Properties

Label 126.10.g.e.37.1
Level $126$
Weight $10$
Character 126.37
Analytic conductor $64.895$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,10,Mod(37,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.37"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-48,0,-768,1085] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.8945153566\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 4038x^{4} - 137923x^{3} + 16368349x^{2} - 286546260x + 5038160400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(26.1296 + 45.2579i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.10.g.e.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.00000 + 13.8564i) q^{2} +(-128.000 - 221.703i) q^{4} +(-546.130 + 945.925i) q^{5} +(6111.84 - 1731.76i) q^{7} +4096.00 q^{8} +(-8738.08 - 15134.8i) q^{10} +(27030.4 + 46818.1i) q^{11} +37802.6 q^{13} +(-24898.8 + 98542.3i) q^{14} +(-32768.0 + 56755.8i) q^{16} +(-176735. - 306114. i) q^{17} +(-25105.3 + 43483.7i) q^{19} +279618. q^{20} -864974. q^{22} +(1.22926e6 - 2.12914e6i) q^{23} +(380047. + 658261. i) q^{25} +(-302421. + 523808. i) q^{26} +(-1.16625e6 - 1.13335e6i) q^{28} -1.40865e6 q^{29} +(-2.89162e6 - 5.00843e6i) q^{31} +(-524288. - 908093. i) q^{32} +5.65552e6 q^{34} +(-1.69974e6 + 6.72711e6i) q^{35} +(-2.72938e6 + 4.72743e6i) q^{37} +(-401685. - 695739. i) q^{38} +(-2.23695e6 + 3.87451e6i) q^{40} +1.73066e7 q^{41} +1.43644e6 q^{43} +(6.91979e6 - 1.19854e7i) q^{44} +(1.96682e7 + 3.40663e7i) q^{46} +(1.52194e7 - 2.63607e7i) q^{47} +(3.43556e7 - 2.11685e7i) q^{49} -1.21615e7 q^{50} +(-4.83873e6 - 8.38092e6i) q^{52} +(-2.15398e6 - 3.73080e6i) q^{53} -5.90485e7 q^{55} +(2.50341e7 - 7.09329e6i) q^{56} +(1.12692e7 - 1.95189e7i) q^{58} +(-3.30728e7 - 5.72837e7i) q^{59} +(1.00462e8 - 1.74006e8i) q^{61} +9.25317e7 q^{62} +1.67772e7 q^{64} +(-2.06451e7 + 3.57584e7i) q^{65} +(1.36301e8 + 2.36080e8i) q^{67} +(-4.52441e7 + 7.83651e7i) q^{68} +(-7.96156e7 - 7.73692e7i) q^{70} -1.43433e8 q^{71} +(1.84016e8 + 3.18725e8i) q^{73} +(-4.36701e7 - 7.56389e7i) q^{74} +1.28539e7 q^{76} +(2.46283e8 + 2.39334e8i) q^{77} +(-2.31998e8 + 4.01832e8i) q^{79} +(-3.57912e7 - 6.19921e7i) q^{80} +(-1.38453e8 + 2.39808e8i) q^{82} +7.47626e8 q^{83} +3.86081e8 q^{85} +(-1.14915e7 + 1.99038e7i) q^{86} +(1.10717e8 + 1.91767e8i) q^{88} +(-5.63943e8 + 9.76778e8i) q^{89} +(2.31043e8 - 6.54650e7i) q^{91} -6.29382e8 q^{92} +(2.43510e8 + 4.21771e8i) q^{94} +(-2.74215e7 - 4.74955e7i) q^{95} -1.27313e8 q^{97} +(1.84743e7 + 6.45393e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 48 q^{2} - 768 q^{4} + 1085 q^{5} - 6796 q^{7} + 24576 q^{8} + 17360 q^{10} - 2555 q^{11} + 36140 q^{13} - 43504 q^{14} - 196608 q^{16} - 20759 q^{17} + 1220649 q^{19} - 555520 q^{20} + 81760 q^{22}+ \cdots + 597954960 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 + 13.8564i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −128.000 221.703i −0.250000 0.433013i
\(5\) −546.130 + 945.925i −0.390779 + 0.676849i −0.992552 0.121818i \(-0.961128\pi\)
0.601774 + 0.798667i \(0.294461\pi\)
\(6\) 0 0
\(7\) 6111.84 1731.76i 0.962124 0.272613i
\(8\) 4096.00 0.353553
\(9\) 0 0
\(10\) −8738.08 15134.8i −0.276322 0.478604i
\(11\) 27030.4 + 46818.1i 0.556655 + 0.964154i 0.997773 + 0.0667050i \(0.0212486\pi\)
−0.441118 + 0.897449i \(0.645418\pi\)
\(12\) 0 0
\(13\) 37802.6 0.367093 0.183547 0.983011i \(-0.441242\pi\)
0.183547 + 0.983011i \(0.441242\pi\)
\(14\) −24898.8 + 98542.3i −0.173221 + 0.685561i
\(15\) 0 0
\(16\) −32768.0 + 56755.8i −0.125000 + 0.216506i
\(17\) −176735. 306114.i −0.513218 0.888920i −0.999882 0.0153311i \(-0.995120\pi\)
0.486664 0.873589i \(-0.338214\pi\)
\(18\) 0 0
\(19\) −25105.3 + 43483.7i −0.0441952 + 0.0765483i −0.887277 0.461237i \(-0.847406\pi\)
0.843082 + 0.537786i \(0.180739\pi\)
\(20\) 279618. 0.390779
\(21\) 0 0
\(22\) −864974. −0.787228
\(23\) 1.22926e6 2.12914e6i 0.915944 1.58646i 0.110432 0.993884i \(-0.464777\pi\)
0.805513 0.592579i \(-0.201890\pi\)
\(24\) 0 0
\(25\) 380047. + 658261.i 0.194584 + 0.337029i
\(26\) −302421. + 523808.i −0.129787 + 0.224798i
\(27\) 0 0
\(28\) −1.16625e6 1.13335e6i −0.358576 0.348459i
\(29\) −1.40865e6 −0.369840 −0.184920 0.982754i \(-0.559203\pi\)
−0.184920 + 0.982754i \(0.559203\pi\)
\(30\) 0 0
\(31\) −2.89162e6 5.00843e6i −0.562358 0.974033i −0.997290 0.0735696i \(-0.976561\pi\)
0.434932 0.900463i \(-0.356772\pi\)
\(32\) −524288. 908093.i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 5.65552e6 0.725800
\(35\) −1.69974e6 + 6.72711e6i −0.191460 + 0.757743i
\(36\) 0 0
\(37\) −2.72938e6 + 4.72743e6i −0.239418 + 0.414684i −0.960547 0.278116i \(-0.910290\pi\)
0.721129 + 0.692800i \(0.243623\pi\)
\(38\) −401685. 695739.i −0.0312507 0.0541278i
\(39\) 0 0
\(40\) −2.23695e6 + 3.87451e6i −0.138161 + 0.239302i
\(41\) 1.73066e7 0.956501 0.478251 0.878223i \(-0.341271\pi\)
0.478251 + 0.878223i \(0.341271\pi\)
\(42\) 0 0
\(43\) 1.43644e6 0.0640735 0.0320367 0.999487i \(-0.489801\pi\)
0.0320367 + 0.999487i \(0.489801\pi\)
\(44\) 6.91979e6 1.19854e7i 0.278327 0.482077i
\(45\) 0 0
\(46\) 1.96682e7 + 3.40663e7i 0.647671 + 1.12180i
\(47\) 1.52194e7 2.63607e7i 0.454942 0.787982i −0.543743 0.839252i \(-0.682993\pi\)
0.998685 + 0.0512695i \(0.0163267\pi\)
\(48\) 0 0
\(49\) 3.43556e7 2.11685e7i 0.851364 0.524575i
\(50\) −1.21615e7 −0.275183
\(51\) 0 0
\(52\) −4.83873e6 8.38092e6i −0.0917733 0.158956i
\(53\) −2.15398e6 3.73080e6i −0.0374973 0.0649473i 0.846668 0.532122i \(-0.178605\pi\)
−0.884165 + 0.467175i \(0.845272\pi\)
\(54\) 0 0
\(55\) −5.90485e7 −0.870115
\(56\) 2.50341e7 7.09329e6i 0.340162 0.0963833i
\(57\) 0 0
\(58\) 1.12692e7 1.95189e7i 0.130758 0.226480i
\(59\) −3.30728e7 5.72837e7i −0.355334 0.615456i 0.631841 0.775098i \(-0.282300\pi\)
−0.987175 + 0.159642i \(0.948966\pi\)
\(60\) 0 0
\(61\) 1.00462e8 1.74006e8i 0.929008 1.60909i 0.144022 0.989574i \(-0.453996\pi\)
0.784986 0.619514i \(-0.212670\pi\)
\(62\) 9.25317e7 0.795295
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −2.06451e7 + 3.57584e7i −0.143452 + 0.248466i
\(66\) 0 0
\(67\) 1.36301e8 + 2.36080e8i 0.826347 + 1.43127i 0.900886 + 0.434057i \(0.142918\pi\)
−0.0745386 + 0.997218i \(0.523748\pi\)
\(68\) −4.52441e7 + 7.83651e7i −0.256609 + 0.444460i
\(69\) 0 0
\(70\) −7.96156e7 7.73692e7i −0.396330 0.385147i
\(71\) −1.43433e8 −0.669866 −0.334933 0.942242i \(-0.608714\pi\)
