Properties

Label 98.10.a.h.1.2
Level $98$
Weight $10$
Character 98.1
Self dual yes
Analytic conductor $50.474$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-48,71] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.4735119441\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4037x + 70980 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 7 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(52.2593\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +76.8690 q^{3} +256.000 q^{4} +1092.26 q^{5} -1229.90 q^{6} -4096.00 q^{8} -13774.2 q^{9} -17476.2 q^{10} +54060.9 q^{11} +19678.5 q^{12} -37802.6 q^{13} +83960.9 q^{15} +65536.0 q^{16} +353470. q^{17} +220387. q^{18} -50210.7 q^{19} +279618. q^{20} -864974. q^{22} +2.45852e6 q^{23} -314855. q^{24} -760094. q^{25} +604841. q^{26} -2.57182e6 q^{27} +1.40865e6 q^{29} -1.34337e6 q^{30} -5.78323e6 q^{31} -1.04858e6 q^{32} +4.15560e6 q^{33} -5.65552e6 q^{34} -3.52619e6 q^{36} +5.45877e6 q^{37} +803370. q^{38} -2.90584e6 q^{39} -4.47390e6 q^{40} +1.73066e7 q^{41} +1.43644e6 q^{43} +1.38396e7 q^{44} -1.50450e7 q^{45} -3.93364e7 q^{46} -3.04387e7 q^{47} +5.03768e6 q^{48} +1.21615e7 q^{50} +2.71709e7 q^{51} -9.67746e6 q^{52} -4.30796e6 q^{53} +4.11491e7 q^{54} +5.90485e7 q^{55} -3.85964e6 q^{57} -2.25385e7 q^{58} +6.61456e7 q^{59} +2.14940e7 q^{60} +2.00925e8 q^{61} +9.25317e7 q^{62} +1.67772e7 q^{64} -4.12902e7 q^{65} -6.64896e7 q^{66} -2.72602e8 q^{67} +9.04883e7 q^{68} +1.88984e8 q^{69} +1.43433e8 q^{71} +5.64190e7 q^{72} +3.68032e8 q^{73} -8.73403e7 q^{74} -5.84276e7 q^{75} -1.28539e7 q^{76} +4.64935e7 q^{78} +4.63995e8 q^{79} +7.15823e7 q^{80} +7.34239e7 q^{81} -2.76906e8 q^{82} +7.47626e8 q^{83} +3.86081e8 q^{85} -2.29830e7 q^{86} +1.08282e8 q^{87} -2.21433e8 q^{88} +1.12789e9 q^{89} +2.40719e8 q^{90} +6.29382e8 q^{92} -4.44551e8 q^{93} +4.87019e8 q^{94} -5.48431e7 q^{95} -8.06029e7 q^{96} +1.27313e8 q^{97} -7.44643e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 48 q^{2} + 71 q^{3} + 768 q^{4} - 1085 q^{5} - 1136 q^{6} - 12288 q^{8} + 9106 q^{9} + 17360 q^{10} - 2555 q^{11} + 18176 q^{12} - 18070 q^{13} - 353073 q^{15} + 196608 q^{16} + 20759 q^{17} - 145696 q^{18}+ \cdots - 1303712634 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 76.8690 0.547905 0.273953 0.961743i \(-0.411669\pi\)
0.273953 + 0.961743i \(0.411669\pi\)
\(4\) 256.000 0.500000
\(5\) 1092.26 0.781557 0.390779 0.920485i \(-0.372206\pi\)
0.390779 + 0.920485i \(0.372206\pi\)
\(6\) −1229.90 −0.387427
\(7\) 0 0
\(8\) −4096.00 −0.353553
\(9\) −13774.2 −0.699800
\(10\) −17476.2 −0.552644
\(11\) 54060.9 1.11331 0.556655 0.830744i \(-0.312085\pi\)
0.556655 + 0.830744i \(0.312085\pi\)
\(12\) 19678.5 0.273953
\(13\) −37802.6 −0.367093 −0.183547 0.983011i \(-0.558758\pi\)
−0.183547 + 0.983011i \(0.558758\pi\)
\(14\) 0 0
\(15\) 83960.9 0.428219
\(16\) 65536.0 0.250000
\(17\) 353470. 1.02644 0.513218 0.858258i \(-0.328453\pi\)
0.513218 + 0.858258i \(0.328453\pi\)
\(18\) 220387. 0.494833
\(19\) −50210.7 −0.0883903 −0.0441952 0.999023i \(-0.514072\pi\)
−0.0441952 + 0.999023i \(0.514072\pi\)
\(20\) 279618. 0.390779
\(21\) 0 0
\(22\) −864974. −0.787228
\(23\) 2.45852e6 1.83189 0.915944 0.401305i \(-0.131443\pi\)
0.915944 + 0.401305i \(0.131443\pi\)
\(24\) −314855. −0.193714
\(25\) −760094. −0.389168
\(26\) 604841. 0.259574
\(27\) −2.57182e6 −0.931329
\(28\) 0 0
\(29\) 1.40865e6 0.369840 0.184920 0.982754i \(-0.440797\pi\)
0.184920 + 0.982754i \(0.440797\pi\)
\(30\) −1.34337e6 −0.302797
\(31\) −5.78323e6 −1.12472 −0.562358 0.826894i \(-0.690106\pi\)
−0.562358 + 0.826894i \(0.690106\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 4.15560e6 0.609988
\(34\) −5.65552e6 −0.725800
\(35\) 0 0
\(36\) −3.52619e6 −0.349900
\(37\) 5.45877e6 0.478836 0.239418 0.970917i \(-0.423043\pi\)
0.239418 + 0.970917i \(0.423043\pi\)
\(38\) 803370. 0.0625014
\(39\) −2.90584e6 −0.201132
\(40\) −4.47390e6 −0.276322
\(41\) 1.73066e7 0.956501 0.478251 0.878223i \(-0.341271\pi\)
0.478251 + 0.878223i \(0.341271\pi\)
\(42\) 0 0
\(43\) 1.43644e6 0.0640735 0.0320367 0.999487i \(-0.489801\pi\)
0.0320367 + 0.999487i \(0.489801\pi\)
\(44\) 1.38396e7 0.556655
\(45\) −1.50450e7 −0.546934
\(46\) −3.93364e7 −1.29534
\(47\) −3.04387e7 −0.909883 −0.454942 0.890521i \(-0.650340\pi\)
−0.454942 + 0.890521i \(0.650340\pi\)
\(48\) 5.03768e6 0.136976
\(49\) 0 0
\(50\) 1.21615e7 0.275183
\(51\) 2.71709e7 0.562390
\(52\) −9.67746e6 −0.183547
\(53\) −4.30796e6 −0.0749947 −0.0374973 0.999297i \(-0.511939\pi\)
−0.0374973 + 0.999297i \(0.511939\pi\)
\(54\) 4.11491e7 0.658549
\(55\) 5.90485e7 0.870115
\(56\) 0 0
\(57\) −3.85964e6 −0.0484295
\(58\) −2.25385e7 −0.261516
\(59\) 6.61456e7 0.710668 0.355334 0.934739i \(-0.384367\pi\)
0.355334 + 0.934739i \(0.384367\pi\)
\(60\) 2.14940e7 0.214110
\(61\) 2.00925e8 1.85802 0.929008 0.370061i \(-0.120663\pi\)
0.929008 + 0.370061i \(0.120663\pi\)
\(62\) 9.25317e7 0.795295
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −4.12902e7 −0.286904
\(66\) −6.64896e7 −0.431327
\(67\) −2.72602e8 −1.65269 −0.826347 0.563161i \(-0.809585\pi\)
−0.826347 + 0.563161i \(0.809585\pi\)
\(68\) 9.04883e7 0.513218
\(69\) 1.88984e8 1.00370
\(70\) 0 0
\(71\) 1.43433e8 0.669866 0.334933 0.942242i \(-0.391286\pi\)
