 0.842653i \(0.319007\pi\)
\(588\) 0 0
\(589\) 3.35982e12 1.15026
\(590\) −5.45394e11 9.44651e11i −0.185301 0.320950i
\(591\) 2.09082e12 3.62141e12i 0.704974 1.22105i
\(592\) −2.03195e11 + 3.51944e11i −0.0679932 + 0.117768i
\(593\) −1.31976e12 2.28590e12i −0.438278 0.759120i 0.559279 0.828980i \(-0.311078\pi\)
−0.997557 + 0.0698599i \(0.977745\pi\)
\(594\) −1.83107e12 −0.603486
\(595\) 0 0
\(596\) −6.48769e11 −0.210611
\(597\) 9.93550e11 + 1.72088e12i 0.320114 + 0.554454i
\(598\) −1.26823e12 + 2.19664e12i −0.405548 + 0.702430i
\(599\) 1.89224e12 3.27745e12i 0.600558 1.04020i −0.392178 0.919889i \(-0.628278\pi\)
0.992737 0.120308i \(-0.0383882\pi\)
\(600\) 1.26057e12 + 2.18337e12i 0.397087 + 0.687775i
\(601\) 5.10190e11 0.159513 0.0797567 0.996814i \(-0.474586\pi\)
0.0797567 + 0.996814i \(0.474586\pi\)
\(602\) 0 0
\(603\) 2.08772e12 0.643050
\(604\) −3.97896e11 6.89177e11i −0.121648 0.210700i
\(605\) 3.16489e12 5.48175e12i 0.960415 1.66349i
\(606\) 2.70247e12 4.68081e12i 0.814017 1.40992i
\(607\) 2.44927e12 + 4.24227e12i 0.732299 + 1.26838i 0.955898 + 0.293697i \(0.0948858\pi\)
−0.223600 + 0.974681i \(0.571781\pi\)
\(608\) −8.16912e11 −0.242443
\(609\) 0 0
\(610\) −2.32221e12 −0.679074
\(611\) 1.56864e12 + 2.71696e12i 0.455341 + 0.788674i
\(612\) 4.30104e10 7.44963e10i 0.0123935 0.0214661i
\(613\) −2.18246e12 + 3.78013e12i −0.624272 + 1.08127i 0.364409 + 0.931239i \(0.381271\pi\)
−0.988681 + 0.150032i \(0.952062\pi\)
\(614\) −5.29319e11 9.16808e11i −0.150300 0.260328i
\(615\) 2.60727e12 0.734933
\(616\) 0 0
\(617\) −3.81081e12 −1.05861 −0.529303 0.848433i \(-0.677547\pi\)
−0.529303 + 0.848433i \(0.677547\pi\)
\(618\) 1.91941e12 + 3.32451e12i 0.529321 + 0.916810i
\(619\) −7.62819e11 + 1.32124e12i −0.208840 + 0.361721i −0.951349 0.308114i \(-0.900302\pi\)
0.742509 + 0.669836i \(0.233635\pi\)
\(620\) 1.29478e12 2.24262e12i 0.351910 0.609527i
\(621\) 1.42658e12 + 2.47091e12i 0.384933 + 0.666723i
\(622\) 1.41491e11 0.0379028
\(623\) 0 0
\(624\) −1.01652e12 −0.268400
\(625\) −9.23168e11 1.59897e12i −0.242003 0.419162i
\(626\) −1.26526e11 + 2.19149e11i −0.0329302 + 0.0570367i
\(627\) 4.80473e12 8.32204e12i 1.24155 2.15043i
\(628\) −1.48989e12 2.58057e12i −0.382241 0.662060i
\(629\) −2.00259e11 −0.0510110
\(630\) 0 0
\(631\) −6.08153e12 −1.52715 −0.763573 0.645721i \(-0.776557\pi\)
−0.763573 + 0.645721i \(0.776557\pi\)
\(632\) −2.22969e11 3.86193e11i −0.0555926 0.0962892i
\(633\) −1.76880e12 + 3.06364e12i −0.437886 + 0.758441i
\(634\) 1.72322e12 2.98471e12i 0.423584 0.733670i
\(635\) −2.94076e12 5.09354e12i −0.717757 1.24319i
\(636\) −1.89567e12 −0.459415
\(637\) 0 0
\(638\) −2.41289e11 −0.0576560
\(639\) −1.57640e11 2.73041e11i −0.0374036 0.0647850i
\(640\) −3.14814e11 + 5.45274e11i −0.0741727 + 0.128471i