−0.334933 + 0.942242i \(0.608714\pi\)
\(72\) 0 0
\(73\) 1.84016e8 + 3.18725e8i 0.758407 + 1.31360i 0.943663 + 0.330909i \(0.107355\pi\)
−0.185256 + 0.982690i \(0.559311\pi\)
\(74\) −4.36701e7 7.56389e7i −0.169294 0.293226i
\(75\) 0 0
\(76\) 1.28539e7 0.0441952
\(77\) 2.46283e8 + 2.39334e8i 0.798412 + 0.775884i
\(78\) 0 0
\(79\) −2.31998e8 + 4.01832e8i −0.670134 + 1.16071i 0.307731 + 0.951473i \(0.400430\pi\)
−0.977866 + 0.209233i \(0.932903\pi\)
\(80\) −3.57912e7 6.19921e7i −0.0976947 0.169212i
\(81\) 0 0
\(82\) −1.38453e8 + 2.39808e8i −0.338174 + 0.585735i
\(83\) 7.47626e8 1.72915 0.864576 0.502503i \(-0.167587\pi\)
0.864576 + 0.502503i \(0.167587\pi\)
\(84\) 0 0
\(85\) 3.86081e8 0.802219
\(86\) −1.14915e7 + 1.99038e7i −0.0226534 + 0.0392368i
\(87\) 0 0
\(88\) 1.10717e8 + 1.91767e8i 0.196807 + 0.340880i
\(89\) −5.63943e8 + 9.76778e8i −0.952753 + 1.65022i −0.213325 + 0.976981i \(0.568429\pi\)
−0.739428 + 0.673235i \(0.764904\pi\)
\(90\) 0 0
\(91\) 2.31043e8 6.54650e7i 0.353189 0.100074i
\(92\) −6.29382e8 −0.915944
\(93\) 0 0
\(94\) 2.43510e8 + 4.21771e8i 0.321692 + 0.557188i
\(95\) −2.74215e7 4.74955e7i −0.0345410 0.0598269i
\(96\) 0 0
\(97\) −1.27313e8 −0.146016 −0.0730079 0.997331i \(-0.523260\pi\)
−0.0730079 + 0.997331i \(0.523260\pi\)
\(98\) 1.84743e7 + 6.45393e8i 0.0202325 + 0.706817i
\(99\) 0 0
\(100\) 9.72920e7 1.68515e8i 0.0972920 0.168515i
\(101\) 7.52725e8 + 1.30376e9i 0.719764 + 1.24667i 0.961093 + 0.276225i \(0.0890834\pi\)
−0.241329 + 0.970443i \(0.577583\pi\)
\(102\) 0 0
\(103\) 2.97478e8 5.15246e8i 0.260428 0.451074i −0.705928 0.708284i \(-0.749470\pi\)
0.966356 + 0.257210i \(0.0828032\pi\)
\(104\) 1.54839e8 0.129787
\(105\) 0 0
\(106\) 6.89274e7 0.0530292
\(107\) 6.77457e8 1.17339e9i 0.499637 0.865397i −0.500363 0.865816i \(-0.666800\pi\)
1.00000 0.000418881i \(0.000133334\pi\)
\(108\) 0 0
\(109\) 9.68920e8 + 1.67822e9i 0.657459 + 1.13875i 0.981271 + 0.192631i \(0.0617021\pi\)
−0.323812 + 0.946121i \(0.604965\pi\)
\(110\) 4.72388e8 8.18200e8i 0.307632 0.532834i
\(111\) 0 0
\(112\) −1.01985e8 + 4.03629e8i −0.0612430 + 0.242383i
\(113\) 1.98306e9 1.14415 0.572074 0.820202i \(-0.306139\pi\)
0.572074 + 0.820202i \(0.306139\pi\)
\(114\) 0 0
\(115\) 1.34267e9 + 2.32558e9i 0.715863 + 1.23991i
\(116\) 1.80308e8 + 3.12302e8i 0.0924599 + 0.160145i
\(117\) 0 0
\(118\) 1.05833e9 0.502518
\(119\) −1.61029e9 1.56486e9i −0.736111 0.715341i
\(120\) 0 0
\(121\) −2.82314e8 + 4.88982e8i −0.119729 + 0.207376i
\(122\) 1.60740e9 + 2.78410e9i 0.656908 + 1.13780i
\(123\) 0 0
\(124\) −7.40254e8 + 1.28216e9i −0.281179 + 0.487016i
\(125\) −2.96354e9 −1.08571
\(126\) 0 0
\(127\) 3.90286e7 0.0133127 0.00665635 0.999978i \(-0.497881\pi\)
0.00665635 + 0.999978i \(0.497881\pi\)
\(128\) −1.34218e8 + 2.32472e8i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −3.30322e8 5.72134e8i −0.101436 0.175692i
\(131\) 7.96889e8 1.38025e9i 0.236416 0.409485i −0.723267 0.690568i \(-0.757360\pi\)
0.959683 + 0.281083i \(0.0906938\pi\)
\(132\) 0 0
\(133\) −7.81364e7 + 3.09242e8i −0.0216532 + 0.0856971i
\(134\) −4.36163e9 −1.16863
\(135\) 0 0
\(136\) −7.23906e8 1.25384e9i −0.181450 0.314281i
\(137\) 2.81817e9 + 4.88122e9i 0.683479 + 1.18382i 0.973912 + 0.226925i \(0.0728672\pi\)
−0.290433 + 0.956895i \(0.593799\pi\)
\(138\) 0 0
\(139\) 2.40520e9 0.546493 0.273246 0.961944i \(-0.411903\pi\)
0.273246 + 0.961944i \(0.411903\pi\)
\(140\) 1.70898e9 4.84232e8i 0.375977 0.106531i
\(141\) 0 0
\(142\) 1.14747e9 1.98747e9i 0.236833 0.410208i
\(143\) 1.02182e9 + 1.76984e9i 0.204344 + 0.353934i
\(144\) 0 0
\(145\) 7.69308e8 1.33248e9i 0.144525 0.250325i
\(146\) −5.88851e9 −1.07255
\(147\) 0 0
\(148\) 1.39744e9 0.239418
\(149\) 2.41463e9 4.18227e9i 0.401341 0.695143i −0.592547 0.805536i \(-0.701878\pi\)
0.993888 + 0.110393i \(0.0352110\pi\)
\(150\) 0 0
\(151\) −5.33310e9 9.23721e9i −0.834802 1.44592i −0.894191 0.447685i \(-0.852248\pi\)
0.0593887 0.998235i \(-0.481085\pi\)
\(152\) −1.02831e8 + 1.78109e8i −0.0156253 + 0.0270639i
\(153\) 0 0
\(154\) −5.28658e9 + 1.49793e9i −0.757411 + 0.214609i
\(155\) 6.31679e9 0.879030
\(156\) 0 0
\(157\) 4.95301e9 + 8.57886e9i 0.650610 + 1.12689i 0.982975 + 0.183738i \(0.0588199\pi\)
−0.332365 + 0.943151i \(0.607847\pi\)
\(158\) −3.71196e9 6.42931e9i −0.473857 0.820744i
\(159\) 0 0
\(160\) 1.14532e9 0.138161
\(161\) 3.82589e9 1.51418e10i 0.448762 1.77607i
\(162\) 0 0
\(163\) 6.21440e9 1.07637e10i 0.689533 1.19431i −0.282457 0.959280i \(-0.591149\pi\)
0.971989 0.235025i \(-0.0755173\pi\)
\(164\) −2.21525e9 3.83693e9i −0.239125 0.414177i
\(165\) 0 0
\(166\) −5.98101e9 + 1.03594e10i −0.611347 + 1.05888i
\(167\) 5.48234e9 0.545434 0.272717 0.962094i \(-0.412078\pi\)
0.272717 + 0.962094i \(0.412078\pi\)
\(168\) 0 0
\(169\) −9.17547e9 −0.865243
\(170\) −3.08865e9 + 5.34969e9i −0.283627 + 0.491257i
\(171\) 0 0
\(172\) −1.83864e8 3.18462e8i −0.0160184 0.0277446i
\(173\) −2.29883e9 + 3.98170e9i −0.195119 + 0.337956i −0.946940 0.321412i \(-0.895843\pi\)
0.751820 + 0.659368i \(0.229176\pi\)
\(174\) 0 0
\(175\) 3.46274e9 + 3.36504e9i 0.279093 + 0.271218i
\(176\) −3.54293e9 −0.278327
\(177\) 0 0
\(178\) −9.02309e9 1.56285e10i −0.673698 1.16688i
\(179\) 1.28201e9 + 2.22051e9i 0.0933370 + 0.161664i 0.908913 0.416985i \(-0.136913\pi\)
−0.815576 + 0.578650i \(0.803580\pi\)
\(180\) 0 0
\(181\) −3.58323e9 −0.248154 −0.124077 0.992273i \(-0.539597\pi\)
−0.124077 + 0.992273i \(0.539597\pi\)
\(182\) −9.41237e8 + 3.72515e9i −0.0635884 + 0.251665i
\(183\) 0 0
\(184\) 5.03506e9 8.72097e9i 0.323835 0.560899i
\(185\) −2.98120e9 5.16358e9i −0.187119 0.324099i
\(186\) 0 0
\(187\) 9.55444e9 1.65488e10i 0.571371 0.989643i
\(188\) −7.79231e9 −0.454942
\(189\) 0 0
\(190\) 8.77489e8 0.0488484
\(191\) −3.48694e8 + 6.03956e8i −0.0189581 + 0.0328364i −0.875349 0.483492i \(-0.839368\pi\)
0.856391 + 0.516328i \(0.172702\pi\)
\(192\) 0 0
\(193\) 2.85429e8 + 4.94378e8i 0.0148078 + 0.0256479i 0.873334 0.487121i \(-0.161953\pi\)
−0.858527 + 0.512769i \(0.828620\pi\)
\(194\) 1.01850e9 1.76410e9i 0.0516244 0.0894161i
\(195\) 0 0
\(196\) −9.09063e9 4.90716e9i −0.439989 0.237508i
\(197\) 4.88945e9 0.231293 0.115646 0.993290i \(-0.463106\pi\)
0.115646 + 0.993290i \(0.463106\pi\)
\(198\) 0 0
\(199\) −5.09120e9 8.81822e9i −0.230134 0.398604i 0.727713 0.685882i \(-0.240583\pi\)