0.334933 + 0.942242i \(0.391286\pi\)
\(72\) 5.64190e7 0.247417
\(73\) 3.68032e8 1.51681 0.758407 0.651781i \(-0.225978\pi\)
0.758407 + 0.651781i \(0.225978\pi\)
\(74\) −8.73403e7 −0.338588
\(75\) −5.84276e7 −0.213227
\(76\) −1.28539e7 −0.0441952
\(77\) 0 0
\(78\) 4.64935e7 0.142222
\(79\) 4.63995e8 1.34027 0.670134 0.742240i \(-0.266236\pi\)
0.670134 + 0.742240i \(0.266236\pi\)
\(80\) 7.15823e7 0.195389
\(81\) 7.34239e7 0.189520
\(82\) −2.76906e8 −0.676349
\(83\) 7.47626e8 1.72915 0.864576 0.502503i \(-0.167587\pi\)
0.864576 + 0.502503i \(0.167587\pi\)
\(84\) 0 0
\(85\) 3.86081e8 0.802219
\(86\) −2.29830e7 −0.0453068
\(87\) 1.08282e8 0.202637
\(88\) −2.21433e8 −0.393614
\(89\) 1.12789e9 1.90551 0.952753 0.303746i \(-0.0982374\pi\)
0.952753 + 0.303746i \(0.0982374\pi\)
\(90\) 2.40719e8 0.386741
\(91\) 0 0
\(92\) 6.29382e8 0.915944
\(93\) −4.44551e8 −0.616238
\(94\) 4.87019e8 0.643385
\(95\) −5.48431e7 −0.0690821
\(96\) −8.06029e7 −0.0968569
\(97\) 1.27313e8 0.146016 0.0730079 0.997331i \(-0.476740\pi\)
0.0730079 + 0.997331i \(0.476740\pi\)
\(98\) 0 0
\(99\) −7.44643e8 −0.779094
\(100\) −1.94584e8 −0.194584
\(101\) −1.50545e9 −1.43953 −0.719764 0.694219i \(-0.755750\pi\)
−0.719764 + 0.694219i \(0.755750\pi\)
\(102\) −4.34734e8 −0.397670
\(103\) 5.94955e8 0.520855 0.260428 0.965493i \(-0.416136\pi\)
0.260428 + 0.965493i \(0.416136\pi\)
\(104\) 1.54839e8 0.129787
\(105\) 0 0
\(106\) 6.89274e7 0.0530292
\(107\) 1.35491e9 0.999274 0.499637 0.866235i \(-0.333467\pi\)
0.499637 + 0.866235i \(0.333467\pi\)
\(108\) −6.58385e8 −0.465665
\(109\) −1.93784e9 −1.31492 −0.657459 0.753490i \(-0.728369\pi\)
−0.657459 + 0.753490i \(0.728369\pi\)
\(110\) −9.44776e8 −0.615264
\(111\) 4.19610e8 0.262357
\(112\) 0 0
\(113\) −1.98306e9 −1.14415 −0.572074 0.820202i \(-0.693861\pi\)
−0.572074 + 0.820202i \(0.693861\pi\)
\(114\) 6.17543e7 0.0342448
\(115\) 2.68535e9 1.43173
\(116\) 3.60616e8 0.184920
\(117\) 5.20699e8 0.256892
\(118\) −1.05833e9 −0.502518
\(119\) 0 0
\(120\) −3.43904e8 −0.151398
\(121\) 5.64628e8 0.239457
\(122\) −3.21480e9 −1.31382
\(123\) 1.33034e9 0.524072
\(124\) −1.48051e9 −0.562358
\(125\) −2.96354e9 −1.08571
\(126\) 0 0
\(127\) 3.90286e7 0.0133127 0.00665635 0.999978i \(-0.497881\pi\)
0.00665635 + 0.999978i \(0.497881\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) 1.10417e8 0.0351062
\(130\) 6.60643e8 0.202872
\(131\) −1.59378e9 −0.472832 −0.236416 0.971652i \(-0.575973\pi\)
−0.236416 + 0.971652i \(0.575973\pi\)
\(132\) 1.06383e9 0.304994
\(133\) 0 0
\(134\) 4.36163e9 1.16863
\(135\) −2.80909e9 −0.727887
\(136\) −1.44781e9 −0.362900
\(137\) 5.63635e9 1.36696 0.683479 0.729970i \(-0.260466\pi\)
0.683479 + 0.729970i \(0.260466\pi\)
\(138\) −3.02375e9 −0.709724
\(139\) −2.40520e9 −0.546493 −0.273246 0.961944i \(-0.588097\pi\)
−0.273246 + 0.961944i \(0.588097\pi\)
\(140\) 0 0
\(141\) −2.33979e9 −0.498530
\(142\) −2.29494e9 −0.473667
\(143\) −2.04364e9 −0.408688
\(144\) −9.02704e8 −0.174950
\(145\) 1.53862e9 0.289051
\(146\) −5.88851e9 −1.07255
\(147\) 0 0
\(148\) 1.39744e9 0.239418
\(149\) 4.82927e9 0.802682 0.401341 0.915929i \(-0.368544\pi\)
0.401341 + 0.915929i \(0.368544\pi\)
\(150\) 9.34842e8 0.150774
\(151\) 1.06662e10 1.66960 0.834802 0.550550i \(-0.185582\pi\)
0.834802 + 0.550550i \(0.185582\pi\)
\(152\) 2.05663e8 0.0312507
\(153\) −4.86875e9 −0.718300
\(154\) 0 0
\(155\) −6.31679e9 −0.879030
\(156\) −7.43896e8 −0.100566
\(157\) 9.90602e9 1.30122 0.650610 0.759412i \(-0.274513\pi\)
0.650610 + 0.759412i \(0.274513\pi\)
\(158\) −7.42393e9 −0.947713
\(159\) −3.31149e8 −0.0410900
\(160\) −1.14532e9 −0.138161
\(161\) 0 0
\(162\) −1.17478e9 −0.134011
\(163\) −1.24288e10 −1.37907 −0.689533 0.724255i \(-0.742184\pi\)
−0.689533 + 0.724255i \(0.742184\pi\)
\(164\) 4.43050e9 0.478251
\(165\) 4.53900e9 0.476740
\(166\) −1.19620e10 −1.22269
\(167\) 5.48234e9 0.545434 0.272717 0.962094i \(-0.412078\pi\)
0.272717 + 0.962094i \(0.412078\pi\)
\(168\) 0 0
\(169\) −9.17547e9 −0.865243
\(170\) −6.17729e9 −0.567255
\(171\) 6.91610e8 0.0618555
\(172\) 3.67728e8 0.0320367
\(173\) 4.59767e9 0.390238 0.195119 0.980780i \(-0.437491\pi\)
0.195119 + 0.980780i \(0.437491\pi\)
\(174\) −1.73251e9 −0.143286
\(175\) 0 0
\(176\) 3.54293e9 0.278327
\(177\) 5.08454e9 0.389379
\(178\) −1.80462e10 −1.34740
\(179\) 2.56403e9 0.186674 0.0933370 0.995635i \(-0.470247\pi\)
0.0933370 + 0.995635i \(0.470247\pi\)
\(180\) −3.85151e9 −0.273467
\(181\) 3.58323e9 0.248154 0.124077 0.992273i \(-0.460403\pi\)
0.124077 + 0.992273i \(0.460403\pi\)
\(182\) 0 0
\(183\) 1.54449e10 1.01802
\(184\) −1.00701e10 −0.647671
\(185\) 5.96239e9 0.374238
\(186\) 7.11282e9 0.435746
\(187\) 1.91089e10 1.14274
\(188\) −7.79231e9 −0.454942
\(189\) 0 0
\(190\) 8.77489e8 0.0488484
\(191\) −6.97388e8 −0.0379162 −0.0189581 0.999820i \(-0.506035\pi\)
−0.0189581 + 0.999820i \(0.506035\pi\)
\(192\) 1.28965e9 0.0684881
\(193\) −5.70859e8 −0.0296156 −0.0148078 0.999890i \(-0.504714\pi\)
−0.0148078 + 0.999890i \(0.504714\pi\)
\(194\) −2.03701e9 −0.103249
\(195\) −3.17394e9 −0.157196
\(196\) 0 0
\(197\) −4.88945e9 −0.231293 −0.115646 0.993290i \(-0.536894\pi\)
−0.115646 + 0.993290i \(0.536894\pi\)
\(198\) 1.19143e10 0.550902