\(641\) 6.84081e11 1.18486e12i 0.160047 0.277209i −0.774839 0.632159i \(-0.782169\pi\)
0.934885 + 0.354950i \(0.115502\pi\)
\(642\) −2.66198e12 4.61069e12i −0.618440 1.07117i
\(643\) 2.94301e12 0.678958 0.339479 0.940614i \(-0.389749\pi\)
0.339479 + 0.940614i \(0.389749\pi\)
\(644\) 0 0
\(645\) 2.84779e12 0.647871
\(646\) −2.01277e11 3.48622e11i −0.0454724 0.0787605i
\(647\) −2.20167e12 + 3.81341e12i −0.493951 + 0.855547i −0.999976 0.00697131i \(-0.997781\pi\)
0.506025 + 0.862519i \(0.331114\pi\)
\(648\) −9.91147e11 + 1.71672e12i −0.220826 + 0.382482i
\(649\) 1.03342e12 + 1.78993e12i 0.228651 + 0.396036i
\(650\) 5.07691e12 1.11555
\(651\) 0 0
\(652\) −3.16740e12 −0.686417
\(653\) −3.43720e11 5.95340e11i −0.0739767 0.128131i 0.826664 0.562696i \(-0.190236\pi\)
−0.900641 + 0.434564i \(0.856902\pi\)
\(654\) 2.61582e12 4.53074e12i 0.559124 0.968432i
\(655\) 3.57868e12 6.19846e12i 0.759691 1.31582i
\(656\) 2.09989e11 + 3.63711e11i 0.0442719 + 0.0766813i
\(657\) 3.03661e12 0.635836
\(658\) 0 0
\(659\) 7.48190e12 1.54535 0.772676 0.634800i \(-0.218918\pi\)
0.772676 + 0.634800i \(0.218918\pi\)
\(660\) −3.70321e12 6.41415e12i −0.759680 1.31580i
\(661\) 4.14386e12 7.17738e12i 0.844303 1.46238i −0.0419217 0.999121i \(-0.513348\pi\)
0.886225 0.463255i \(-0.153319\pi\)
\(662\) −3.22506e11 + 5.58597e11i −0.0652645 + 0.113041i
\(663\) −2.50457e11 4.33804e11i −0.0503410 0.0871931i
\(664\) 8.87444e11 0.177168
\(665\) 0 0
\(666\) −1.03233e12 −0.203322
\(667\) 1.87987e11 + 3.25604e11i 0.0367758 + 0.0636976i
\(668\) 8.01512e11 1.38826e12i 0.155746 0.269759i
\(669\) −4.96360e12 + 8.59721e12i −0.958031 + 1.65936i
\(670\) −3.76506e12 6.52127e12i −0.721830 1.25025i
\(671\) 4.40013e12 0.837943
\(672\) 0 0
\(673\) −2.54077e11 −0.0477416 −0.0238708 0.999715i \(-0.507599\pi\)
−0.0238708 + 0.999715i \(0.507599\pi\)
\(674\) −1.18070e12 2.04503e12i −0.220378 0.381707i
\(675\) 2.85541e12 4.94572e12i 0.529422 0.916985i
\(676\) 3.33878e11 5.78294e11i 0.0614933 0.106510i
\(677\) 4.85902e12 + 8.41607e12i 0.888995 + 1.53979i 0.841065 + 0.540934i \(0.181929\pi\)
0.0479305 + 0.998851i \(0.484737\pi\)
\(678\) 4.60475e12 0.836898
\(679\) 0 0
\(680\) −3.10265e11 −0.0556471
\(681\) 1.32259e12 + 2.29080e12i 0.235648 + 0.408155i
\(682\) −2.45335e12 + 4.24932e12i −0.434239 + 0.752125i
\(683\) 3.77058e12 6.53084e12i 0.663003 1.14835i −0.316820 0.948486i \(-0.602615\pi\)
0.979823 0.199869i \(-0.0640515\pi\)
\(684\) −1.03758e12 1.79714e12i −0.181246 0.313927i
\(685\) −1.71353e13 −2.97362
\(686\) 0 0
\(687\) 6.03685e12 1.03396
\(688\) 2.29360e11 + 3.97263e11i 0.0390274 + 0.0675974i
\(689\) −1.90869e12 + 3.30595e12i −0.322663 + 0.558869i
\(690\) −5.77031e12 + 9.99448e12i −0.969122 + 1.67857i