−0.957847 + 0.287277i \(0.907250\pi\)
\(200\) 1.55667e9 + 2.69624e9i 0.0687959 + 0.119158i
\(201\) 0 0
\(202\) −2.40872e10 −1.01790
\(203\) −8.60948e9 + 2.43945e9i −0.355832 + 0.100823i
\(204\) 0 0
\(205\) −9.45167e9 + 1.63708e10i −0.373780 + 0.647406i
\(206\) 4.75964e9 + 8.24394e9i 0.184150 + 0.318957i
\(207\) 0 0
\(208\) −1.23871e9 + 2.14552e9i −0.0458866 + 0.0794780i
\(209\) −2.71443e9 −0.0984058
\(210\) 0 0
\(211\) −2.89906e10 −1.00690 −0.503450 0.864025i \(-0.667936\pi\)
−0.503450 + 0.864025i \(0.667936\pi\)
\(212\) −5.51419e8 + 9.55086e8i −0.0187487 + 0.0324736i
\(213\) 0 0
\(214\) 1.08393e10 + 1.87742e10i 0.353297 + 0.611928i
\(215\) −7.84481e8 + 1.35876e9i −0.0250386 + 0.0433680i
\(216\) 0 0
\(217\) −2.63465e10 2.56031e10i −0.806592 0.783834i
\(218\) −3.10054e10 −0.929788
\(219\) 0 0
\(220\) 7.55821e9 + 1.30912e10i 0.217529 + 0.376771i
\(221\) −6.68103e9 1.15719e10i −0.188399 0.326316i
\(222\) 0 0
\(223\) −9.01973e9 −0.244243 −0.122121 0.992515i \(-0.538970\pi\)
−0.122121 + 0.992515i \(0.538970\pi\)
\(224\) −4.77697e9 4.64218e9i −0.126776 0.123199i
\(225\) 0 0
\(226\) −1.58645e10 + 2.74780e10i −0.404517 + 0.700644i
\(227\) 6.63153e9 + 1.14861e10i 0.165767 + 0.287116i 0.936927 0.349524i \(-0.113657\pi\)
−0.771161 + 0.636641i \(0.780323\pi\)
\(228\) 0 0
\(229\) 3.83833e10 6.64819e10i 0.922323 1.59751i 0.126512 0.991965i \(-0.459622\pi\)
0.795811 0.605545i \(-0.207045\pi\)
\(230\) −4.29655e10 −1.01238
\(231\) 0 0
\(232\) −5.76985e9 −0.130758
\(233\) −1.14694e9 + 1.98657e9i −0.0254942 + 0.0441572i −0.878491 0.477759i \(-0.841449\pi\)
0.852997 + 0.521916i \(0.174783\pi\)
\(234\) 0 0
\(235\) 1.66235e10 + 2.87927e10i 0.355563 + 0.615853i
\(236\) −8.46663e9 + 1.46646e10i −0.177667 + 0.307728i
\(237\) 0 0
\(238\) 3.45656e10 9.79400e9i 0.698310 0.197863i
\(239\) 4.06748e10 0.806372 0.403186 0.915118i \(-0.367903\pi\)
0.403186 + 0.915118i \(0.367903\pi\)
\(240\) 0 0
\(241\) −4.71851e9 8.17271e9i −0.0901008 0.156059i 0.817453 0.575996i \(-0.195386\pi\)
−0.907553 + 0.419937i \(0.862052\pi\)
\(242\) −4.51702e9 7.82372e9i −0.0846610 0.146637i
\(243\) 0 0
\(244\) −5.14367e10 −0.929008
\(245\) 1.26117e9 + 4.40586e10i 0.0223628 + 0.781237i
\(246\) 0 0
\(247\) −9.49046e8 + 1.64380e9i −0.0162237 + 0.0281003i
\(248\) −1.18441e10 2.05145e10i −0.198824 0.344373i
\(249\) 0 0
\(250\) 2.37083e10 4.10640e10i 0.383858 0.664862i
\(251\) 7.60552e10 1.20948 0.604738 0.796425i \(-0.293278\pi\)
0.604738 + 0.796425i \(0.293278\pi\)
\(252\) 0 0
\(253\) 1.32910e11 2.03946
\(254\) −3.12229e8 + 5.40796e8i −0.00470675 + 0.00815233i
\(255\) 0 0
\(256\) −2.14748e9 3.71955e9i −0.0312500 0.0541266i
\(257\) 4.51105e10 7.81337e10i 0.645028 1.11722i −0.339266 0.940690i \(-0.610179\pi\)
0.984295 0.176532i \(-0.0564878\pi\)
\(258\) 0 0
\(259\) −8.49478e9 + 3.36200e10i −0.117301 + 0.464246i
\(260\) 1.05703e10 0.143452
\(261\) 0 0
\(262\) 1.27502e10 + 2.20840e10i 0.167172 + 0.289550i
\(263\) −4.67841e10 8.10324e10i −0.602972 1.04438i −0.992368 0.123308i \(-0.960650\pi\)
0.389396 0.921070i \(-0.372684\pi\)
\(264\) 0 0
\(265\) 4.70541e9 0.0586126
\(266\) −3.65989e9 3.55663e9i −0.0448230 0.0435583i
\(267\) 0 0
\(268\) 3.48931e10 6.04365e10i 0.413173 0.715637i
\(269\) 7.42816e9 + 1.28660e10i 0.0864960 + 0.149815i 0.906028 0.423218i \(-0.139100\pi\)
−0.819532 + 0.573034i \(0.805766\pi\)
\(270\) 0 0
\(271\) −5.85924e10 + 1.01485e11i −0.659902 + 1.14298i 0.320739 + 0.947168i \(0.396069\pi\)
−0.980641 + 0.195816i \(0.937264\pi\)
\(272\) 2.31650e10 0.256609
\(273\) 0 0
\(274\) −9.01815e10 −0.966585
\(275\) −2.05457e10 + 3.55861e10i −0.216632 + 0.375218i
\(276\) 0 0
\(277\) 1.43612e10 + 2.48743e10i 0.146565 + 0.253859i 0.929956 0.367671i \(-0.119845\pi\)
−0.783390 + 0.621530i \(0.786511\pi\)
\(278\) −1.92416e10 + 3.33274e10i −0.193214 + 0.334657i
\(279\) 0 0
\(280\) −6.96215e9 + 2.75542e10i −0.0676912 + 0.267903i
\(281\) 7.39690e10 0.707736 0.353868 0.935295i \(-0.384866\pi\)
0.353868 + 0.935295i \(0.384866\pi\)
\(282\) 0 0
\(283\) 3.63744e10 + 6.30023e10i 0.337098 + 0.583872i 0.983886 0.178799i \(-0.0572212\pi\)
−0.646787 + 0.762671i \(0.723888\pi\)
\(284\) 1.83595e10 + 3.17996e10i 0.167467 + 0.290061i
\(285\) 0 0
\(286\) −3.26982e10 −0.288986
\(287\) 1.05775e11 2.99710e10i 0.920273 0.260755i
\(288\) 0 0
\(289\) −3.17652e9 + 5.50189e9i −0.0267862 + 0.0463950i
\(290\) 1.23089e10 + 2.13197e10i 0.102195 + 0.177007i
\(291\) 0 0
\(292\) 4.71081e10 8.15935e10i 0.379204 0.656800i
\(293\) −2.43926e11 −1.93354 −0.966771 0.255644i \(-0.917712\pi\)
−0.966771 + 0.255644i \(0.917712\pi\)
\(294\) 0 0
\(295\) 7.22481e10 0.555428
\(296\) −1.11796e10 + 1.93636e10i −0.0846471 + 0.146613i
\(297\) 0 0
\(298\) 3.86342e10 + 6.69163e10i 0.283791 + 0.491540i
\(299\) 4.64692e10 8.04871e10i 0.336237 0.582379i
\(300\) 0 0
\(301\) 8.77927e9 2.48756e9i 0.0616466 0.0174673i
\(302\) 1.70659e11 1.18059
\(303\) 0 0
\(304\) −1.64530e9 2.84975e9i −0.0110488 0.0191371i
\(305\) 1.09731e11 + 1.90060e11i 0.726073 + 1.25759i
\(306\) 0 0
\(307\) 1.41661e11 0.910182 0.455091 0.890445i \(-0.349607\pi\)
0.455091 + 0.890445i \(0.349607\pi\)
\(308\) 2.15368e10 8.52364e10i 0.136365 0.539693i
\(309\) 0 0
\(310\) −5.05343e10 + 8.75280e10i −0.310784 + 0.538294i
\(311\) 6.45871e10 + 1.11868e11i 0.391493 + 0.678086i 0.992647 0.121048i \(-0.0386254\pi\)
−0.601154 + 0.799133i \(0.705292\pi\)
\(312\) 0 0
\(313\) −2.22325e10 + 3.85078e10i −0.130930 + 0.226777i −0.924035 0.382307i \(-0.875130\pi\)
0.793106 + 0.609084i \(0.208463\pi\)
\(314\) −1.58496e11 −0.920101
\(315\) 0 0
\(316\) 1.18783e11 0.670134
\(317\) −1.24213e11 + 2.15143e11i −0.690877 + 1.19663i 0.280674 + 0.959803i \(0.409442\pi\)
−0.971551 + 0.236830i \(0.923891\pi\)
\(318\) 0 0
\(319\) −3.80765e10 6.59505e10i −0.205873 0.356583i
\(320\) −9.16254e9 + 1.58700e10i −0.0488473 + 0.0846061i
\(321\) 0 0
\(322\) 1.79204e11 + 1.74147e11i 0.928956 + 0.902745i
\(323\) 1.77480e10 0.0907271
\(324\) 0 0
\(325\) 1.43668e10 + 2.48839e10i 0.0714305 + 0.123721i
\(326\) 9.94303e10 + 1.72218e11i 0.487573 + 0.844501i
\(327\) 0 0
\(328\) 7.08880e10 0.338174
\(329\) 4.73679e10 1.87469e11i 0.222896 0.882159i
\(330\) 0 0
\(331\) −1.81110e11 + 3.13691e11i −0.829307 + 1.43640i 0.0692754 + 0.997598i \(0.477931\pi\)
−0.898583 + 0.438805i \(0.855402\pi\)
\(332\) −9.56961e10 1.65751e11i −0.432288 0.748744i
\(333\) 0 0