\(199\) −1.01824e10 −0.460269 −0.230134 0.973159i \(-0.573917\pi\)
−0.230134 + 0.973159i \(0.573917\pi\)
\(200\) 3.11335e9 0.137592
\(201\) −2.09546e10 −0.905519
\(202\) 2.40872e10 1.01790
\(203\) 0 0
\(204\) 6.95574e9 0.281195
\(205\) 1.89033e10 0.747561
\(206\) −9.51929e9 −0.368300
\(207\) −3.38641e10 −1.28196
\(208\) −2.47743e9 −0.0917733
\(209\) −2.71443e9 −0.0984058
\(210\) 0 0
\(211\) −2.89906e10 −1.00690 −0.503450 0.864025i \(-0.667936\pi\)
−0.503450 + 0.864025i \(0.667936\pi\)
\(212\) −1.10284e9 −0.0374973
\(213\) 1.10256e10 0.367023
\(214\) −2.16786e10 −0.706594
\(215\) 1.56896e9 0.0500771
\(216\) 1.05342e10 0.329275
\(217\) 0 0
\(218\) 3.10054e10 0.929788
\(219\) 2.82902e10 0.831070
\(220\) 1.51164e10 0.435057
\(221\) −1.33621e10 −0.376798
\(222\) −6.71376e9 −0.185514
\(223\) 9.01973e9 0.244243 0.122121 0.992515i \(-0.461030\pi\)
0.122121 + 0.992515i \(0.461030\pi\)
\(224\) 0 0
\(225\) 1.04697e10 0.272340
\(226\) 3.17289e10 0.809035
\(227\) −1.32631e10 −0.331533 −0.165767 0.986165i \(-0.553010\pi\)
−0.165767 + 0.986165i \(0.553010\pi\)
\(228\) −9.88068e8 −0.0242148
\(229\) 7.67667e10 1.84465 0.922323 0.386420i \(-0.126288\pi\)
0.922323 + 0.386420i \(0.126288\pi\)
\(230\) −4.29655e10 −1.01238
\(231\) 0 0
\(232\) −5.76985e9 −0.130758
\(233\) −2.29389e9 −0.0509883 −0.0254942 0.999675i \(-0.508116\pi\)
−0.0254942 + 0.999675i \(0.508116\pi\)
\(234\) −8.33118e9 −0.181650
\(235\) −3.32470e10 −0.711126
\(236\) 1.69333e10 0.355334
\(237\) 3.56669e10 0.734340
\(238\) 0 0
\(239\) −4.06748e10 −0.806372 −0.403186 0.915118i \(-0.632097\pi\)
−0.403186 + 0.915118i \(0.632097\pi\)
\(240\) 5.50246e9 0.107055
\(241\) −9.43703e9 −0.180202 −0.0901008 0.995933i \(-0.528719\pi\)
−0.0901008 + 0.995933i \(0.528719\pi\)
\(242\) −9.03405e9 −0.169322
\(243\) 5.62651e10 1.03517
\(244\) 5.14367e10 0.929008
\(245\) 0 0
\(246\) −2.12855e10 −0.370575
\(247\) 1.89809e9 0.0324475
\(248\) 2.36881e10 0.397647
\(249\) 5.74692e10 0.947411
\(250\) 4.74166e10 0.767716
\(251\) 7.60552e10 1.20948 0.604738 0.796425i \(-0.293278\pi\)
0.604738 + 0.796425i \(0.293278\pi\)
\(252\) 0 0
\(253\) 1.32910e11 2.03946
\(254\) −6.24457e8 −0.00941350
\(255\) 2.96776e10 0.439540
\(256\) 4.29497e9 0.0625000
\(257\) −9.02211e10 −1.29006 −0.645028 0.764159i \(-0.723154\pi\)
−0.645028 + 0.764159i \(0.723154\pi\)
\(258\) −1.76668e9 −0.0248238
\(259\) 0 0
\(260\) −1.05703e10 −0.143452
\(261\) −1.94030e10 −0.258814
\(262\) 2.55005e10 0.334343
\(263\) −9.35682e10 −1.20594 −0.602972 0.797762i \(-0.706017\pi\)
−0.602972 + 0.797762i \(0.706017\pi\)
\(264\) −1.70213e10 −0.215663
\(265\) −4.70541e9 −0.0586126
\(266\) 0 0
\(267\) 8.66995e10 1.04404
\(268\) −6.97861e10 −0.826347
\(269\) −1.48563e10 −0.172992 −0.0864960 0.996252i \(-0.527567\pi\)
−0.0864960 + 0.996252i \(0.527567\pi\)
\(270\) 4.49455e10 0.514694
\(271\) −1.17185e11 −1.31980 −0.659902 0.751352i \(-0.729402\pi\)
−0.659902 + 0.751352i \(0.729402\pi\)
\(272\) 2.31650e10 0.256609
\(273\) 0 0
\(274\) −9.01815e10 −0.966585
\(275\) −4.10913e10 −0.433264
\(276\) 4.83799e10 0.501851
\(277\) −2.87224e10 −0.293131 −0.146565 0.989201i \(-0.546822\pi\)
−0.146565 + 0.989201i \(0.546822\pi\)
\(278\) 3.84832e10 0.386429
\(279\) 7.96592e10 0.787076
\(280\) 0 0
\(281\) −7.39690e10 −0.707736 −0.353868 0.935295i \(-0.615134\pi\)
−0.353868 + 0.935295i \(0.615134\pi\)
\(282\) 3.74367e10 0.352514
\(283\) 7.27488e10 0.674197 0.337098 0.941469i \(-0.390554\pi\)
0.337098 + 0.941469i \(0.390554\pi\)
\(284\) 3.67190e10 0.334933
\(285\) −4.21573e9 −0.0378504
\(286\) 3.26982e10 0.288986
\(287\) 0 0
\(288\) 1.44433e10 0.123708
\(289\) 6.35304e9 0.0535724
\(290\) −2.46179e10 −0.204390
\(291\) 9.78642e9 0.0800028
\(292\) 9.42161e10 0.758407
\(293\) −2.43926e11 −1.93354 −0.966771 0.255644i \(-0.917712\pi\)
−0.966771 + 0.255644i \(0.917712\pi\)
\(294\) 0 0
\(295\) 7.22481e10 0.555428
\(296\) −2.23591e10 −0.169294
\(297\) −1.39035e11 −1.03686
\(298\) −7.72683e10 −0.567582
\(299\) −9.29385e10 −0.672474
\(300\) −1.49575e10 −0.106614
\(301\) 0 0
\(302\) −1.70659e11 −1.18059
\(303\) −1.15722e11 −0.788725
\(304\) −3.29061e9 −0.0220976
\(305\) 2.19462e11 1.45215
\(306\) 7.79000e10 0.507915
\(307\) −1.41661e11 −0.910182 −0.455091 0.890445i \(-0.650393\pi\)
−0.455091 + 0.890445i \(0.650393\pi\)
\(308\) 0 0
\(309\) 4.57336e10 0.285379
\(310\) 1.01069e11 0.621568
\(311\) −1.29174e11 −0.782986 −0.391493 0.920181i \(-0.628041\pi\)
−0.391493 + 0.920181i \(0.628041\pi\)
\(312\) 1.19023e10 0.0711110
\(313\) −4.44649e10 −0.261859 −0.130930 0.991392i \(-0.541796\pi\)
−0.130930 + 0.991392i \(0.541796\pi\)
\(314\) −1.58496e11 −0.920101
\(315\) 0 0
\(316\) 1.18783e11 0.670134
\(317\) −2.48426e11 −1.38175 −0.690877 0.722973i \(-0.742775\pi\)
−0.690877 + 0.722973i \(0.742775\pi\)
\(318\) 5.29838e9 0.0290550
\(319\) 7.61531e10 0.411746
\(320\) 1.83251e10 0.0976947
\(321\) 1.04151e11 0.547508
\(322\) 0 0
\(323\) −1.77480e10 −0.0907271
\(324\) 1.87965e10 0.0947600
\(325\) 2.87335e10 0.142861
\(326\) 1.98861e11 0.975146
\(327\) −1.48960e11 −0.720451
\(328\) −7.08880e10 −0.338174
\(329\) 0 0
\(330\) −7.26239e10 −0.337106
\(331\) 3.62219e11 1.65861 0.829307 0.558793i \(-0.188735\pi\)
0.829307 + 0.558793i \(0.188735\pi\)
\(332\) 1.91392e11 0.864576