\(691\) −5.14662e12 8.91420e12i −0.858758 1.48741i −0.873115 0.487515i \(-0.837903\pi\)
0.0143570 0.999897i \(-0.495430\pi\)
\(692\) 2.25057e11 0.0373091
\(693\) 0 0
\(694\) 6.24203e12 1.02143
\(695\) −3.27543e12 5.67320e12i −0.532520 0.922352i
\(696\) −7.53381e10 + 1.30489e11i −0.0121695 + 0.0210782i
\(697\) −1.03477e11 + 1.79228e11i −0.0166072 + 0.0287646i
\(698\) 2.08443e11 + 3.61034e11i 0.0332382 + 0.0575703i
\(699\) 1.28842e13 2.04131
\(700\) 0 0
\(701\) 9.10623e12 1.42432 0.712160 0.702017i \(-0.247717\pi\)
0.712160 + 0.702017i \(0.247717\pi\)
\(702\) 1.15129e12 + 1.99410e12i 0.178924 + 0.309906i
\(703\) −2.41551e12 + 4.18378e12i −0.373001 + 0.646056i
\(704\) 5.96511e11 1.03319e12i 0.0915254 0.158527i
\(705\) 7.13713e12 + 1.23619e13i 1.08811 + 1.88466i
\(706\) 1.20254e12 0.182170
\(707\) 0 0
\(708\) 1.29066e12 0.193047
\(709\) −3.26486e12 5.65491e12i −0.485240 0.840461i 0.514616 0.857421i \(-0.327935\pi\)
−0.999856 + 0.0169599i \(0.994601\pi\)
\(710\) −5.68587e11 + 9.84821e11i −0.0839719 + 0.145444i
\(711\) 5.66395e11 9.81025e11i 0.0831201 0.143968i
\(712\) 3.81961e11 + 6.61577e11i 0.0557005 + 0.0964762i
\(713\) 7.64557e12 1.10792
\(714\) 0 0
\(715\) −1.49146e13 −2.13419
\(716\) 2.14199e12 + 3.71004e12i 0.304585 + 0.527557i
\(717\) −5.31555e12 + 9.20680e12i −0.751124 + 1.30098i
\(718\) 2.29790e12 3.98008e12i 0.322680 0.558897i
\(719\) −5.24753e12 9.08899e12i −0.732276 1.26834i −0.955908 0.293666i \(-0.905125\pi\)
0.223632 0.974674i \(-0.428209\pi\)
\(720\) −1.59941e12 −0.221801
\(721\) 0 0
\(722\) −4.54815e12 −0.622899
\(723\) −3.71842e12 6.44049e12i −0.506099 0.876590i
\(724\) −4.27321e11 + 7.40141e11i −0.0578003 + 0.100113i
\(725\) 3.76271e11 6.51720e11i 0.0505801 0.0876073i
\(726\) 3.74481e12 + 6.48620e12i 0.500282 + 0.866513i
\(727\) −3.77271e12 −0.500898 −0.250449 0.968130i \(-0.580578\pi\)
−0.250449 + 0.968130i \(0.580578\pi\)
\(728\) 0 0
\(729\) 4.59195e11 0.0602176
\(730\) −5.47631e12 9.48525e12i −0.713732 1.23622i
\(731\) −1.13023e11 + 1.95761e11i −0.0146399 + 0.0253570i
\(732\) 1.37386e12 2.37960e12i 0.176865 0.306340i
\(733\) −6.93047e12 1.20039e13i −0.886737 1.53587i −0.843710 0.536799i \(-0.819633\pi\)
−0.0430263 0.999074i \(-0.513700\pi\)
\(734\) −8.14250e12 −1.03544
\(735\) 0 0
\(736\) −1.85896e12 −0.233517
\(737\) 7.13405e12 + 1.23565e13i 0.890702 + 1.54274i
\(738\) −5.33422e11 + 9.23915e11i −0.0661939 + 0.114651i
\(739\) 7.34297e11 1.27184e12i 0.0905673 0.156867i −0.817183 0.576379i \(-0.804465\pi\)
0.907750 + 0.419512i \(0.137799\pi\)
\(740\) 1.86173e12 + 3.22462e12i 0.228231 + 0.395308i
\(741\) −1.20840e13 −1.47241
\(742\) 0 0
\(743\) −4.86883e12 −0.586104 −0.293052 0.956096i \(-0.594671\pi\)
−0.293052 + 0.956096i \(0.594671\pi\)
\(744\) 1.53203e12 + 2.65355e12i 0.183311 + 0.317503i