\(334\) −4.38587e10 + 7.59656e10i −0.192840 + 0.334009i
\(335\) −2.97752e11 −1.29167
\(336\) 0 0
\(337\) −4.33951e11 −1.83276 −0.916380 0.400309i \(-0.868903\pi\)
−0.916380 + 0.400309i \(0.868903\pi\)
\(338\) 7.34037e10 1.27139e11i 0.305909 0.529851i
\(339\) 0 0
\(340\) −4.94183e10 8.55951e10i −0.200555 0.347371i
\(341\) 1.56323e11 2.70760e11i 0.626079 1.08440i
\(342\) 0 0
\(343\) 1.73317e11 1.88874e11i 0.676112 0.736799i
\(344\) 5.88364e9 0.0226534
\(345\) 0 0
\(346\) −3.67813e10 6.37071e10i −0.137970 0.238971i
\(347\) 9.64888e10 + 1.67124e11i 0.357268 + 0.618807i 0.987503 0.157597i \(-0.0503749\pi\)
−0.630235 + 0.776404i \(0.717042\pi\)
\(348\) 0 0
\(349\) 2.85795e11 1.03119 0.515596 0.856832i \(-0.327570\pi\)
0.515596 + 0.856832i \(0.327570\pi\)
\(350\) −7.43292e10 + 2.10608e10i −0.264761 + 0.0750186i
\(351\) 0 0
\(352\) 2.83435e10 4.90923e10i 0.0984036 0.170440i
\(353\) 2.08069e10 + 3.60386e10i 0.0713217 + 0.123533i 0.899481 0.436960i \(-0.143945\pi\)
−0.828159 + 0.560493i \(0.810612\pi\)
\(354\) 0 0
\(355\) 7.83333e10 1.35677e11i 0.261769 0.453398i
\(356\) 2.88739e11 0.952753
\(357\) 0 0
\(358\) −4.10244e10 −0.131998
\(359\) −2.05388e11 + 3.55742e11i −0.652604 + 1.13034i 0.329885 + 0.944021i \(0.392990\pi\)
−0.982489 + 0.186322i \(0.940343\pi\)
\(360\) 0 0
\(361\) 1.60083e11 + 2.77272e11i 0.496094 + 0.859259i
\(362\) 2.86658e10 4.96507e10i 0.0877356 0.151962i
\(363\) 0 0
\(364\) −4.40873e10 4.28434e10i −0.131631 0.127917i
\(365\) −4.01986e11 −1.18548
\(366\) 0 0
\(367\) −9.15209e10 1.58519e11i −0.263344 0.456125i 0.703785 0.710413i \(-0.251492\pi\)
−0.967128 + 0.254289i \(0.918159\pi\)
\(368\) 8.05609e10 + 1.39536e11i 0.228986 + 0.396616i
\(369\) 0 0
\(370\) 9.53983e10 0.264626
\(371\) −1.96256e10 1.90719e10i −0.0537826 0.0522651i
\(372\) 0 0
\(373\) 1.42882e11 2.47479e11i 0.382198 0.661987i −0.609178 0.793034i \(-0.708501\pi\)
0.991376 + 0.131047i \(0.0418338\pi\)
\(374\) 1.52871e11 + 2.64780e11i 0.404020 + 0.699783i
\(375\) 0 0
\(376\) 6.23385e10 1.07973e11i 0.160846 0.278594i
\(377\) −5.32508e10 −0.135766
\(378\) 0 0
\(379\) 4.76362e10 0.118593 0.0592967 0.998240i \(-0.481114\pi\)
0.0592967 + 0.998240i \(0.481114\pi\)
\(380\) −7.01991e9 + 1.21588e10i −0.0172705 + 0.0299134i
\(381\) 0 0
\(382\) −5.57910e9 9.66329e9i −0.0134054 0.0232188i
\(383\) −2.04495e11 + 3.54196e11i −0.485611 + 0.841104i −0.999863 0.0165355i \(-0.994736\pi\)
0.514252 + 0.857639i \(0.328070\pi\)
\(384\) 0 0
\(385\) −3.60895e11 + 1.02258e11i −0.837158 + 0.237205i
\(386\) −9.13374e9 −0.0209414
\(387\) 0 0
\(388\) 1.62961e10 + 2.82256e10i 0.0365040 + 0.0632267i
\(389\) −5.61626e10 9.72765e10i −0.124358 0.215394i 0.797124 0.603816i \(-0.206354\pi\)
−0.921482 + 0.388421i \(0.873020\pi\)
\(390\) 0 0
\(391\) −8.69014e11 −1.88032
\(392\) 1.40721e11 8.67061e10i 0.301003 0.185465i
\(393\) 0 0
\(394\) −3.91156e10 + 6.77501e10i −0.0817743 + 0.141637i
\(395\) −2.53402e11 4.38905e11i −0.523748 0.907159i
\(396\) 0 0
\(397\) 1.92843e11 3.34013e11i 0.389624 0.674848i −0.602775 0.797911i \(-0.705938\pi\)
0.992399 + 0.123063i \(0.0392717\pi\)
\(398\) 1.62918e11 0.325459
\(399\) 0 0
\(400\) −4.98135e10 −0.0972920
\(401\) 9.03426e10 1.56478e11i 0.174479 0.302206i −0.765502 0.643434i \(-0.777509\pi\)
0.939981 + 0.341227i \(0.110843\pi\)
\(402\) 0 0
\(403\) −1.09311e11 1.89331e11i −0.206438 0.357561i
\(404\) 1.92698e11 3.33762e11i 0.359882 0.623334i
\(405\) 0 0
\(406\) 3.50738e10 1.38812e11i 0.0640642 0.253548i
\(407\) −2.95106e11 −0.533093
\(408\) 0 0
\(409\) 1.24009e11 + 2.14789e11i 0.219127 + 0.379540i 0.954541 0.298078i \(-0.0963456\pi\)
−0.735414 + 0.677618i \(0.763012\pi\)
\(410\) −1.51227e11 2.61932e11i −0.264303 0.457785i
\(411\) 0 0
\(412\) −1.52309e11 −0.260428
\(413\) −3.01337e11 2.92835e11i −0.509657 0.495277i
\(414\) 0 0
\(415\) −4.08301e11 + 7.07198e11i −0.675715 + 1.17037i
\(416\) −1.98194e10 3.43283e10i −0.0324468 0.0561994i
\(417\) 0 0
\(418\) 2.17154e10 3.76123e10i 0.0347917 0.0602610i
\(419\) 2.26007e11 0.358227 0.179113 0.983828i \(-0.442677\pi\)
0.179113 + 0.983828i \(0.442677\pi\)
\(420\) 0 0
\(421\) −3.76981e11 −0.584858 −0.292429 0.956287i \(-0.594464\pi\)
−0.292429 + 0.956287i \(0.594464\pi\)
\(422\) 2.31925e11 4.01705e11i 0.355993 0.616597i
\(423\) 0 0
\(424\) −8.82271e9 1.52814e10i −0.0132573 0.0229623i
\(425\) 1.34335e11 2.32675e11i 0.199728 0.345939i
\(426\) 0 0
\(427\) 3.12674e11 1.23747e12i 0.455162 1.80140i
\(428\) −3.46858e11 −0.499637
\(429\) 0 0
\(430\) −1.25517e10 2.17402e10i −0.0177049 0.0306658i
\(431\) −7.15512e10 1.23930e11i −0.0998779 0.172994i 0.811756 0.583997i \(-0.198512\pi\)
−0.911634 + 0.411003i \(0.865179\pi\)
\(432\) 0 0
\(433\) −1.36985e12 −1.87275 −0.936373 0.351007i \(-0.885839\pi\)
−0.936373 + 0.351007i \(0.885839\pi\)
\(434\) 5.65539e11 1.60243e11i 0.765172 0.216808i
\(435\) 0 0
\(436\) 2.48044e11 4.29624e11i 0.328730 0.569376i
\(437\) 6.17220e10 + 1.06906e11i 0.0809606 + 0.140228i
\(438\) 0 0
\(439\) 5.27776e11 9.14136e11i 0.678203 1.17468i −0.297319 0.954778i \(-0.596092\pi\)
0.975522 0.219904i \(-0.0705743\pi\)
\(440\) −2.41863e11 −0.307632
\(441\) 0 0
\(442\) 2.13793e11 0.266436
\(443\) 3.68388e11 6.38067e11i 0.454453 0.787136i −0.544203 0.838953i \(-0.683168\pi\)
0.998657 + 0.0518173i \(0.0165014\pi\)
\(444\) 0 0
\(445\) −6.15972e11 1.06690e12i −0.744631 1.28974i
\(446\) 7.21578e10 1.24981e11i 0.0863528 0.149567i
\(447\) 0 0
\(448\) 1.02540e11 2.90541e10i 0.120265 0.0340766i
\(449\) 1.37800e11 0.160007 0.0800036 0.996795i \(-0.474507\pi\)
0.0800036 + 0.996795i \(0.474507\pi\)
\(450\) 0 0
\(451\) 4.67806e11 + 8.10264e11i 0.532441 + 0.922215i
\(452\) −2.53831e11 4.39649e11i −0.286037 0.495430i
\(453\) 0 0
\(454\) −2.12209e11 −0.234429
\(455\) −6.42547e10 + 2.54302e11i −0.0702835 + 0.278162i
\(456\) 0 0
\(457\) 4.08741e11 7.07960e11i 0.438354 0.759252i −0.559209 0.829027i \(-0.688895\pi\)
0.997563 + 0.0697754i \(0.0222283\pi\)
\(458\) 6.14133e11 + 1.06371e12i 0.652181 + 1.12961i
\(459\) 0 0
\(460\) 3.43724e11 5.95348e11i 0.357932 0.619956i
\(461\) −1.54090e12 −1.58899 −0.794495 0.607270i \(-0.792265\pi\)
−0.794495 + 0.607270i \(0.792265\pi\)
\(462\) 0 0
\(463\) −7.47957e11 −0.756419 −0.378209 0.925720i \(-0.623460\pi\)
−0.378209 + 0.925720i \(0.623460\pi\)
\(464\) 4.61588e10 7.99494e10i 0.0462300 0.0800727i
\(465\) 0 0
\(466\) −1.83511e10 3.17851e10i −0.0180271 0.0312238i