\(333\) −7.51900e10 −0.335089
\(334\) −8.77175e10 −0.385680
\(335\) −2.97752e11 −1.29167
\(336\) 0 0
\(337\) −4.33951e11 −1.83276 −0.916380 0.400309i \(-0.868903\pi\)
−0.916380 + 0.400309i \(0.868903\pi\)
\(338\) 1.46807e11 0.611819
\(339\) −1.52435e11 −0.626884
\(340\) 9.88367e10 0.401110
\(341\) −3.12646e11 −1.25216
\(342\) −1.10658e10 −0.0437385
\(343\) 0 0
\(344\) −5.88364e9 −0.0226534
\(345\) 2.06420e11 0.784450
\(346\) −7.35626e10 −0.275940
\(347\) 1.92978e11 0.714537 0.357268 0.934002i \(-0.383708\pi\)
0.357268 + 0.934002i \(0.383708\pi\)
\(348\) 2.77201e10 0.101319
\(349\) −2.85795e11 −1.03119 −0.515596 0.856832i \(-0.672430\pi\)
−0.515596 + 0.856832i \(0.672430\pi\)
\(350\) 0 0
\(351\) 9.72213e10 0.341884
\(352\) −5.66869e10 −0.196807
\(353\) −4.16138e10 −0.142643 −0.0713217 0.997453i \(-0.522722\pi\)
−0.0713217 + 0.997453i \(0.522722\pi\)
\(354\) −8.13526e10 −0.275332
\(355\) 1.56667e11 0.523539
\(356\) 2.88739e11 0.952753
\(357\) 0 0
\(358\) −4.10244e10 −0.131998
\(359\) −4.10775e11 −1.30521 −0.652604 0.757699i \(-0.726323\pi\)
−0.652604 + 0.757699i \(0.726323\pi\)
\(360\) 6.16242e10 0.193370
\(361\) −3.20167e11 −0.992187
\(362\) −5.73316e10 −0.175471
\(363\) 4.34024e10 0.131200
\(364\) 0 0
\(365\) 4.01986e11 1.18548
\(366\) −2.47118e11 −0.719846
\(367\) −1.83042e11 −0.526688 −0.263344 0.964702i \(-0.584825\pi\)
−0.263344 + 0.964702i \(0.584825\pi\)
\(368\) 1.61122e11 0.457972
\(369\) −2.38385e11 −0.669360
\(370\) −9.53983e10 −0.264626
\(371\) 0 0
\(372\) −1.13805e11 −0.308119
\(373\) −2.85765e11 −0.764396 −0.382198 0.924080i \(-0.624833\pi\)
−0.382198 + 0.924080i \(0.624833\pi\)
\(374\) −3.05742e11 −0.808040
\(375\) −2.27804e11 −0.594869
\(376\) 1.24677e11 0.321692
\(377\) −5.32508e10 −0.135766
\(378\) 0 0
\(379\) 4.76362e10 0.118593 0.0592967 0.998240i \(-0.481114\pi\)
0.0592967 + 0.998240i \(0.481114\pi\)
\(380\) −1.40398e10 −0.0345410
\(381\) 3.00009e9 0.00729409
\(382\) 1.11582e10 0.0268108
\(383\) 4.08991e11 0.971223 0.485611 0.874175i \(-0.338597\pi\)
0.485611 + 0.874175i \(0.338597\pi\)
\(384\) −2.06344e10 −0.0484284
\(385\) 0 0
\(386\) 9.13374e9 0.0209414
\(387\) −1.97857e10 −0.0448386
\(388\) 3.25921e10 0.0730079
\(389\) −1.12325e11 −0.248716 −0.124358 0.992237i \(-0.539687\pi\)
−0.124358 + 0.992237i \(0.539687\pi\)
\(390\) 5.07830e10 0.111155
\(391\) 8.69014e11 1.88032
\(392\) 0 0
\(393\) −1.22512e11 −0.259067
\(394\) 7.82311e10 0.163549
\(395\) 5.06804e11 1.04750
\(396\) −1.90629e11 −0.389547
\(397\) 3.85685e11 0.779248 0.389624 0.920974i \(-0.372605\pi\)
0.389624 + 0.920974i \(0.372605\pi\)
\(398\) 1.62918e11 0.325459
\(399\) 0 0
\(400\) −4.98135e10 −0.0972920
\(401\) 1.80685e11 0.348958 0.174479 0.984661i \(-0.444176\pi\)
0.174479 + 0.984661i \(0.444176\pi\)
\(402\) 3.35274e11 0.640299
\(403\) 2.18621e11 0.412876
\(404\) −3.85395e11 −0.719764
\(405\) 8.01980e10 0.148121
\(406\) 0 0
\(407\) 2.95106e11 0.533093
\(408\) −1.11292e11 −0.198835
\(409\) 2.48017e11 0.438255 0.219127 0.975696i \(-0.429679\pi\)
0.219127 + 0.975696i \(0.429679\pi\)
\(410\) −3.02454e11 −0.528605
\(411\) 4.33260e11 0.748963
\(412\) 1.52309e11 0.260428
\(413\) 0 0
\(414\) 5.41826e11 0.906480
\(415\) 8.16602e11 1.35143
\(416\) 3.96389e10 0.0648935
\(417\) −1.84885e11 −0.299426
\(418\) 4.34309e10 0.0695834
\(419\) 2.26007e11 0.358227 0.179113 0.983828i \(-0.442677\pi\)
0.179113 + 0.983828i \(0.442677\pi\)
\(420\) 0 0
\(421\) −3.76981e11 −0.584858 −0.292429 0.956287i \(-0.594464\pi\)
−0.292429 + 0.956287i \(0.594464\pi\)
\(422\) 4.63849e11 0.711985
\(423\) 4.19268e11 0.636736
\(424\) 1.76454e10 0.0265146
\(425\) −2.68670e11 −0.399456
\(426\) −1.76409e11 −0.259525
\(427\) 0 0
\(428\) 3.46858e11 0.499637
\(429\) −1.57092e11 −0.223922
\(430\) −2.51034e10 −0.0354099
\(431\) −1.43102e11 −0.199756 −0.0998779 0.995000i \(-0.531845\pi\)
−0.0998779 + 0.995000i \(0.531845\pi\)
\(432\) −1.68547e11 −0.232832
\(433\) 1.36985e12 1.87275 0.936373 0.351007i \(-0.114161\pi\)
0.936373 + 0.351007i \(0.114161\pi\)
\(434\) 0 0
\(435\) 1.18272e11 0.158373
\(436\) −4.96087e11 −0.657459
\(437\) −1.23444e11 −0.161921
\(438\) −4.52643e11 −0.587655
\(439\) 1.05555e12 1.35641 0.678203 0.734875i \(-0.262759\pi\)
0.678203 + 0.734875i \(0.262759\pi\)
\(440\) −2.41863e11 −0.307632
\(441\) 0 0
\(442\) 2.13793e11 0.266436
\(443\) 7.36777e11 0.908906 0.454453 0.890771i \(-0.349835\pi\)
0.454453 + 0.890771i \(0.349835\pi\)
\(444\) 1.07420e11 0.131178
\(445\) 1.23194e12 1.48926
\(446\) −1.44316e11 −0.172706
\(447\) 3.71221e11 0.439793
\(448\) 0 0
\(449\) −1.37800e11 −0.160007 −0.0800036 0.996795i \(-0.525493\pi\)
−0.0800036 + 0.996795i \(0.525493\pi\)
\(450\) −1.67515e11 −0.192573
\(451\) 9.35612e11 1.06488
\(452\) −5.07662e11 −0.572074
\(453\) 8.19900e11 0.914785
\(454\) 2.12209e11 0.234429
\(455\) 0 0
\(456\) 1.58091e10 0.0171224
\(457\) −8.17482e11 −0.876708 −0.438354 0.898802i \(-0.644438\pi\)
−0.438354 + 0.898802i \(0.644438\pi\)
\(458\) −1.22827e12 −1.30436
\(459\) −9.09060e11 −0.955950
\(460\) 6.87449e11 0.715863
\(461\) −1.54090e12 −1.58899 −0.794495 0.607270i \(-0.792265\pi\)
−0.794495 + 0.607270i \(0.792265\pi\)
\(462\) 0 0
\(463\) −7.47957e11 −0.756419 −0.378209 0.925720i \(-0.623460\pi\)
−0.378209 + 0.925720i \(0.623460\pi\)