\(745\) −2.97211e12 + 5.14784e12i −0.353477 + 0.612240i
\(746\) 8.27616e11 1.43347e12i 0.0978372 0.169459i
\(747\) 1.12716e12 + 1.95230e12i 0.132447 + 0.229406i
\(748\) 5.87891e11 0.0686657
\(749\) 0 0
\(750\) 1.03852e13 1.19850
\(751\) 5.71359e12 + 9.89624e12i 0.655435 + 1.13525i 0.981785 + 0.189998i \(0.0608481\pi\)
−0.326349 + 0.945249i \(0.605819\pi\)
\(752\) −1.14965e12 + 1.99124e12i −0.131094 + 0.227062i
\(753\) −2.34968e12 + 4.06976e12i −0.266336 + 0.461308i
\(754\) 1.51711e11 + 2.62772e11i 0.0170941 + 0.0296079i
\(755\) −7.29129e12 −0.816663
\(756\) 0 0
\(757\) 4.87971e12 0.540085 0.270043 0.962848i \(-0.412962\pi\)
0.270043 + 0.962848i \(0.412962\pi\)
\(758\) 8.87152e11 + 1.53659e12i 0.0976083 + 0.169063i
\(759\) 1.09336e13 1.89376e13i 1.19585 2.07127i
\(760\) −3.74240e12 + 6.48202e12i −0.406901 + 0.704773i
\(761\) 5.62833e12 + 9.74856e12i 0.608343 + 1.05368i 0.991514 + 0.130004i \(0.0414989\pi\)
−0.383170 + 0.923678i \(0.625168\pi\)
\(762\) 6.95922e12 0.747761
\(763\) 0 0
\(764\) −3.01584e12 −0.320249
\(765\) −3.94074e11 6.82557e11i −0.0416008 0.0720547i
\(766\) −2.07955e12 + 3.60189e12i −0.218243 + 0.378008i
\(767\) 1.29953e12 2.25084e12i 0.135583 0.234837i
\(768\) −3.72499e11 6.45188e11i −0.0386367 0.0669207i
\(769\) 1.61412e13 1.66444 0.832220 0.554446i \(-0.187070\pi\)
0.832220 + 0.554446i \(0.187070\pi\)
\(770\) 0 0
\(771\) 1.44793e13 1.47572
\(772\) 4.11997e12 + 7.13600e12i 0.417462 + 0.723065i
\(773\) 7.01910e12 1.21574e13i 0.707089 1.22471i −0.258844 0.965919i \(-0.583342\pi\)
0.965932 0.258794i \(-0.0833252\pi\)
\(774\) −5.82630e11 + 1.00914e12i −0.0583524 + 0.101069i
\(775\) −7.65159e12 1.32529e13i −0.761893 1.31964i
\(776\) −3.90682e12 −0.386764
\(777\) 0 0
\(778\) −9.32090e12 −0.912115
\(779\) 2.49627e12 + 4.32366e12i 0.242869 + 0.420662i
\(780\) −4.65681e12 + 8.06583e12i −0.450467 + 0.780231i
\(781\) 1.07736e12 1.86604e12i 0.103617 0.179470i
\(782\) −4.58024e11 7.93321e11i −0.0437983 0.0758610i
\(783\) 3.41308e11 0.0324503
\(784\) 0 0
\(785\) −2.73017e13 −2.56612
\(786\) 4.23442e12 + 7.33423e12i 0.395724 + 0.685414i
\(787\) 6.72141e11 1.16418e12i 0.0624560 0.108177i −0.833107 0.553112i \(-0.813440\pi\)
0.895563 + 0.444935i \(0.146773\pi\)
\(788\) 3.08575e12 5.34468e12i 0.285097 0.493803i
\(789\) −4.36531e12 7.56094e12i −0.401022 0.694591i
\(790\) −4.08581e12 −0.373213
\(791\) 0 0
\(792\) 3.03057e12 0.273691
\(793\) −2.76660e12 4.79188e12i −0.248437 0.430306i
\(794\) 1.49658e12 2.59216e12i 0.133631 0.231456i
\(795\) −8.68434e12 + 1.50417e13i −0.771054 + 1.33551i
\(796\) 1.46634e12 + 2.53977e12i 0.129457 + 0.224226i
\(797\) 9.34992e12 0.820815 0.410408 0.911902i \(-0.365386\pi\)
0.410408 + 0.911902i \(0.365386\pi\)
\(798\) 0 0
\(799\) −1.13303e12 −0.0983517