\(467\) 1.20537e11 2.08776e11i 0.117272 0.203121i −0.801414 0.598110i \(-0.795918\pi\)
0.918686 + 0.394989i \(0.129252\pi\)
\(468\) 0 0
\(469\) 1.24188e12 + 1.20684e12i 1.18523 + 1.15179i
\(470\) −5.31951e11 −0.502842
\(471\) 0 0
\(472\) −1.35466e11 2.34634e11i −0.125630 0.217597i
\(473\) 3.88275e10 + 6.72512e10i 0.0356668 + 0.0617767i
\(474\) 0 0
\(475\) −3.81648e10 −0.0343987
\(476\) −1.40815e11 + 5.57307e11i −0.125724 + 0.497581i
\(477\) 0 0
\(478\) −3.25399e11 + 5.63607e11i −0.285095 + 0.493800i
\(479\) 2.09044e11 + 3.62075e11i 0.181438 + 0.314259i 0.942370 0.334571i \(-0.108592\pi\)
−0.760933 + 0.648831i \(0.775258\pi\)
\(480\) 0 0
\(481\) −1.03178e11 + 1.78709e11i −0.0878887 + 0.152228i
\(482\) 1.50992e11 0.127422
\(483\) 0 0
\(484\) 1.44545e11 0.119729
\(485\) 6.95294e10 1.20428e11i 0.0570599 0.0988306i
\(486\) 0 0
\(487\) 8.57863e11 + 1.48586e12i 0.691095 + 1.19701i 0.971480 + 0.237123i \(0.0762046\pi\)
−0.280385 + 0.959888i \(0.590462\pi\)
\(488\) 4.11494e11 7.12728e11i 0.328454 0.568899i
\(489\) 0 0
\(490\) −6.20583e11 3.34993e11i −0.486315 0.262515i
\(491\) −3.34731e11 −0.259914 −0.129957 0.991520i \(-0.541484\pi\)
−0.129957 + 0.991520i \(0.541484\pi\)
\(492\) 0 0
\(493\) 2.48958e11 + 4.31209e11i 0.189809 + 0.328758i
\(494\) −1.51847e10 2.63007e10i −0.0114719 0.0198699i
\(495\) 0 0
\(496\) 3.79010e11 0.281179
\(497\) −8.76643e11 + 2.48392e11i −0.644494 + 0.182614i
\(498\) 0 0
\(499\) −3.55022e11 + 6.14916e11i −0.256332 + 0.443980i −0.965256 0.261304i \(-0.915847\pi\)
0.708924 + 0.705285i \(0.249181\pi\)
\(500\) 3.79333e11 + 6.57024e11i 0.271429 + 0.470128i
\(501\) 0 0
\(502\) −6.08441e11 + 1.05385e12i −0.427614 + 0.740649i
\(503\) 2.16835e12 1.51033 0.755167 0.655532i \(-0.227556\pi\)
0.755167 + 0.655532i \(0.227556\pi\)
\(504\) 0 0
\(505\) −1.64434e12 −1.12507
\(506\) −1.06328e12 + 1.84165e12i −0.721058 + 1.24891i
\(507\) 0 0
\(508\) −4.99566e9 8.65273e9i −0.00332817 0.00576457i
\(509\) 3.84948e11 6.66750e11i 0.254198 0.440284i −0.710479 0.703718i \(-0.751522\pi\)
0.964677 + 0.263434i \(0.0848551\pi\)
\(510\) 0 0
\(511\) 1.67663e12 + 1.62932e12i 1.08779 + 1.05709i
\(512\) 6.87195e10 0.0441942
\(513\) 0 0
\(514\) 7.21768e11 + 1.25014e12i 0.456104 + 0.789995i
\(515\) 3.24923e11 + 5.62783e11i 0.203539 + 0.352540i
\(516\) 0 0
\(517\) 1.64554e12 1.01298
\(518\) −3.97893e11 3.86667e11i −0.242819 0.235968i
\(519\) 0 0
\(520\) −8.45624e10 + 1.46466e11i −0.0507180 + 0.0878461i
\(521\) 1.16046e11 + 2.00998e11i 0.0690021 + 0.119515i 0.898462 0.439051i \(-0.144685\pi\)
−0.829460 + 0.558566i \(0.811352\pi\)
\(522\) 0 0
\(523\) 1.04130e12 1.80358e12i 0.608580 1.05409i −0.382895 0.923792i \(-0.625073\pi\)
0.991475 0.130299i \(-0.0415938\pi\)
\(524\) −4.08007e11 −0.236416
\(525\) 0 0
\(526\) 1.49709e12 0.852731
\(527\) −1.02210e12 + 1.77033e12i −0.577225 + 0.999783i
\(528\) 0 0
\(529\) −2.12159e12 3.67471e12i −1.17791 2.04020i
\(530\) −3.76433e10 + 6.52001e10i −0.0207227 + 0.0358928i
\(531\) 0 0
\(532\) 7.85612e10 2.22599e10i 0.0425212 0.0120482i
\(533\) 6.54236e11 0.351125
\(534\) 0 0
\(535\) 7.39959e11 + 1.28165e12i 0.390495 + 0.676357i
\(536\) 5.58289e11 + 9.66985e11i 0.292158 + 0.506032i
\(537\) 0 0
\(538\) −2.37701e11 −0.122324
\(539\) 1.91971e12 + 1.03627e12i 0.979687 + 0.528839i
\(540\) 0 0
\(541\) 4.19871e11 7.27238e11i 0.210731 0.364996i −0.741213 0.671270i \(-0.765749\pi\)
0.951943 + 0.306274i \(0.0990823\pi\)
\(542\) −9.37478e11 1.62376e12i −0.466621 0.808212i
\(543\) 0 0
\(544\) −1.85320e11 + 3.20984e11i −0.0907250 + 0.157140i
\(545\) −2.11662e12 −1.02768
\(546\) 0 0
\(547\) −7.58235e11 −0.362127 −0.181064 0.983471i \(-0.557954\pi\)
−0.181064 + 0.983471i \(0.557954\pi\)
\(548\) 7.21452e11 1.24959e12i 0.341739 0.591910i
\(549\) 0 0
\(550\) −3.28731e11 5.69378e11i −0.153182 0.265319i
\(551\) 3.53647e10 6.12535e10i 0.0163451 0.0283106i
\(552\) 0 0
\(553\) −7.22057e11 + 2.85770e12i −0.328328 + 1.29943i
\(554\) −4.59558e11 −0.207275
\(555\) 0 0
\(556\) −3.07866e11 5.33239e11i −0.136623 0.236638i
\(557\) 7.98622e11 + 1.38325e12i 0.351555 + 0.608911i 0.986522 0.163628i \(-0.0523198\pi\)
−0.634967 + 0.772539i \(0.718986\pi\)
\(558\) 0 0
\(559\) 5.43010e10 0.0235209
\(560\) −3.26105e11 3.16904e11i −0.140124 0.136170i
\(561\) 0 0
\(562\) −5.91752e11 + 1.02494e12i −0.250222 + 0.433398i
\(563\) 1.30480e11 + 2.25999e11i 0.0547340 + 0.0948021i 0.892094 0.451849i \(-0.149236\pi\)
−0.837360 + 0.546652i \(0.815902\pi\)
\(564\) 0 0
\(565\) −1.08301e12 + 1.87582e12i −0.447108 + 0.774415i
\(566\) −1.16398e12 −0.476729
\(567\) 0 0
\(568\) −5.87504e11 −0.236833
\(569\) −7.66696e11 + 1.32796e12i −0.306632 + 0.531103i −0.977623 0.210363i \(-0.932535\pi\)
0.670991 + 0.741465i \(0.265869\pi\)
\(570\) 0 0
\(571\) 1.38056e12 + 2.39120e12i 0.543492 + 0.941355i 0.998700 + 0.0509702i \(0.0162313\pi\)
−0.455209 + 0.890385i \(0.650435\pi\)
\(572\) 2.61586e11 4.53080e11i 0.102172 0.176967i
\(573\) 0 0
\(574\) −4.30914e11 + 1.70544e12i −0.165686 + 0.655740i
\(575\) 1.86871e12 0.712913
\(576\) 0 0
\(577\) 2.00235e12 + 3.46817e12i 0.752054 + 1.30260i 0.946826 + 0.321747i \(0.104270\pi\)
−0.194771 + 0.980849i \(0.562396\pi\)
\(578\) −5.08243e10 8.80302e10i −0.0189407 0.0328063i
\(579\) 0 0
\(580\) −3.93886e11 −0.144525
\(581\) 4.56937e12 1.29471e12i 1.66366 0.471389i
\(582\) 0 0
\(583\) 1.16446e11 2.01690e11i 0.0417461 0.0723064i
\(584\) 7.53729e11 + 1.30550e12i 0.268137 + 0.464428i
\(585\) 0 0
\(586\) 1.95141e12 3.37994e12i 0.683610 1.18405i
\(587\) 1.31451e12 0.456976 0.228488 0.973547i \(-0.426622\pi\)
0.228488 + 0.973547i \(0.426622\pi\)
\(588\) 0 0
\(589\) 2.90380e11 0.0994140
\(590\) −5.77985e11 + 1.00110e12i −0.196373 + 0.340129i
\(591\) 0 0
\(592\) −1.78873e11 3.09817e11i −0.0598545 0.103671i
\(593\) 2.09286e12 3.62495e12i 0.695016 1.20380i −0.275159 0.961399i \(-0.588731\pi\)
0.970175 0.242404i \(-0.0779361\pi\)
\(594\) 0 0
\(595\) 2.35966e12 6.68599e11i 0.771834 0.218695i
\(596\) −1.23629e12 −0.401341
\(597\) 0 0
\(598\) 7.43508e11 + 1.28779e12i 0.237755 + 0.411804i
\(599\) −9.72836e11 1.68500e12i −0.308758 0.534785i 0.669333 0.742963i \(-0.266580\pi\)
−0.978091 + 0.208178i \(0.933247\pi\)
\(600\) 0 0
\(601\) 4.58168e12 1.43248 0.716242 0.697852i \(-0.245861\pi\)
0.716242 + 0.697852i \(0.245861\pi\)
\(602\) −3.57655e10 + 1.41550e11i −0.0110989 + 0.0439263i
\(603\) 0 0