\(464\) 9.23176e10 0.0924599
\(465\) −4.85565e11 −0.481625
\(466\) 3.67022e10 0.0360542
\(467\) −2.41074e11 −0.234544 −0.117272 0.993100i \(-0.537415\pi\)
−0.117272 + 0.993100i \(0.537415\pi\)
\(468\) 1.33299e11 0.128446
\(469\) 0 0
\(470\) 5.31951e11 0.502842
\(471\) 7.61465e11 0.712945
\(472\) −2.70932e11 −0.251259
\(473\) 7.76550e10 0.0713336
\(474\) −5.70670e11 −0.519257
\(475\) 3.81648e10 0.0343987
\(476\) 0 0
\(477\) 5.93386e10 0.0524813
\(478\) 6.50797e11 0.570191
\(479\) −4.18088e11 −0.362876 −0.181438 0.983402i \(-0.558075\pi\)
−0.181438 + 0.983402i \(0.558075\pi\)
\(480\) −8.80393e10 −0.0756992
\(481\) −2.06355e11 −0.175777
\(482\) 1.50992e11 0.127422
\(483\) 0 0
\(484\) 1.44545e11 0.119729
\(485\) 1.39059e11 0.114120
\(486\) −9.00242e11 −0.731974
\(487\) −1.71573e12 −1.38219 −0.691095 0.722764i \(-0.742871\pi\)
−0.691095 + 0.722764i \(0.742871\pi\)
\(488\) −8.22988e11 −0.656908
\(489\) −9.55388e11 −0.755597
\(490\) 0 0
\(491\) 3.34731e11 0.259914 0.129957 0.991520i \(-0.458516\pi\)
0.129957 + 0.991520i \(0.458516\pi\)
\(492\) 3.40568e11 0.262036
\(493\) 4.97917e11 0.379617
\(494\) −3.03695e10 −0.0229438
\(495\) −8.13343e11 −0.608906
\(496\) −3.79010e11 −0.281179
\(497\) 0 0
\(498\) −9.19508e11 −0.669921
\(499\) 7.10044e11 0.512664 0.256332 0.966589i \(-0.417486\pi\)
0.256332 + 0.966589i \(0.417486\pi\)
\(500\) −7.58666e11 −0.542857
\(501\) 4.21422e11 0.298846
\(502\) −1.21688e12 −0.855228
\(503\) 2.16835e12 1.51033 0.755167 0.655532i \(-0.227556\pi\)
0.755167 + 0.655532i \(0.227556\pi\)
\(504\) 0 0
\(505\) −1.64434e12 −1.12507
\(506\) −2.12656e12 −1.44212
\(507\) −7.05308e11 −0.474071
\(508\) 9.99132e9 0.00665635
\(509\) −7.69897e11 −0.508396 −0.254198 0.967152i \(-0.581812\pi\)
−0.254198 + 0.967152i \(0.581812\pi\)
\(510\) −4.74842e11 −0.310802
\(511\) 0 0
\(512\) −6.87195e10 −0.0441942
\(513\) 1.29133e11 0.0823205
\(514\) 1.44354e12 0.912208
\(515\) 6.49846e11 0.407078
\(516\) 2.82668e10 0.0175531
\(517\) −1.64554e12 −1.01298
\(518\) 0 0
\(519\) 3.53418e11 0.213814
\(520\) 1.69125e11 0.101436
\(521\) −2.32093e11 −0.138004 −0.0690021 0.997617i \(-0.521982\pi\)
−0.0690021 + 0.997617i \(0.521982\pi\)
\(522\) 3.10449e11 0.183009
\(523\) 2.08260e12 1.21716 0.608580 0.793493i \(-0.291740\pi\)
0.608580 + 0.793493i \(0.291740\pi\)
\(524\) −4.08007e11 −0.236416
\(525\) 0 0
\(526\) 1.49709e12 0.852731
\(527\) −2.04420e12 −1.15445
\(528\) 2.72341e11 0.152497
\(529\) 4.24319e12 2.35582
\(530\) 7.52866e10 0.0414454
\(531\) −9.11100e11 −0.497325
\(532\) 0 0
\(533\) −6.54236e11 −0.351125
\(534\) −1.38719e12 −0.738245
\(535\) 1.47992e12 0.780990
\(536\) 1.11658e12 0.584316
\(537\) 1.97094e11 0.102280
\(538\) 2.37701e11 0.122324
\(539\) 0 0
\(540\) −7.19128e11 −0.363944
\(541\) −8.39742e11 −0.421462 −0.210731 0.977544i \(-0.567584\pi\)
−0.210731 + 0.977544i \(0.567584\pi\)
\(542\) 1.87496e12 0.933242
\(543\) 2.75439e11 0.135965
\(544\) −3.70640e11 −0.181450
\(545\) −2.11662e12 −1.02768
\(546\) 0 0
\(547\) −7.58235e11 −0.362127 −0.181064 0.983471i \(-0.557954\pi\)
−0.181064 + 0.983471i \(0.557954\pi\)
\(548\) 1.44290e12 0.683479
\(549\) −2.76757e12 −1.30024
\(550\) 6.57461e11 0.306364
\(551\) −7.07295e10 −0.0326903
\(552\) −7.74079e11 −0.354862
\(553\) 0 0
\(554\) 4.59558e11 0.207275
\(555\) 4.58323e11 0.205047
\(556\) −6.15731e11 −0.273246
\(557\) 1.59724e12 0.703110 0.351555 0.936167i \(-0.385653\pi\)
0.351555 + 0.936167i \(0.385653\pi\)
\(558\) −1.27455e12 −0.556547
\(559\) −5.43010e10 −0.0235209
\(560\) 0 0
\(561\) 1.46888e12 0.626114
\(562\) 1.18350e12 0.500445
\(563\) −2.60961e11 −0.109468 −0.0547340 0.998501i \(-0.517431\pi\)
−0.0547340 + 0.998501i \(0.517431\pi\)
\(564\) −5.98987e11 −0.249265
\(565\) −2.16601e12 −0.894217
\(566\) −1.16398e12 −0.476729
\(567\) 0 0
\(568\) −5.87504e11 −0.236833
\(569\) −1.53339e12 −0.613264 −0.306632 0.951828i \(-0.599202\pi\)
−0.306632 + 0.951828i \(0.599202\pi\)
\(570\) 6.74517e10 0.0267643
\(571\) −2.76112e12 −1.08698 −0.543492 0.839415i \(-0.682898\pi\)
−0.543492 + 0.839415i \(0.682898\pi\)
\(572\) −5.23172e11 −0.204344
\(573\) −5.36075e10 −0.0207745
\(574\) 0 0
\(575\) −1.86871e12 −0.712913
\(576\) −2.31092e11 −0.0874750
\(577\) 4.00470e12 1.50411 0.752054 0.659101i \(-0.229063\pi\)
0.752054 + 0.659101i \(0.229063\pi\)
\(578\) −1.01649e11 −0.0378814
\(579\) −4.38813e10 −0.0162265
\(580\) 3.93886e11 0.144525
\(581\) 0 0
\(582\) −1.56583e11 −0.0565705
\(583\) −2.32892e11 −0.0834923
\(584\) −1.50746e12 −0.536275
\(585\) 5.68738e11 0.200776
\(586\) 3.90281e12 1.36722
\(587\) 1.31451e12 0.456976 0.228488 0.973547i \(-0.426622\pi\)
0.228488 + 0.973547i \(0.426622\pi\)
\(588\) 0 0
\(589\) 2.90380e11 0.0994140
\(590\) −1.15597e12 −0.392747
\(591\) −3.75847e11 −0.126726
\(592\) 3.57746e11 0.119709
\(593\) −4.18573e12 −1.39003 −0.695016 0.718994i \(-0.744603\pi\)
−0.695016 + 0.718994i \(0.744603\pi\)
\(594\) 2.22455e12 0.733169
\(595\) 0 0
\(596\) 1.23629e12 0.401341
\(597\) −7.82710e11 −0.252183
\(598\) 1.48702e12 0.475511
\(599\) −1.94567e12 −0.617517 −0.308758 0.951140i \(-0.599913\pi\)
−0.308758 + 0.951140i \(0.599913\pi\)
\(600\) 2.39320e11 0.0753872
\(601\) −4.58168e12 −1.43248 −0.716242 0.697852i \(-0.754139\pi\)
−0.716242 + 0.697852i \(0.754139\pi\)
\(602\) 0 0