\(800\) 1.86042e12 + 3.22234e12i 0.160585 + 0.278142i
\(801\) −9.70275e11 + 1.68057e12i −0.0832815 + 0.144248i
\(802\) −7.06193e12 + 1.22316e13i −0.602752 + 1.04400i
\(803\) 1.03765e13 + 1.79727e13i 0.880709 + 1.52543i
\(804\) 8.90990e12 0.752005
\(805\) 0 0
\(806\) 6.17019e12 0.514981
\(807\) 2.85935e12 + 4.95253e12i 0.237321 + 0.411052i
\(808\) 3.98846e12 6.90821e12i 0.329195 0.570183i
\(809\) 2.73458e12 4.73643e12i 0.224451 0.388761i −0.731703 0.681623i \(-0.761274\pi\)
0.956155 + 0.292862i \(0.0946077\pi\)
\(810\) 9.08118e12 + 1.57291e13i 0.741241 + 1.28387i
\(811\) −6.82318e12 −0.553851 −0.276925 0.960891i \(-0.589315\pi\)
−0.276925 + 0.960891i \(0.589315\pi\)
\(812\) 0 0
\(813\) −4.11695e12 −0.330498
\(814\) −3.52762e12 6.11002e12i −0.281626 0.487790i
\(815\) −1.45103e13 + 2.51326e13i −1.15204 + 1.99539i
\(816\) 1.83558e11 3.17932e11i 0.0144933 0.0251032i
\(817\) 2.72655e12 + 4.72252e12i 0.214099 + 0.370830i
\(818\) −6.30919e12 −0.492702
\(819\) 0 0
\(820\) 3.84796e12 0.297213
\(821\) −1.13840e12 1.97176e12i −0.0874479 0.151464i 0.818984 0.573817i \(-0.194538\pi\)
−0.906432 + 0.422352i \(0.861204\pi\)
\(822\) 1.01376e13 1.75588e13i 0.774481 1.34144i
\(823\) −1.08962e13 + 1.88728e13i −0.827897 + 1.43396i 0.0717871 + 0.997420i \(0.477130\pi\)
−0.899685 + 0.436541i \(0.856204\pi\)
\(824\) 2.83277e12 + 4.90650e12i 0.214062 + 0.370766i
\(825\) −4.37689e13 −3.28944
\(826\) 0 0
\(827\) 1.32468e13 0.984772 0.492386 0.870377i \(-0.336125\pi\)
0.492386 + 0.870377i \(0.336125\pi\)
\(828\) −2.36110e12 4.08955e12i −0.174574 0.302370i
\(829\) 3.21919e12 5.57580e12i 0.236729 0.410026i −0.723045 0.690801i \(-0.757258\pi\)
0.959774 + 0.280775i \(0.0905914\pi\)
\(830\) 4.06551e12 7.04168e12i 0.297347 0.515021i
\(831\) 7.21155e12 + 1.24908e13i 0.524595 + 0.908624i
\(832\) −1.50023e12 −0.108543
\(833\) 0 0
\(834\) 7.75120e12 0.554781
\(835\) −7.34369e12 1.27196e13i −0.522787 0.905494i
\(836\) 7.09110e12 1.22822e13i 0.502095 0.869654i
\(837\) 3.47031e12 6.01075e12i 0.244401 0.423315i
\(838\) 1.42368e12 + 2.46589e12i 0.0997274 + 0.172733i
\(839\) −2.25634e12 −0.157208 −0.0786041 0.996906i \(-0.525046\pi\)
−0.0786041 + 0.996906i \(0.525046\pi\)
\(840\) 0 0
\(841\) −1.44622e13 −0.996900
\(842\) 3.15556e12 + 5.46559e12i 0.216358 + 0.374742i
\(843\) −1.29106e13 + 2.23619e13i −0.880489 + 1.52505i
\(844\) −2.61049e12 + 4.52150e12i −0.177085 + 0.306720i
\(845\) −3.05909e12 5.29850e12i −0.206413 0.357518i
\(846\) −5.84076e12 −0.392015
\(847\) 0 0
\(848\) −2.79774e12 −0.185791
\(849\) 5.14783e12 + 8.91630e12i 0.340047 + 0.588980i
\(850\) −9.16768e11 + 1.58789e12i −0.0602385 + 0.104336i
\(851\) −5.49671e12 + 9.52058e12i −0.359269 + 0.622272i
\(852\) −6.72772e11 1.16528e12i −0.0437411 0.0757618i