\(604\) −1.36527e12 + 2.36472e12i −0.417401 + 0.722960i
\(605\) −3.08360e11 5.34096e11i −0.0935749 0.162076i
\(606\) 0 0
\(607\) 1.86944e12 3.23796e12i 0.558936 0.968106i −0.438650 0.898658i \(-0.644543\pi\)
0.997586 0.0694474i \(-0.0221236\pi\)
\(608\) 5.26497e10 0.0156253
\(609\) 0 0
\(610\) −3.51139e12 −1.02682
\(611\) 5.75331e11 9.96502e11i 0.167006 0.289263i
\(612\) 0 0
\(613\) −5.61986e11 9.73387e11i −0.160751 0.278428i 0.774387 0.632712i \(-0.218058\pi\)
−0.935138 + 0.354283i \(0.884725\pi\)
\(614\) −1.13329e12 + 1.96291e12i −0.321798 + 0.557370i
\(615\) 0 0
\(616\) 1.00878e12 + 9.80314e11i 0.282281 + 0.274317i
\(617\) −8.34463e11 −0.231805 −0.115903 0.993261i \(-0.536976\pi\)
−0.115903 + 0.993261i \(0.536976\pi\)
\(618\) 0 0
\(619\) −1.23873e12 2.14554e12i −0.339132 0.587394i 0.645138 0.764066i \(-0.276800\pi\)
−0.984270 + 0.176673i \(0.943467\pi\)
\(620\) −8.08549e11 1.40045e12i −0.219758 0.380631i
\(621\) 0 0
\(622\) −2.06679e12 −0.553655
\(623\) −1.75519e12 + 6.94653e12i −0.466796 + 1.84745i
\(624\) 0 0
\(625\) 8.76198e11 1.51762e12i 0.229690 0.397835i
\(626\) −3.55719e11 6.16124e11i −0.0925813 0.160355i
\(627\) 0 0
\(628\) 1.26797e12 2.19619e12i 0.325305 0.563445i
\(629\) 1.92951e12 0.491495
\(630\) 0 0
\(631\) 1.00841e12 0.253223 0.126612 0.991952i \(-0.459590\pi\)
0.126612 + 0.991952i \(0.459590\pi\)
\(632\) −9.50263e11 + 1.64590e12i −0.236928 + 0.410372i
\(633\) 0 0
\(634\) −1.98741e12 3.44229e12i −0.488524 0.846148i
\(635\) −2.13147e10 + 3.69181e10i −0.00520232 + 0.00901068i
\(636\) 0 0
\(637\) 1.29873e12 8.00223e11i 0.312530 0.192568i
\(638\) 1.21845e12 0.291148
\(639\) 0 0
\(640\) −1.46601e11 2.53920e11i −0.0345403 0.0598255i
\(641\) −3.49112e12 6.04681e12i −0.816778 1.41470i −0.908044 0.418875i \(-0.862425\pi\)
0.0912655 0.995827i \(-0.470909\pi\)
\(642\) 0 0
\(643\) −5.09779e12 −1.17607 −0.588034 0.808836i \(-0.700098\pi\)
−0.588034 + 0.808836i \(0.700098\pi\)
\(644\) −3.84668e12 + 1.08994e12i −0.881252 + 0.249698i
\(645\) 0 0
\(646\) −1.41984e11 + 2.45923e11i −0.0320769 + 0.0555588i
\(647\) 1.10368e12 + 1.91163e12i 0.247613 + 0.428879i 0.962863 0.269990i \(-0.0870205\pi\)
−0.715250 + 0.698869i \(0.753687\pi\)
\(648\) 0 0
\(649\) 1.78794e12 3.09681e12i 0.395597 0.685193i
\(650\) −4.59736e11 −0.101018
\(651\) 0 0
\(652\) −3.18177e12 −0.689533
\(653\) 4.10454e12 7.10928e12i 0.883397 1.53009i 0.0358561 0.999357i \(-0.488584\pi\)
0.847540 0.530731i \(-0.178082\pi\)
\(654\) 0 0
\(655\) 8.70410e11 + 1.50759e12i 0.184773 + 0.320036i
\(656\) −5.67104e11 + 9.82253e11i −0.119563 + 0.207089i
\(657\) 0 0
\(658\) 2.21870e12 + 2.15610e12i 0.461404 + 0.448386i
\(659\) −5.75171e12 −1.18799 −0.593994 0.804469i \(-0.702450\pi\)
−0.593994 + 0.804469i \(0.702450\pi\)
\(660\) 0 0
\(661\) −1.70202e12 2.94798e12i −0.346783 0.600646i 0.638893 0.769296i \(-0.279393\pi\)
−0.985676 + 0.168650i \(0.946059\pi\)
\(662\) −2.89775e12 5.01906e12i −0.586409 1.01569i
\(663\) 0 0
\(664\) 3.06228e12 0.611347
\(665\) −2.49847e11 2.42797e11i −0.0495423 0.0481445i
\(666\) 0 0
\(667\) −1.73161e12 + 2.99923e12i −0.338753 + 0.586737i
\(668\) −7.01740e11 1.21545e12i −0.136358 0.236180i
\(669\) 0 0
\(670\) 2.38202e12 4.12577e12i 0.456676 0.790986i
\(671\) 1.08622e13 2.06855
\(672\) 0 0
\(673\) −7.13050e12 −1.33984 −0.669918 0.742435i \(-0.733671\pi\)
−0.669918 + 0.742435i \(0.733671\pi\)
\(674\) 3.47160e12 6.01300e12i 0.647979 1.12233i
\(675\) 0 0
\(676\) 1.17446e12 + 2.03422e12i 0.216311 + 0.374661i
\(677\) −6.50974e11 + 1.12752e12i −0.119101 + 0.206289i −0.919412 0.393297i \(-0.871334\pi\)
0.800311 + 0.599585i \(0.204668\pi\)
\(678\) 0 0
\(679\) −7.78117e11 + 2.20476e11i −0.140485 + 0.0398058i
\(680\) 1.58139e12 0.283627
\(681\) 0 0
\(682\) 2.50117e12 + 4.33216e12i 0.442704 + 0.766786i
\(683\) −2.31279e12 4.00587e12i −0.406671 0.704374i 0.587844 0.808975i \(-0.299977\pi\)
−0.994514 + 0.104600i \(0.966644\pi\)
\(684\) 0 0
\(685\) −6.15635e12 −1.06836
\(686\) 1.23058e12 + 3.91255e12i 0.212154 + 0.674530i
\(687\) 0 0
\(688\) −4.70692e10 + 8.15262e10i −0.00800919 + 0.0138723i
\(689\) −8.14260e10 1.41034e11i −0.0137650 0.0238417i
\(690\) 0 0
\(691\) 1.46317e12 2.53428e12i 0.244142 0.422866i −0.717748 0.696303i \(-0.754827\pi\)
0.961890 + 0.273437i \(0.0881604\pi\)
\(692\) 1.17700e12 0.195119
\(693\) 0 0
\(694\) −3.08764e12 −0.505254
\(695\) −1.31355e12 + 2.27514e12i −0.213558 + 0.369893i
\(696\) 0 0
\(697\) −3.05869e12 5.29780e12i −0.490894 0.850253i
\(698\) −2.28636e12 + 3.96009e12i −0.364582 + 0.631474i
\(699\) 0 0
\(700\) 3.02806e11 1.19842e12i 0.0476677 0.188655i
\(701\) −5.32710e12 −0.833220 −0.416610 0.909085i \(-0.636782\pi\)
−0.416610 + 0.909085i \(0.636782\pi\)
\(702\) 0 0
\(703\) −1.37044e11 2.37367e11i −0.0211622 0.0366541i
\(704\) 4.53495e11 + 7.85477e11i 0.0695818 + 0.120519i
\(705\) 0 0
\(706\) −6.65821e11 −0.100864
\(707\) 6.85833e12 + 6.66482e12i 1.03236 + 1.00323i
\(708\) 0 0
\(709\) −1.57111e12 + 2.72124e12i −0.233506 + 0.404444i −0.958837 0.283956i \(-0.908353\pi\)
0.725332 + 0.688400i \(0.241686\pi\)
\(710\) 1.25333e12 + 2.17084e12i 0.185099 + 0.320601i
\(711\) 0 0
\(712\) −2.30991e12 + 4.00088e12i −0.336849 + 0.583440i
\(713\) −1.42182e13 −2.06036
\(714\) 0 0
\(715\) −2.23218e12 −0.319413
\(716\) 3.28195e11 5.68451e11i 0.0466685 0.0808322i
\(717\) 0 0
\(718\) −3.28620e12 5.69187e12i −0.461460 0.799273i
\(719\) 7.96174e11 1.37901e12i 0.111104 0.192437i −0.805112 0.593123i \(-0.797895\pi\)
0.916216 + 0.400686i \(0.131228\pi\)
\(720\) 0 0
\(721\) 9.25853e11 3.66426e12i 0.127595 0.504985i
\(722\) −5.12267e12 −0.701582
\(723\) 0 0
\(724\) 4.58653e11 + 7.94410e11i 0.0620384 + 0.107454i
\(725\) −5.35355e11 9.27262e11i −0.0719649 0.124647i
\(726\) 0 0
\(727\) 6.30493e11 0.0837096 0.0418548 0.999124i \(-0.486673\pi\)
0.0418548 + 0.999124i \(0.486673\pi\)
\(728\) 9.46353e11 2.68145e11i 0.124871 0.0353816i
\(729\) 0 0
\(730\) 3.21589e12 5.57008e12i 0.419129 0.725954i
\(731\) −2.53868e11 4.39713e11i −0.0328837 0.0569562i
\(732\) 0 0
\(733\) 5.97049e12 1.03412e13i 0.763910 1.32313i −0.176911 0.984227i \(-0.556610\pi\)
0.940821 0.338904i \(-0.110056\pi\)
\(734\) 2.92867e12 0.372424
\(735\) 0 0
\(736\) −2.57795e12 −0.323835
\(737\) −7.36855e12 + 1.27627e13i −0.919980 + 1.59345i
\(738\) 0 0
\(739\) 2.68231e11 + 4.64590e11i 0.0330833 + 0.0573020i 0.882093 0.471075i \(-0.156134\pi\)