\(603\) 3.75486e12 1.15656
\(604\) 2.73055e12 0.834802
\(605\) 6.16720e11 0.187150
\(606\) 1.85156e12 0.557713
\(607\) 3.73888e12 1.11787 0.558936 0.829211i \(-0.311210\pi\)
0.558936 + 0.829211i \(0.311210\pi\)
\(608\) 5.26497e10 0.0156253
\(609\) 0 0
\(610\) −3.51139e12 −1.02682
\(611\) 1.15066e12 0.334012
\(612\) −1.24640e12 −0.359150
\(613\) 1.12397e12 0.321501 0.160751 0.986995i \(-0.448608\pi\)
0.160751 + 0.986995i \(0.448608\pi\)
\(614\) 2.26658e12 0.643596
\(615\) 1.45308e12 0.409592
\(616\) 0 0
\(617\) 8.34463e11 0.231805 0.115903 0.993261i \(-0.463024\pi\)
0.115903 + 0.993261i \(0.463024\pi\)
\(618\) −7.31738e11 −0.201794
\(619\) −2.47746e12 −0.678264 −0.339132 0.940739i \(-0.610133\pi\)
−0.339132 + 0.940739i \(0.610133\pi\)
\(620\) −1.61710e12 −0.439515
\(621\) −6.32287e12 −1.70609
\(622\) 2.06679e12 0.553655
\(623\) 0 0
\(624\) −1.90437e11 −0.0502830
\(625\) −1.75240e12 −0.459380
\(626\) 7.11439e11 0.185163
\(627\) −2.08655e11 −0.0539170
\(628\) 2.53594e12 0.650610
\(629\) 1.92951e12 0.491495
\(630\) 0 0
\(631\) 1.00841e12 0.253223 0.126612 0.991952i \(-0.459590\pi\)
0.126612 + 0.991952i \(0.459590\pi\)
\(632\) −1.90053e12 −0.473857
\(633\) −2.22848e12 −0.551685
\(634\) 3.97482e12 0.977047
\(635\) 4.26293e10 0.0104046
\(636\) −8.47740e10 −0.0205450
\(637\) 0 0
\(638\) −1.21845e12 −0.291148
\(639\) −1.97568e12 −0.468772
\(640\) −2.93201e11 −0.0690806
\(641\) −6.98225e12 −1.63356 −0.816778 0.576952i \(-0.804242\pi\)
−0.816778 + 0.576952i \(0.804242\pi\)
\(642\) −1.66641e12 −0.387146
\(643\) 5.09779e12 1.17607 0.588034 0.808836i \(-0.299902\pi\)
0.588034 + 0.808836i \(0.299902\pi\)
\(644\) 0 0
\(645\) 1.20604e11 0.0274375
\(646\) 2.83967e11 0.0641537
\(647\) −2.20736e12 −0.495226 −0.247613 0.968859i \(-0.579646\pi\)
−0.247613 + 0.968859i \(0.579646\pi\)
\(648\) −3.00744e11 −0.0670054
\(649\) 3.57589e12 0.791193
\(650\) −4.59736e11 −0.101018
\(651\) 0 0
\(652\) −3.18177e12 −0.689533
\(653\) 8.20909e12 1.76679 0.883397 0.468626i \(-0.155251\pi\)
0.883397 + 0.468626i \(0.155251\pi\)
\(654\) 2.38336e12 0.509435
\(655\) −1.74082e12 −0.369546
\(656\) 1.13421e12 0.239125
\(657\) −5.06933e12 −1.06147
\(658\) 0 0
\(659\) 5.75171e12 1.18799 0.593994 0.804469i \(-0.297550\pi\)
0.593994 + 0.804469i \(0.297550\pi\)
\(660\) 1.16198e12 0.238370
\(661\) −3.40404e12 −0.693566 −0.346783 0.937945i \(-0.612726\pi\)
−0.346783 + 0.937945i \(0.612726\pi\)
\(662\) −5.79551e12 −1.17282
\(663\) −1.02713e12 −0.206449
\(664\) −3.06228e12 −0.611347
\(665\) 0 0
\(666\) 1.20304e12 0.236944
\(667\) 3.46321e12 0.677505
\(668\) 1.40348e12 0.272717
\(669\) 6.93337e11 0.133822
\(670\) 4.76403e12 0.913352
\(671\) 1.08622e13 2.06855
\(672\) 0 0
\(673\) −7.13050e12 −1.33984 −0.669918 0.742435i \(-0.733671\pi\)
−0.669918 + 0.742435i \(0.733671\pi\)
\(674\) 6.94321e12 1.29596
\(675\) 1.95482e12 0.362444
\(676\) −2.34892e12 −0.432621
\(677\) 1.30195e12 0.238202 0.119101 0.992882i \(-0.461999\pi\)
0.119101 + 0.992882i \(0.461999\pi\)
\(678\) 2.43897e12 0.443274
\(679\) 0 0
\(680\) −1.58139e12 −0.283627
\(681\) −1.01952e12 −0.181649
\(682\) 5.00234e12 0.885409
\(683\) −4.62558e12 −0.813341 −0.406671 0.913575i \(-0.633310\pi\)
−0.406671 + 0.913575i \(0.633310\pi\)
\(684\) 1.77052e11 0.0309278
\(685\) 6.15635e12 1.06836
\(686\) 0 0
\(687\) 5.90097e12 1.01069
\(688\) 9.41383e10 0.0160184
\(689\) 1.62852e11 0.0275300
\(690\) −3.30272e12 −0.554690
\(691\) 2.92633e12 0.488284 0.244142 0.969740i \(-0.421494\pi\)
0.244142 + 0.969740i \(0.421494\pi\)
\(692\) 1.17700e12 0.195119
\(693\) 0 0
\(694\) −3.08764e12 −0.505254
\(695\) −2.62710e12 −0.427116
\(696\) −4.43522e11 −0.0716430
\(697\) 6.11738e12 0.981788
\(698\) 4.57272e12 0.729163
\(699\) −1.76329e11 −0.0279368
\(700\) 0 0
\(701\) 5.32710e12 0.833220 0.416610 0.909085i \(-0.363218\pi\)
0.416610 + 0.909085i \(0.363218\pi\)
\(702\) −1.55554e12 −0.241749
\(703\) −2.74088e11 −0.0423245
\(704\) 9.06991e11 0.139164
\(705\) −2.55566e12 −0.389630
\(706\) 6.65821e11 0.100864
\(707\) 0 0
\(708\) 1.30164e12 0.194689
\(709\) 3.14221e12 0.467012 0.233506 0.972355i \(-0.424980\pi\)
0.233506 + 0.972355i \(0.424980\pi\)
\(710\) −2.50667e12 −0.370198
\(711\) −6.39115e12 −0.937920
\(712\) −4.61982e12 −0.673698
\(713\) −1.42182e13 −2.06036
\(714\) 0 0
\(715\) −2.23218e12 −0.319413
\(716\) 6.56391e11 0.0933370
\(717\) −3.12663e12 −0.441815
\(718\) 6.57241e12 0.922921
\(719\) −1.59235e12 −0.222207 −0.111104 0.993809i \(-0.535439\pi\)
−0.111104 + 0.993809i \(0.535439\pi\)
\(720\) −9.85987e11 −0.136733
\(721\) 0 0
\(722\) 5.12267e12 0.701582
\(723\) −7.25415e11 −0.0987334
\(724\) 9.17306e11 0.124077
\(725\) −1.07071e12 −0.143930
\(726\) −6.94438e11 −0.0927724
\(727\) −6.30493e11 −0.0837096 −0.0418548 0.999124i \(-0.513327\pi\)
−0.0418548 + 0.999124i \(0.513327\pi\)
\(728\) 0 0
\(729\) 2.87984e12 0.377654
\(730\) −6.43178e12 −0.838259
\(731\) 5.07737e11 0.0657674
\(732\) 3.95389e12 0.509008
\(733\) 1.19410e13 1.52782 0.763910 0.645323i \(-0.223277\pi\)
0.763910 + 0.645323i \(0.223277\pi\)
\(734\) 2.92867e12 0.372424
\(735\) 0 0
\(736\) −2.57795e12 −0.323835
\(737\) −1.47371e13 −1.83996
\(738\) 3.81415e12 0.473309
\(739\) −5.36462e11 −0.0661667 −0.0330833 0.999453i \(-0.510533\pi\)
−0.0330833 + 0.999453i \(0.510533\pi\)