\(853\) 2.07580e13 1.34250 0.671252 0.741229i \(-0.265757\pi\)
0.671252 + 0.741229i \(0.265757\pi\)
\(854\) 0 0
\(855\) −1.90132e13 −1.21677
\(856\) −3.92871e12 6.80472e12i −0.250102 0.433190i
\(857\) 1.58626e12 2.74749e12i 0.100453 0.173989i −0.811419 0.584466i \(-0.801304\pi\)
0.911871 + 0.410476i \(0.134638\pi\)
\(858\) 8.82373e12 1.52832e13i 0.555853 0.962765i
\(859\) −1.46559e11 2.53848e11i −0.00918426 0.0159076i 0.861397 0.507933i \(-0.169590\pi\)
−0.870581 + 0.492025i \(0.836257\pi\)
\(860\) 4.20293e12 0.262005
\(861\) 0 0
\(862\) −1.29247e13 −0.797326
\(863\) −6.09714e12 1.05606e13i −0.374178 0.648095i 0.616026 0.787726i \(-0.288742\pi\)
−0.990204 + 0.139631i \(0.955408\pi\)
\(864\) −8.43776e11 + 1.46146e12i −0.0515128 + 0.0892229i
\(865\) 1.03102e12 1.78578e12i 0.0626173 0.108456i
\(866\) −4.62149e12 8.00466e12i −0.279223 0.483629i
\(867\) −2.03892e13 −1.22550
\(868\) 0 0
\(869\) 7.74181e12 0.460525
\(870\) 6.90270e11 + 1.19558e12i 0.0408491 + 0.0707527i
\(871\) 8.97110e12 1.55384e13i 0.528158 0.914797i
\(872\) 3.86058e12 6.68672e12i 0.226115 0.391642i
\(873\) −4.96214e12 8.59468e12i −0.289138 0.500801i
\(874\) −2.20986e13 −1.28104
\(875\) 0 0
\(876\) 1.29595e13 0.743568
\(877\) 9.23674e12 + 1.59985e13i 0.527255 + 0.913233i 0.999495 + 0.0317628i \(0.0101121\pi\)
−0.472240 + 0.881470i \(0.656555\pi\)
\(878\) 1.06263e13 1.84053e13i 0.603470 1.04524i
\(879\) 7.89726e12 1.36785e13i 0.446197 0.772836i
\(880\) −5.46541e12 9.46637e12i −0.307221 0.532122i
\(881\) −2.16016e13 −1.20808 −0.604039 0.796955i \(-0.706443\pi\)
−0.604039 + 0.796955i \(0.706443\pi\)
\(882\) 0 0
\(883\) −1.00085e13 −0.554043 −0.277022 0.960864i \(-0.589347\pi\)
−0.277022 + 0.960864i \(0.589347\pi\)
\(884\) −3.69638e11 6.40232e11i −0.0203583 0.0352616i
\(885\) 5.91270e12 1.02411e13i 0.323997 0.561180i
\(886\) 3.99573e12 6.92081e12i 0.217844 0.377316i
\(887\) −7.52738e12 1.30378e13i −0.408307 0.707209i 0.586393 0.810027i \(-0.300548\pi\)
−0.994700 + 0.102818i \(0.967214\pi\)
\(888\) −4.40574e12 −0.237772
\(889\) 0 0
\(890\) 6.99929e12 0.373937
\(891\) −1.72071e13 2.98035e13i −0.914654 1.58423i
\(892\) −7.32557e12 + 1.26883e13i −0.387436 + 0.671058i
\(893\) −1.36666e13 + 2.36712e13i −0.719164 + 1.24563i
\(894\) −3.51670e12 6.09110e12i −0.184127 0.318917i
\(895\) 3.92511e13 2.04479
\(896\) 0 0
\(897\) −2.74982e13 −1.41820
\(898\) −3.60969e11 6.25216e11i −0.0185236 0.0320839i
\(899\) 4.57298e11 7.92064e11i 0.0233497 0.0404429i
\(900\) −4.72592e12 + 8.18554e12i −0.240102 + 0.415868i
\(901\) −6.89328e11 1.19395e12i −0.0348469 0.0603566i
\(902\) −7.29112e12 −0.366746
\(903\) 0 0
\(904\) 6.79596e12 0.338449
\(905\) 3.91524e12 + 6.78139e12i 0.194017 + 0.336047i
\(906\) 4.31366e12 7.47147e12i 0.212701 0.368408i