−0.849010 + 0.528377i \(0.822801\pi\)
\(740\) −7.63186e11 + 1.32188e12i −0.0935595 + 0.162050i
\(741\) 0 0
\(742\) 4.21273e11 1.19366e11i 0.0510207 0.0144565i
\(743\) −7.16300e12 −0.862274 −0.431137 0.902286i \(-0.641888\pi\)
−0.431137 + 0.902286i \(0.641888\pi\)
\(744\) 0 0
\(745\) 2.63741e12 + 4.56812e12i 0.313671 + 0.543294i
\(746\) 2.28612e12 + 3.95967e12i 0.270255 + 0.468095i
\(747\) 0 0
\(748\) −4.89187e12 −0.571371
\(749\) 2.10848e12 8.34477e12i 0.244794 0.968827i
\(750\) 0 0
\(751\) −6.44748e12 + 1.11674e13i −0.739623 + 1.28106i 0.213042 + 0.977043i \(0.431663\pi\)
−0.952665 + 0.304021i \(0.901671\pi\)
\(752\) 9.97415e11 + 1.72757e12i 0.113735 + 0.196996i
\(753\) 0 0
\(754\) 4.26006e11 7.37864e11i 0.0480004 0.0831391i
\(755\) 1.16503e13 1.30489
\(756\) 0 0
\(757\) −1.53380e13 −1.69761 −0.848804 0.528708i \(-0.822677\pi\)
−0.848804 + 0.528708i \(0.822677\pi\)
\(758\) −3.81090e11 + 6.60067e11i −0.0419291 + 0.0726234i
\(759\) 0 0
\(760\) −1.12319e11 1.94542e11i −0.0122121 0.0211520i
\(761\) 4.27674e12 7.40753e12i 0.462256 0.800650i −0.536817 0.843698i \(-0.680374\pi\)
0.999073 + 0.0430484i \(0.0137070\pi\)
\(762\) 0 0
\(763\) 8.82816e12 + 8.57907e12i 0.942996 + 0.916389i
\(764\) 1.78531e11 0.0189581
\(765\) 0 0
\(766\) −3.27193e12 5.66714e12i −0.343379 0.594750i
\(767\) −1.25024e12 2.16547e12i −0.130441 0.225930i
\(768\) 0 0
\(769\) 5.63703e12 0.581275 0.290638 0.956833i \(-0.406133\pi\)
0.290638 + 0.956833i \(0.406133\pi\)
\(770\) 1.47023e12 5.81877e12i 0.150723 0.596517i
\(771\) 0 0
\(772\) 7.30699e10 1.26561e11i 0.00740390 0.0128239i
\(773\) −1.24471e12 2.15590e12i −0.125390 0.217181i 0.796496 0.604644i \(-0.206685\pi\)
−0.921885 + 0.387463i \(0.873351\pi\)
\(774\) 0 0
\(775\) 2.19790e12 3.80687e12i 0.218852 0.379063i
\(776\) −5.21474e11 −0.0516244
\(777\) 0 0
\(778\) 1.79720e12 0.175869
\(779\) −4.34489e11 + 7.52557e11i −0.0422727 + 0.0732185i
\(780\) 0 0
\(781\) −3.87707e12 6.71528e12i −0.372884 0.645854i
\(782\) 6.95211e12 1.20414e13i 0.664793 1.15145i
\(783\) 0 0
\(784\) 7.56706e10 + 2.64353e12i 0.00715327 + 0.249898i
\(785\) −1.08199e13 −1.01698
\(786\) 0 0
\(787\) 6.87537e12 + 1.19085e13i 0.638866 + 1.10655i 0.985682 + 0.168615i \(0.0539294\pi\)
−0.346816 + 0.937933i \(0.612737\pi\)
\(788\) −6.25849e11 1.08400e12i −0.0578231 0.100153i
\(789\) 0 0
\(790\) 8.10886e12 0.740692
\(791\) 1.21201e13 3.43418e12i 1.10081 0.311910i
\(792\) 0 0
\(793\) 3.79774e12 6.57787e12i 0.341032 0.590685i
\(794\) 3.08548e12 + 5.34421e12i 0.275506 + 0.477190i
\(795\) 0 0
\(796\) −1.30335e12 + 2.25746e12i −0.115067 + 0.199302i
\(797\) −1.44214e12 −0.126603 −0.0633016 0.997994i \(-0.520163\pi\)
−0.0633016 + 0.997994i \(0.520163\pi\)
\(798\) 0 0
\(799\) −1.07592e13 −0.933938
\(800\) 3.98508e11 6.90236e11i 0.0343979 0.0595790i
\(801\) 0 0
\(802\) 1.44548e12 + 2.50365e12i 0.123375 + 0.213692i
\(803\) −9.94805e12 + 1.72305e13i −0.844342 + 1.46244i
\(804\) 0 0
\(805\) 1.22335e13 + 1.18884e13i 1.02676 + 0.997794i
\(806\) 3.49794e12 0.291947
\(807\) 0 0
\(808\) 3.08316e12 + 5.34019e12i 0.254475 + 0.440764i
\(809\) 1.35494e11 + 2.34683e11i 0.0111212 + 0.0192625i 0.871532 0.490338i \(-0.163127\pi\)
−0.860411 + 0.509600i \(0.829793\pi\)
\(810\) 0 0
\(811\) 1.23287e13 1.00075 0.500373 0.865810i \(-0.333196\pi\)
0.500373 + 0.865810i \(0.333196\pi\)
\(812\) 1.64285e12 + 1.59649e12i 0.132616 + 0.128874i
\(813\) 0 0
\(814\) 2.36085e12 4.08910e12i 0.188477 0.326451i
\(815\) 6.78773e12 + 1.17567e13i 0.538909 + 0.933418i
\(816\) 0 0
\(817\) −3.60622e10 + 6.24616e10i −0.00283174 + 0.00490471i
\(818\) −3.96827e12 −0.309893
\(819\) 0 0
\(820\) 4.83926e12 0.373780
\(821\) −4.37808e12 + 7.58306e12i −0.336310 + 0.582506i −0.983736 0.179623i \(-0.942512\pi\)
0.647426 + 0.762129i \(0.275846\pi\)
\(822\) 0 0
\(823\) −6.64063e12 1.15019e13i −0.504557 0.873918i −0.999986 0.00526950i \(-0.998323\pi\)
0.495430 0.868648i \(-0.335011\pi\)
\(824\) 1.21847e12 2.11045e12i 0.0920750 0.159479i
\(825\) 0 0
\(826\) 6.46834e12 1.83277e12i 0.483485 0.136993i
\(827\) 1.28106e13 0.952345 0.476173 0.879352i \(-0.342024\pi\)
0.476173 + 0.879352i \(0.342024\pi\)
\(828\) 0 0
\(829\) −7.12962e12 1.23489e13i −0.524289 0.908095i −0.999600 0.0282773i \(-0.990998\pi\)
0.475311 0.879818i \(-0.342335\pi\)
\(830\) −6.53281e12 1.13152e13i −0.477803 0.827579i
\(831\) 0 0
\(832\) 6.34222e11 0.0458866
\(833\) −1.25518e13 6.77552e12i −0.903241 0.487573i
\(834\) 0 0
\(835\) −2.99407e12 + 5.18588e12i −0.213144 + 0.369176i
\(836\) 3.47447e11 + 6.01796e11i 0.0246014 + 0.0426109i
\(837\) 0 0
\(838\) −1.80805e12 + 3.13164e12i −0.126652 + 0.219368i
\(839\) −5.62810e12 −0.392133 −0.196066 0.980591i \(-0.562817\pi\)
−0.196066 + 0.980591i \(0.562817\pi\)
\(840\) 0 0
\(841\) −1.25228e13 −0.863219
\(842\) 3.01585e12 5.22361e12i 0.206779 0.358151i
\(843\) 0 0
\(844\) 3.71080e12 + 6.42729e12i 0.251725 + 0.436000i
\(845\) 5.01099e12 8.67930e12i 0.338118 0.585638i
\(846\) 0 0
\(847\) −8.78659e11 + 3.47748e12i −0.0586604 + 0.232161i
\(848\) 2.82327e11 0.0187487
\(849\) 0 0
\(850\) 2.14936e12 + 3.72280e12i 0.141229 + 0.244616i
\(851\) 6.71025e12 + 1.16225e13i 0.438587 + 0.759655i
\(852\) 0 0
\(853\) 1.54422e13 0.998709 0.499354 0.866398i \(-0.333571\pi\)
0.499354 + 0.866398i \(0.333571\pi\)
\(854\) 1.46456e13 + 1.42323e13i 0.942205 + 0.915620i
\(855\) 0 0
\(856\) 2.77486e12 4.80621e12i 0.176648 0.305964i
\(857\) −8.04165e12 1.39286e13i −0.509251 0.882048i −0.999943 0.0107150i \(-0.996589\pi\)
0.490692 0.871333i \(-0.336744\pi\)
\(858\) 0 0
\(859\) 1.51461e12 2.62338e12i 0.0949141 0.164396i −0.814659 0.579941i \(-0.803076\pi\)
0.909573 + 0.415545i \(0.136409\pi\)
\(860\) 4.01654e11 0.0250386
\(861\) 0 0
\(862\) 2.28964e12 0.141249
\(863\) 6.78181e12 1.17464e13i 0.416195 0.720871i −0.579358 0.815073i \(-0.696697\pi\)
0.995553 + 0.0942019i \(0.0300299\pi\)
\(864\) 0 0
\(865\) −2.51092e12 4.34904e12i −0.152497 0.264132i
\(866\) 1.09588e13 1.89813e13i 0.662116 1.14682i
\(867\) 0 0
\(868\) −2.30393e12 + 9.11828e12i −0.137762 + 0.545223i
\(869\) −2.50840e13 −1.49213
\(870\) 0 0
\(871\) 5.15253e12 + 8.92444e12i 0.303346 + 0.525411i
\(872\) 3.96870e12 + 6.87399e12i 0.232447 + 0.402610i
\(873\) 0 0
\(874\) −1.97511e12 −0.114496
\(875\) −1.81127e13 + 5.13214e12i −1.04459 + 0.295980i
\(876\) 0 0
\(877\) −1.04192e13 + 1.80465e13i −0.594751 + 1.03014i 0.398831 + 0.917024i \(0.369416\pi\)