\(740\) 1.52637e12 0.187119
\(741\) 1.45904e11 0.0177781
\(742\) 0 0
\(743\) 7.16300e12 0.862274 0.431137 0.902286i \(-0.358112\pi\)
0.431137 + 0.902286i \(0.358112\pi\)
\(744\) 1.82088e12 0.217873
\(745\) 5.27482e12 0.627342
\(746\) 4.57223e12 0.540510
\(747\) −1.02979e13 −1.21006
\(748\) 4.89187e12 0.571371
\(749\) 0 0
\(750\) 3.64487e12 0.420636
\(751\) 1.28950e13 1.47925 0.739623 0.673022i \(-0.235004\pi\)
0.739623 + 0.673022i \(0.235004\pi\)
\(752\) −1.99483e12 −0.227471
\(753\) 5.84628e12 0.662678
\(754\) 8.52012e11 0.0960008
\(755\) 1.16503e13 1.30489
\(756\) 0 0
\(757\) −1.53380e13 −1.69761 −0.848804 0.528708i \(-0.822677\pi\)
−0.848804 + 0.528708i \(0.822677\pi\)
\(758\) −7.62179e11 −0.0838582
\(759\) 1.02166e13 1.11743
\(760\) 2.24637e11 0.0244242
\(761\) −8.55348e12 −0.924511 −0.462256 0.886747i \(-0.652960\pi\)
−0.462256 + 0.886747i \(0.652960\pi\)
\(762\) −4.80014e10 −0.00515770
\(763\) 0 0
\(764\) −1.78531e11 −0.0189581
\(765\) −5.31794e12 −0.561393
\(766\) −6.54385e12 −0.686758
\(767\) −2.50047e12 −0.260881
\(768\) 3.30150e11 0.0342441
\(769\) −5.63703e12 −0.581275 −0.290638 0.956833i \(-0.593867\pi\)
−0.290638 + 0.956833i \(0.593867\pi\)
\(770\) 0 0
\(771\) −6.93520e12 −0.706829
\(772\) −1.46140e11 −0.0148078
\(773\) 2.48942e12 0.250779 0.125390 0.992108i \(-0.459982\pi\)
0.125390 + 0.992108i \(0.459982\pi\)
\(774\) 3.16571e11 0.0317057
\(775\) 4.39580e12 0.437704
\(776\) −5.21474e11 −0.0516244
\(777\) 0 0
\(778\) 1.79720e12 0.175869
\(779\) −8.68978e11 −0.0845454
\(780\) −8.12528e11 −0.0785982
\(781\) 7.75414e12 0.745768
\(782\) −1.39042e13 −1.32959
\(783\) −3.62280e12 −0.344443
\(784\) 0 0
\(785\) 1.08199e13 1.01698
\(786\) 1.96019e12 0.183188
\(787\) 1.37507e13 1.27773 0.638866 0.769318i \(-0.279404\pi\)
0.638866 + 0.769318i \(0.279404\pi\)
\(788\) −1.25170e12 −0.115646
\(789\) −7.19249e12 −0.660743
\(790\) −8.10886e12 −0.740692
\(791\) 0 0
\(792\) 3.05006e12 0.275451
\(793\) −7.59547e12 −0.682065
\(794\) −6.17096e12 −0.551011
\(795\) −3.61700e11 −0.0321142
\(796\) −2.60669e12 −0.230134
\(797\) −1.44214e12 −0.126603 −0.0633016 0.997994i \(-0.520163\pi\)
−0.0633016 + 0.997994i \(0.520163\pi\)
\(798\) 0 0
\(799\) −1.07592e13 −0.933938
\(800\) 7.97016e11 0.0687959
\(801\) −1.55357e13 −1.33347
\(802\) −2.89096e12 −0.246751
\(803\) 1.98961e13 1.68868
\(804\) −5.36439e12 −0.452760
\(805\) 0 0
\(806\) −3.49794e12 −0.291947
\(807\) −1.14199e12 −0.0947832
\(808\) 6.16632e12 0.508950
\(809\) 2.70988e11 0.0222424 0.0111212 0.999938i \(-0.496460\pi\)
0.0111212 + 0.999938i \(0.496460\pi\)
\(810\) −1.28317e12 −0.104737
\(811\) −1.23287e13 −1.00075 −0.500373 0.865810i \(-0.666804\pi\)
−0.500373 + 0.865810i \(0.666804\pi\)
\(812\) 0 0
\(813\) −9.00787e12 −0.723127
\(814\) −4.72169e12 −0.376953
\(815\) −1.35755e13 −1.07782
\(816\) 1.78067e12 0.140597
\(817\) −7.21244e10 −0.00566348
\(818\) −3.96827e12 −0.309893
\(819\) 0 0
\(820\) 4.83926e12 0.373780
\(821\) −8.75616e12 −0.672620 −0.336310 0.941751i \(-0.609179\pi\)
−0.336310 + 0.941751i \(0.609179\pi\)
\(822\) −6.93216e12 −0.529597
\(823\) 1.32813e13 1.00911 0.504557 0.863379i \(-0.331656\pi\)
0.504557 + 0.863379i \(0.331656\pi\)
\(824\) −2.43694e12 −0.184150
\(825\) −3.15865e12 −0.237388
\(826\) 0 0
\(827\) −1.28106e13 −0.952345 −0.476173 0.879352i \(-0.657976\pi\)
−0.476173 + 0.879352i \(0.657976\pi\)
\(828\) −8.66921e12 −0.640978
\(829\) −1.42592e13 −1.04858 −0.524289 0.851540i \(-0.675669\pi\)
−0.524289 + 0.851540i \(0.675669\pi\)
\(830\) −1.30656e13 −0.955606
\(831\) −2.20786e12 −0.160608
\(832\) −6.34222e11 −0.0458866
\(833\) 0 0
\(834\) 2.95816e12 0.211726
\(835\) 5.98814e12 0.426288
\(836\) −6.94894e11 −0.0492029
\(837\) 1.48734e13 1.04748
\(838\) −3.61611e12 −0.253305
\(839\) −5.62810e12 −0.392133 −0.196066 0.980591i \(-0.562817\pi\)
−0.196066 + 0.980591i \(0.562817\pi\)
\(840\) 0 0
\(841\) −1.25228e13 −0.863219
\(842\) 6.03170e12 0.413557
\(843\) −5.68592e12 −0.387772
\(844\) −7.42159e12 −0.503450
\(845\) −1.00220e13 −0.676237
\(846\) −6.70828e12 −0.450241
\(847\) 0 0
\(848\) −2.82327e11 −0.0187487
\(849\) 5.59212e12 0.369396
\(850\) 4.29872e12 0.282458
\(851\) 1.34205e13 0.877174
\(852\) 2.82255e12 0.183512
\(853\) −1.54422e13 −0.998709 −0.499354 0.866398i \(-0.666429\pi\)
−0.499354 + 0.866398i \(0.666429\pi\)
\(854\) 0 0
\(855\) 7.55417e11 0.0483437
\(856\) −5.54973e12 −0.353297
\(857\) 1.60833e13 1.01850 0.509251 0.860618i \(-0.329923\pi\)
0.509251 + 0.860618i \(0.329923\pi\)
\(858\) 2.51348e12 0.158337
\(859\) 3.02922e12 0.189828 0.0949141 0.995485i \(-0.469742\pi\)
0.0949141 + 0.995485i \(0.469742\pi\)
\(860\) 4.01654e11 0.0250386
\(861\) 0 0
\(862\) 2.28964e12 0.141249
\(863\) 1.35636e13 0.832391 0.416195 0.909275i \(-0.363363\pi\)
0.416195 + 0.909275i \(0.363363\pi\)
\(864\) 2.69675e12 0.164637
\(865\) 5.02184e12 0.304994
\(866\) −2.19177e13 −1.32423
\(867\) 4.88351e11 0.0293526
\(868\) 0 0
\(869\) 2.50840e13 1.49213
\(870\) −1.89235e12 −0.111986
\(871\) 1.03051e13 0.606692
\(872\) 7.93740e12 0.464894
\(873\) −1.75363e12 −0.102182
\(874\) 1.97511e12 0.114496
\(875\) 0 0
\(876\) 7.24229e12 0.415535
\(877\) 2.08383e13 1.18950 0.594751 0.803910i \(-0.297251\pi\)
0.594751 + 0.803910i \(0.297251\pi\)