\(907\) −1.14679e13 + 1.98630e13i −0.562668 + 0.974569i 0.434595 + 0.900626i \(0.356892\pi\)
−0.997262 + 0.0739431i \(0.976442\pi\)
\(908\) 1.95196e12 + 3.38089e12i 0.0952981 + 0.165061i
\(909\) 2.02633e13 0.984403
\(910\) 0 0
\(911\) 4.04241e13 1.94450 0.972248 0.233952i \(-0.0751657\pi\)
0.972248 + 0.233952i \(0.0751657\pi\)
\(912\) −4.42813e12 7.66975e12i −0.211955 0.367117i
\(913\) −7.70335e12 + 1.33426e13i −0.366911 + 0.635509i
\(914\) 5.08176e12 8.80187e12i 0.240856 0.417174i
\(915\) −1.25877e13 2.18026e13i −0.593680 1.02828i
\(916\) 8.90954e12 0.418144
\(917\) 0 0
\(918\) −8.31584e11 −0.0386468
\(919\) −2.09498e12 3.62862e12i −0.0968859 0.167811i 0.813508 0.581553i \(-0.197555\pi\)
−0.910394 + 0.413742i \(0.864222\pi\)
\(920\) −8.51616e12 + 1.47504e13i −0.391921 + 0.678827i
\(921\) 5.73843e12 9.93925e12i 0.262800 0.455182i
\(922\) 9.68080e12 + 1.67676e13i 0.441186 + 0.764157i
\(923\) −2.70957e12 −0.122883
\(924\) 0 0
\(925\) 2.20041e13 0.988250
\(926\) 7.78469e12 + 1.34835e13i 0.347930 + 0.602633i
\(927\) −7.19593e12 + 1.24637e13i −0.320057 + 0.554356i
\(928\) −1.11188e11 + 1.92584e11i −0.00492145 + 0.00852421i
\(929\) 2.41805e12 + 4.18818e12i 0.106511 + 0.184482i 0.914355 0.404915i \(-0.132699\pi\)
−0.807844 + 0.589397i \(0.799365\pi\)
\(930\) 2.80737e13 1.23063
\(931\) 0 0
\(932\) 1.90152e13 0.825524
\(933\) 7.66961e11 + 1.32841e12i 0.0331364 + 0.0573940i
\(934\) −1.34645e13 + 2.33212e13i −0.578933 + 1.00274i
\(935\) 2.69322e12 4.66479e12i 0.115244 0.199609i
\(936\) −1.90548e12 3.30038e12i −0.0811451 0.140547i
\(937\) 1.70190e12 0.0721282 0.0360641 0.999349i \(-0.488518\pi\)
0.0360641 + 0.999349i \(0.488518\pi\)
\(938\) 0 0
\(939\) −2.74337e12 −0.115157
\(940\) 1.05334e13 + 1.82444e13i 0.440041 + 0.762173i
\(941\) 1.41493e12 2.45074e12i 0.0588278 0.101893i −0.835112 0.550080i \(-0.814597\pi\)
0.893939 + 0.448188i \(0.147930\pi\)
\(942\) 1.61522e13 2.79764e13i 0.668347 1.15761i
\(943\) 5.68049e12 + 9.83889e12i 0.233928 + 0.405176i
\(944\) 1.90483e12 0.0780697
\(945\) 0 0
\(946\) −7.96372e12 −0.323300
\(947\) −1.85318e13 3.20981e13i −0.748761 1.29689i −0.948417 0.317026i \(-0.897316\pi\)
0.199656 0.979866i \(-0.436018\pi\)
\(948\) 2.41724e12 4.18678e12i 0.0972035 0.168361i
\(949\) 1.30486e13 2.26008e13i 0.522233 0.904534i
\(950\) 2.21160e13 + 3.83060e13i 0.880948 + 1.52585i
\(951\) 3.73635e13 1.48127
\(952\) 0 0
\(953\) −1.53995e12 −0.0604768 −0.0302384 0.999543i \(-0.509627\pi\)
−0.0302384 + 0.999543i \(0.509627\pi\)
\(954\) −3.55347e12 6.15479e12i −0.138894 0.240572i
\(955\) −1.38160e13 + 2.39300e13i −0.537486 + 0.930953i
\(956\) −7.84499e12 + 1.35879e13i −0.303761 + 0.526129i
\(957\) −1.30793e12 2.26540e12i −0.0504057 0.0873052i
\(958\) 1.86347e13 0.714789
\(959\) 0 0
\(960\) −6.82590e12 −0.259382