−0.993582 + 0.113114i \(0.963917\pi\)
\(878\) 8.44442e12 + 1.46262e13i 0.479562 + 0.830626i
\(879\) 0 0
\(880\) 1.93490e12 3.35135e12i 0.108764 0.188385i
\(881\) 1.45413e13 0.813225 0.406612 0.913601i \(-0.366710\pi\)
0.406612 + 0.913601i \(0.366710\pi\)
\(882\) 0 0
\(883\) 6.56890e12 0.363638 0.181819 0.983332i \(-0.441802\pi\)
0.181819 + 0.983332i \(0.441802\pi\)
\(884\) −1.71034e12 + 2.96240e12i −0.0941995 + 0.163158i
\(885\) 0 0
\(886\) 5.89421e12 + 1.02091e13i 0.321347 + 0.556589i
\(887\) 6.13102e11 1.06192e12i 0.0332565 0.0576020i −0.848918 0.528524i \(-0.822746\pi\)
0.882175 + 0.470922i \(0.156079\pi\)
\(888\) 0 0
\(889\) 2.38537e11 6.75881e10i 0.0128085 0.00362921i
\(890\) 1.97111e13 1.05307
\(891\) 0 0
\(892\) 1.15453e12 + 1.99970e12i 0.0610607 + 0.105760i
\(893\) 7.64174e11 + 1.32359e12i 0.0402124 + 0.0696500i
\(894\) 0 0
\(895\) −2.80058e12 −0.145896
\(896\) −4.17732e11 + 1.65326e12i −0.0216527 + 0.0856952i
\(897\) 0 0
\(898\) −1.10240e12 + 1.90941e12i −0.0565711 + 0.0979840i
\(899\) 4.07329e12 + 7.05514e12i 0.207982 + 0.360236i
\(900\) 0 0
\(901\) −7.61367e11 + 1.31873e12i −0.0384886 + 0.0666643i
\(902\) −1.49698e13 −0.752985
\(903\) 0 0
\(904\) 8.12260e12 0.404517
\(905\) 1.95691e12 3.38946e12i 0.0969732 0.167962i
\(906\) 0 0
\(907\) 6.95770e12 + 1.20511e13i 0.341376 + 0.591280i 0.984688 0.174323i \(-0.0557737\pi\)
−0.643313 + 0.765604i \(0.722440\pi\)
\(908\) 1.69767e12 2.94045e12i 0.0828833 0.143558i
\(909\) 0 0
\(910\) −3.00967e12 2.92475e12i −0.145490 0.141385i
\(911\) −5.99228e11 −0.0288243 −0.0144122 0.999896i \(-0.504588\pi\)
−0.0144122 + 0.999896i \(0.504588\pi\)
\(912\) 0 0
\(913\) 2.02086e13 + 3.50024e13i 0.962540 + 1.66717i
\(914\) 6.53985e12 + 1.13274e13i 0.309963 + 0.536872i
\(915\) 0 0
\(916\) −1.96523e13 −0.922323
\(917\) 2.48020e12 9.81591e12i 0.115831 0.458425i
\(918\) 0 0
\(919\) 2.60385e12 4.51000e12i 0.120419 0.208572i −0.799514 0.600648i \(-0.794909\pi\)
0.919933 + 0.392075i \(0.128243\pi\)
\(920\) 5.49959e12 + 9.52557e12i 0.253096 + 0.438375i
\(921\) 0 0
\(922\) 1.23272e13 2.13514e13i 0.561793 0.973054i
\(923\) −5.42215e12 −0.245903
\(924\) 0 0
\(925\) −4.14918e12 −0.186348
\(926\) 5.98366e12 1.03640e13i 0.267434 0.463210i
\(927\) 0 0
\(928\) 7.38541e11 + 1.27919e12i 0.0326895 + 0.0566199i
\(929\) −1.01430e13 + 1.75682e13i −0.446783 + 0.773850i −0.998174 0.0603962i \(-0.980764\pi\)
0.551392 + 0.834246i \(0.314097\pi\)
\(930\) 0 0
\(931\) 5.79753e10 + 2.02535e12i 0.00252912 + 0.0883541i
\(932\) 5.87236e11 0.0254942
\(933\) 0 0
\(934\) 1.92859e12 + 3.34042e12i 0.0829238 + 0.143628i
\(935\) 1.04359e13 + 1.80756e13i 0.446559 + 0.773463i
\(936\) 0 0
\(937\) −3.47244e13 −1.47166 −0.735828 0.677169i \(-0.763207\pi\)
−0.735828 + 0.677169i \(0.763207\pi\)
\(938\) −2.66576e13 + 7.55330e12i −1.12437 + 0.318584i
\(939\) 0 0
\(940\) 4.25561e12 7.37094e12i 0.177782 0.307927i
\(941\) −2.32792e12 4.03208e12i −0.0967866 0.167639i 0.813566 0.581472i \(-0.197523\pi\)
−0.910353 + 0.413833i \(0.864190\pi\)
\(942\) 0 0
\(943\) 2.12744e13 3.68483e13i 0.876102 1.51745i
\(944\) 4.33492e12 0.177667
\(945\) 0 0
\(946\) −1.24248e12 −0.0504405
\(947\) −1.98170e13 + 3.43240e13i −0.800687 + 1.38683i 0.118478 + 0.992957i \(0.462198\pi\)
−0.919165 + 0.393873i \(0.871135\pi\)
\(948\) 0 0
\(949\) 6.95627e12 + 1.20486e13i 0.278406 + 0.482213i
\(950\) 3.05319e11 5.28827e11i 0.0121618 0.0210648i
\(951\) 0 0
\(952\) −6.59575e12 6.40965e12i −0.260254 0.252911i
\(953\) 3.33592e13 1.31008 0.655040 0.755594i \(-0.272652\pi\)
0.655040 + 0.755594i \(0.272652\pi\)
\(954\) 0 0
\(955\) −3.80864e11 6.59676e11i −0.0148168 0.0256635i
\(956\) −5.20638e12 9.01771e12i −0.201593 0.349169i
\(957\) 0 0
\(958\) −6.68941e12 −0.256592
\(959\) 2.56773e13 + 2.49528e13i 0.980316 + 0.952656i
\(960\) 0 0
\(961\) −3.50307e12 + 6.06750e12i −0.132493 + 0.229485i
\(962\) −1.65084e12 2.85934e12i −0.0621467 0.107641i
\(963\) 0 0
\(964\) −1.20794e12 + 2.09221e12i −0.0450504 + 0.0780296i
\(965\) −6.23526e11 −0.0231463
\(966\) 0 0
\(967\) 3.72454e13 1.36979 0.684893 0.728643i \(-0.259849\pi\)
0.684893 + 0.728643i \(0.259849\pi\)
\(968\) −1.15636e12 + 2.00287e12i −0.0423305 + 0.0733186i
\(969\) 0 0
\(970\) 1.11247e12 + 1.92686e12i 0.0403474 + 0.0698838i
\(971\) 1.23678e13 2.14217e13i 0.446485 0.773334i −0.551670 0.834063i \(-0.686009\pi\)
0.998154 + 0.0607287i \(0.0193424\pi\)
\(972\) 0 0
\(973\) 1.47002e13 4.16523e12i 0.525794 0.148981i
\(974\) −2.74516e13 −0.977356
\(975\) 0 0
\(976\) 6.58390e12 + 1.14037e13i 0.232252 + 0.402272i
\(977\) −1.96826e13 3.40912e13i −0.691125 1.19706i −0.971470 0.237164i \(-0.923782\pi\)
0.280345 0.959899i \(-0.409551\pi\)
\(978\) 0 0
\(979\) −6.09745e13 −2.12142
\(980\) 9.60647e12 5.91910e12i 0.332695 0.204993i
\(981\) 0 0
\(982\) 2.67785e12 4.63817e12i 0.0918935 0.159164i
\(983\) −1.85175e13 3.20732e13i −0.632544 1.09560i −0.987030 0.160537i \(-0.948677\pi\)
0.354486 0.935062i \(-0.384656\pi\)
\(984\) 0 0
\(985\) −2.67027e12 + 4.62505e12i −0.0903842 + 0.156550i
\(986\) −7.96667e12 −0.268430
\(987\) 0 0
\(988\) 4.85911e11 0.0162237
\(989\) 1.76576e12 3.05838e12i 0.0586878 0.101650i
\(990\) 0 0
\(991\) −1.41148e13 2.44476e13i −0.464883 0.805201i 0.534313 0.845287i \(-0.320570\pi\)
−0.999196 + 0.0400853i \(0.987237\pi\)
\(992\) −3.03208e12 + 5.25172e12i −0.0994118 + 0.172186i
\(993\) 0 0
\(994\) 3.57132e12 1.41343e13i 0.116035 0.459234i
\(995\) 1.11218e13 0.359726
\(996\) 0 0
\(997\) −1.72255e13 2.98354e13i −0.552132 0.956321i −0.998120 0.0612823i \(-0.980481\pi\)
0.445988 0.895039i \(-0.352852\pi\)
\(998\) −5.68035e12 9.83866e12i −0.181254 0.313941i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.10.g.e.37.1 6
3.2 odd 2 14.10.c.b.9.2 6
7.4 even 3 inner 126.10.g.e.109.1 6
12.11 even 2 112.10.i.a.65.2 6
21.2 odd 6 98.10.a.g.1.2 3
21.5 even 6 98.10.a.h.1.2 3
21.11 odd 6 14.10.c.b.11.2 yes 6
21.17 even 6 98.10.c.l.67.2 6
21.20 even 2 98.10.c.l.79.2 6
84.11 even 6 112.10.i.a.81.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.b.9.2 6 3.2 odd 2
14.10.c.b.11.2 yes 6 21.11 odd 6
98.10.a.g.1.2 3 21.2 odd 6
98.10.a.h.1.2 3 21.5 even 6
98.10.c.l.67.2 6 21.17 even 6
98.10.c.l.79.2 6 21.20 even 2
112.10.i.a.65.2 6 12.11 even 2
112.10.i.a.81.2 6 84.11 even 6
126.10.g.e.37.1 6 1.1 even 1 trivial
126.10.g.e.109.1 6 7.4 even 3 inner