\(878\) −1.68888e13 −0.959124
\(879\) −1.87503e13 −1.05940
\(880\) 3.86980e12 0.217529
\(881\) 1.45413e13 0.813225 0.406612 0.913601i \(-0.366710\pi\)
0.406612 + 0.913601i \(0.366710\pi\)
\(882\) 0 0
\(883\) 6.56890e12 0.363638 0.181819 0.983332i \(-0.441802\pi\)
0.181819 + 0.983332i \(0.441802\pi\)
\(884\) −3.42069e12 −0.188399
\(885\) 5.55364e12 0.304322
\(886\) −1.17884e13 −0.642694
\(887\) −1.22620e12 −0.0665130 −0.0332565 0.999447i \(-0.510588\pi\)
−0.0332565 + 0.999447i \(0.510588\pi\)
\(888\) −1.71872e12 −0.0927571
\(889\) 0 0
\(890\) −1.97111e13 −1.05307
\(891\) 3.96936e12 0.210994
\(892\) 2.30905e12 0.122121
\(893\) 1.52835e12 0.0804249
\(894\) −5.93954e12 −0.310981
\(895\) 2.80058e12 0.145896
\(896\) 0 0
\(897\) −7.14409e12 −0.368452
\(898\) 2.20479e12 0.113142
\(899\) −8.14658e12 −0.415965
\(900\) 2.68023e12 0.136170
\(901\) −1.52273e12 −0.0769773
\(902\) −1.49698e13 −0.752985
\(903\) 0 0
\(904\) 8.12260e12 0.404517
\(905\) 3.91381e12 0.193946
\(906\) −1.31184e13 −0.646851
\(907\) −1.39154e13 −0.682752 −0.341376 0.939927i \(-0.610893\pi\)
−0.341376 + 0.939927i \(0.610893\pi\)
\(908\) −3.39534e12 −0.165767
\(909\) 2.07363e13 1.00738
\(910\) 0 0
\(911\) 5.99228e11 0.0288243 0.0144122 0.999896i \(-0.495412\pi\)
0.0144122 + 0.999896i \(0.495412\pi\)
\(912\) −2.52945e11 −0.0121074
\(913\) 4.04173e13 1.92508
\(914\) 1.30797e13 0.619926
\(915\) 1.68698e13 0.795638
\(916\) 1.96523e13 0.922323
\(917\) 0 0
\(918\) 1.45450e13 0.675959
\(919\) −5.20770e12 −0.240839 −0.120419 0.992723i \(-0.538424\pi\)
−0.120419 + 0.992723i \(0.538424\pi\)
\(920\) −1.09992e13 −0.506192
\(921\) −1.08893e13 −0.498693
\(922\) 2.46545e13 1.12359
\(923\) −5.42215e12 −0.245903
\(924\) 0 0
\(925\) −4.14918e12 −0.186348
\(926\) 1.19673e13 0.534869
\(927\) −8.19501e12 −0.364494
\(928\) −1.47708e12 −0.0653790
\(929\) 2.02860e13 0.893565 0.446783 0.894643i \(-0.352570\pi\)
0.446783 + 0.894643i \(0.352570\pi\)
\(930\) 7.76904e12 0.340560
\(931\) 0 0
\(932\) −5.87236e11 −0.0254942
\(933\) −9.92949e12 −0.429002
\(934\) 3.85718e12 0.165848
\(935\) 2.08719e13 0.893118
\(936\) −2.13278e12 −0.0908249
\(937\) 3.47244e13 1.47166 0.735828 0.677169i \(-0.236793\pi\)
0.735828 + 0.677169i \(0.236793\pi\)
\(938\) 0 0
\(939\) −3.41797e12 −0.143474
\(940\) −8.51122e12 −0.355563
\(941\) 4.65584e12 0.193573 0.0967866 0.995305i \(-0.469144\pi\)
0.0967866 + 0.995305i \(0.469144\pi\)
\(942\) −1.21834e13 −0.504128
\(943\) 4.25488e13 1.75220
\(944\) 4.33492e12 0.177667
\(945\) 0 0
\(946\) −1.24248e12 −0.0504405
\(947\) −3.96340e13 −1.60137 −0.800687 0.599083i \(-0.795532\pi\)
−0.800687 + 0.599083i \(0.795532\pi\)
\(948\) 9.13071e12 0.367170
\(949\) −1.39125e13 −0.556812
\(950\) −6.10637e11 −0.0243236
\(951\) −1.90963e13 −0.757070
\(952\) 0 0
\(953\) −3.33592e13 −1.31008 −0.655040 0.755594i \(-0.727348\pi\)
−0.655040 + 0.755594i \(0.727348\pi\)
\(954\) −9.49417e11 −0.0371099
\(955\) −7.61729e11 −0.0296337
\(956\) −1.04128e13 −0.403186
\(957\) 5.85381e12 0.225598
\(958\) 6.68941e12 0.256592
\(959\) 0 0
\(960\) 1.40863e12 0.0535274
\(961\) 7.00615e12 0.264987
\(962\) 3.30169e12 0.124293
\(963\) −1.86628e13 −0.699292
\(964\) −2.41588e12 −0.0901008
\(965\) −6.23526e11 −0.0231463
\(966\) 0 0
\(967\) 3.72454e13 1.36979 0.684893 0.728643i \(-0.259849\pi\)
0.684893 + 0.728643i \(0.259849\pi\)
\(968\) −2.31272e12 −0.0846610
\(969\) −1.36427e12 −0.0497098
\(970\) −2.22494e12 −0.0806948
\(971\) −2.47356e13 −0.892969 −0.446485 0.894791i \(-0.647324\pi\)
−0.446485 + 0.894791i \(0.647324\pi\)
\(972\) 1.44039e13 0.517584
\(973\) 0 0
\(974\) 2.74516e13 0.977356
\(975\) 2.20871e12 0.0782742
\(976\) 1.31678e13 0.464504
\(977\) −3.93652e13 −1.38225 −0.691125 0.722736i \(-0.742884\pi\)
−0.691125 + 0.722736i \(0.742884\pi\)
\(978\) 1.52862e13 0.534288
\(979\) 6.09745e13 2.12142
\(980\) 0 0
\(981\) 2.66921e13 0.920180
\(982\) −5.35570e12 −0.183787
\(983\) 3.70349e13 1.26509 0.632544 0.774524i \(-0.282011\pi\)
0.632544 + 0.774524i \(0.282011\pi\)
\(984\) −5.44909e12 −0.185287
\(985\) −5.34054e12 −0.180768
\(986\) −7.96667e12 −0.268430
\(987\) 0 0
\(988\) 4.85911e11 0.0162237
\(989\) 3.53151e12 0.117376
\(990\) 1.30135e13 0.430562
\(991\) 2.82296e13 0.929766 0.464883 0.885372i \(-0.346096\pi\)
0.464883 + 0.885372i \(0.346096\pi\)
\(992\) 6.06416e12 0.198824
\(993\) 2.78434e13 0.908763
\(994\) 0 0
\(995\) −1.11218e13 −0.359726
\(996\) 1.47121e13 0.473705
\(997\) −3.44510e13 −1.10426 −0.552132 0.833757i \(-0.686186\pi\)
−0.552132 + 0.833757i \(0.686186\pi\)
\(998\) −1.13607e13 −0.362508
\(999\) −1.40390e13 −0.445954
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.10.a.h.1.2 3
7.2 even 3 98.10.c.l.67.2 6
7.3 odd 6 14.10.c.b.9.2 6
7.4 even 3 98.10.c.l.79.2 6
7.5 odd 6 14.10.c.b.11.2 yes 6
7.6 odd 2 98.10.a.g.1.2 3
21.5 even 6 126.10.g.e.109.1 6
21.17 even 6 126.10.g.e.37.1 6
28.3 even 6 112.10.i.a.65.2 6
28.19 even 6 112.10.i.a.81.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.b.9.2 6 7.3 odd 6
14.10.c.b.11.2 yes 6 7.5 odd 6
98.10.a.g.1.2 3 7.6 odd 2
98.10.a.h.1.2 3 1.1 even 1 trivial
98.10.c.l.67.2 6 7.2 even 3
98.10.c.l.79.2 6 7.4 even 3
112.10.i.a.65.2 6 28.3 even 6
112.10.i.a.81.2 6 28.19 even 6
126.10.g.e.37.1 6 21.17 even 6
126.10.g.e.109.1 6 21.5 even 6