\(961\) 3.92050e12 + 6.79050e12i 0.148281 + 0.256830i
\(962\) −4.43600e12 + 7.68338e12i −0.166995 + 0.289244i
\(963\) 9.97987e12 1.72856e13i 0.373944 0.647690i
\(964\) −5.48786e12 9.50524e12i −0.204671 0.354500i
\(965\) 7.54968e13 2.80257
\(966\) 0 0
\(967\) −1.09919e13 −0.404254 −0.202127 0.979359i \(-0.564785\pi\)
−0.202127 + 0.979359i \(0.564785\pi\)
\(968\) 5.52680e12 + 9.57270e12i 0.202318 + 0.350425i
\(969\) 2.18207e12 3.77946e12i 0.0795083 0.137712i
\(970\) −1.78977e13 + 3.09998e13i −0.649120 + 1.12431i
\(971\) −6.62794e11 1.14799e12i −0.0239272 0.0414432i 0.853814 0.520578i \(-0.174284\pi\)
−0.877741 + 0.479135i \(0.840950\pi\)
\(972\) −1.33809e13 −0.480827
\(973\) 0 0
\(974\) −3.58646e13 −1.27688
\(975\) 2.75198e13 + 4.76657e13i 0.975269 + 1.68922i
\(976\) 2.02762e12 3.51195e12i 0.0715258 0.123886i
\(977\) 1.36658e12 2.36699e12i 0.0479856 0.0831135i −0.841035 0.540981i \(-0.818053\pi\)
0.889021 + 0.457867i \(0.151387\pi\)
\(978\) −1.71691e13 2.97378e13i −0.600099 1.03940i
\(979\) −1.32623e13 −0.461419
\(980\) 0 0
\(981\) 1.96136e13 0.676157
\(982\) 1.32407e12 + 2.29335e12i 0.0454368 + 0.0786988i
\(983\) 3.24327e11 5.61751e11i 0.0110788 0.0191890i −0.860433 0.509564i \(-0.829807\pi\)
0.871512 + 0.490375i \(0.163140\pi\)
\(984\) −2.27652e12 + 3.94305e12i −0.0774094 + 0.134077i
\(985\) −2.82726e13 4.89696e13i −0.956980 1.65754i
\(986\) −1.09582e11 −0.00369226
\(987\) 0 0
\(988\) −1.78342e13 −0.595453
\(989\) 6.20451e12 + 1.07465e13i 0.206217 + 0.357178i
\(990\) 1.38835e13 2.40469e13i 0.459346 0.795610i
\(991\) 1.97923e13 3.42812e13i 0.651874 1.12908i −0.330793 0.943703i \(-0.607316\pi\)
0.982668 0.185376i \(-0.0593504\pi\)
\(992\) 2.26105e12 + 3.91626e12i 0.0741324 + 0.128401i
\(993\) −6.99268e12 −0.228230
\(994\) 0 0
\(995\) 2.68700e13 0.869090
\(996\) 4.81046e12 + 8.33196e12i 0.154889 + 0.268275i
\(997\) 1.05624e13 1.82947e13i 0.338560 0.586404i −0.645602 0.763674i \(-0.723393\pi\)
0.984162 + 0.177270i \(0.0567267\pi\)
\(998\) −9.70836e12 + 1.68154e13i −0.309784 + 0.536561i
\(999\) 4.98989e12 + 8.64274e12i 0.158506 + 0.274541i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.10.c.l.67.1 6
7.2 even 3 inner 98.10.c.l.79.1 6
7.3 odd 6 98.10.a.g.1.1 3
7.4 even 3 98.10.a.h.1.3 3
7.5 odd 6 14.10.c.b.9.3 6
7.6 odd 2 14.10.c.b.11.3 yes 6
21.5 even 6 126.10.g.e.37.3 6
21.20 even 2 126.10.g.e.109.3 6
28.19 even 6 112.10.i.a.65.1 6
28.27 even 2 112.10.i.a.81.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.b.9.3 6 7.5 odd 6
14.10.c.b.11.3 yes 6 7.6 odd 2
98.10.a.g.1.1 3 7.3 odd 6
98.10.a.h.1.3 3 7.4 even 3
98.10.c.l.67.1 6 1.1 even 1 trivial
98.10.c.l.79.1 6 7.2 even 3 inner
112.10.i.a.65.1 6 28.19 even 6
112.10.i.a.81.1 6 28.27 even 2
126.10.g.e.37.3 6 21.5 even 6
126.10.g.e.109.3 6 21.20 even 2