Properties

Label 975.2.n.r.824.12
Level $975$
Weight $2$
Character 975.824
Analytic conductor $7.785$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(749,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.749"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,12,16,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 824.12
Character \(\chi\) \(=\) 975.824
Dual form 975.2.n.r.749.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.455718 - 0.455718i) q^{2} +(1.67352 + 0.446465i) q^{3} +1.58464i q^{4} +(0.966114 - 0.559191i) q^{6} +(2.89711 - 2.89711i) q^{7} +(1.63358 + 1.63358i) q^{8} +(2.60134 + 1.49434i) q^{9} +(2.45902 - 2.45902i) q^{11} +(-0.707488 + 2.65193i) q^{12} +(-1.09825 - 3.43422i) q^{13} -2.64053i q^{14} -1.68038 q^{16} -6.48865i q^{17} +(1.86647 - 0.504480i) q^{18} +(-3.48002 + 3.48002i) q^{19} +(6.14183 - 3.55491i) q^{21} -2.24123i q^{22} +2.39321i q^{23} +(2.00450 + 3.46318i) q^{24} +(-2.06553 - 1.06454i) q^{26} +(3.68622 + 3.66221i) q^{27} +(4.59088 + 4.59088i) q^{28} -0.0728607i q^{29} +(-3.16484 + 3.16484i) q^{31} +(-4.03295 + 4.03295i) q^{32} +(5.21308 - 3.01735i) q^{33} +(-2.95699 - 2.95699i) q^{34} +(-2.36799 + 4.12219i) q^{36} +(-6.34157 + 6.34157i) q^{37} +3.17182i q^{38} +(-0.304692 - 6.23756i) q^{39} +(-2.12973 - 2.12973i) q^{41} +(1.17890 - 4.41897i) q^{42} -3.53474 q^{43} +(3.89666 + 3.89666i) q^{44} +(1.09063 + 1.09063i) q^{46} +(8.05214 + 8.05214i) q^{47} +(-2.81215 - 0.750230i) q^{48} -9.78648i q^{49} +(2.89695 - 10.8589i) q^{51} +(5.44201 - 1.74034i) q^{52} +9.32683 q^{53} +(3.34881 - 0.0109441i) q^{54} +9.46535 q^{56} +(-7.37760 + 4.27018i) q^{57} +(-0.0332039 - 0.0332039i) q^{58} +(-3.31055 + 3.31055i) q^{59} -1.29568 q^{61} +2.88455i q^{62} +(11.8656 - 3.20711i) q^{63} +0.315013i q^{64} +(1.00063 - 3.75075i) q^{66} +(0.922676 + 0.922676i) q^{67} +10.2822 q^{68} +(-1.06849 + 4.00509i) q^{69} +(-2.96569 - 2.96569i) q^{71} +(1.80838 + 6.69063i) q^{72} +(-5.91079 + 5.91079i) q^{73} +5.77993i q^{74} +(-5.51460 - 5.51460i) q^{76} -14.2481i q^{77} +(-2.98142 - 2.70371i) q^{78} -9.54897 q^{79} +(4.53392 + 7.77455i) q^{81} -1.94111 q^{82} +(-2.62525 + 2.62525i) q^{83} +(5.63327 + 9.73260i) q^{84} +(-1.61084 + 1.61084i) q^{86} +(0.0325297 - 0.121934i) q^{87} +8.03402 q^{88} +(-7.03107 + 7.03107i) q^{89} +(-13.1311 - 6.76754i) q^{91} -3.79239 q^{92} +(-6.70942 + 3.88344i) q^{93} +7.33901 q^{94} +(-8.54979 + 4.94865i) q^{96} +(6.77490 + 6.77490i) q^{97} +(-4.45987 - 4.45987i) q^{98} +(10.0713 - 2.72214i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{6} + 16 q^{7} + 24 q^{12} - 24 q^{13} - 64 q^{16} - 4 q^{18} + 16 q^{19} - 12 q^{21} - 8 q^{24} - 32 q^{28} + 32 q^{31} - 4 q^{33} + 16 q^{34} - 32 q^{37} + 8 q^{39} + 32 q^{43} - 40 q^{46}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.455718 0.455718i 0.322241 0.322241i −0.527385 0.849626i \(-0.676828\pi\)
0.849626 + 0.527385i \(0.176828\pi\)
\(3\) 1.67352 + 0.446465i 0.966207 + 0.257767i
\(4\) 1.58464i 0.792321i
\(5\) 0 0
\(6\) 0.966114 0.559191i 0.394415 0.228289i
\(7\) 2.89711 2.89711i 1.09500 1.09500i 0.100019 0.994986i \(-0.468110\pi\)
0.994986 0.100019i \(-0.0318902\pi\)
\(8\) 1.63358 + 1.63358i 0.577559 + 0.577559i
\(9\) 2.60134 + 1.49434i 0.867113 + 0.498112i
\(10\) 0 0
\(11\) 2.45902 2.45902i 0.741421 0.741421i −0.231430 0.972851i \(-0.574341\pi\)
0.972851 + 0.231430i \(0.0743406\pi\)
\(12\) −0.707488 + 2.65193i −0.204234 + 0.765547i
\(13\) −1.09825 3.43422i −0.304601 0.952480i
\(14\) 2.64053i 0.705711i
\(15\) 0 0
\(16\) −1.68038 −0.420095
\(17\) 6.48865i 1.57373i −0.617126 0.786864i \(-0.711703\pi\)
0.617126 0.786864i \(-0.288297\pi\)
\(18\) 1.86647 0.504480i 0.439931 0.118907i
\(19\) −3.48002 + 3.48002i −0.798372 + 0.798372i −0.982839 0.184466i \(-0.940944\pi\)
0.184466 + 0.982839i \(0.440944\pi\)
\(20\) 0 0
\(21\) 6.14183 3.55491i 1.34026 0.775745i
\(22\) 2.24123i 0.477833i
\(23\) 2.39321i 0.499020i 0.968372 + 0.249510i \(0.0802695\pi\)
−0.968372 + 0.249510i \(0.919730\pi\)
\(24\) 2.00450 + 3.46318i 0.409167 + 0.706918i
\(25\) 0 0
\(26\) −2.06553 1.06454i −0.405083 0.208773i
\(27\) 3.68622 + 3.66221i 0.709414 + 0.704792i
\(28\) 4.59088 + 4.59088i 0.867595 + 0.867595i
\(29\) 0.0728607i 0.0135299i −0.999977 0.00676494i \(-0.997847\pi\)
0.999977 0.00676494i \(-0.00215336\pi\)
\(30\) 0 0
\(31\) −3.16484 + 3.16484i −0.568423 + 0.568423i −0.931686 0.363264i \(-0.881662\pi\)
0.363264 + 0.931686i \(0.381662\pi\)
\(32\) −4.03295 + 4.03295i −0.712931 + 0.712931i
\(33\) 5.21308 3.01735i 0.907480 0.525253i
\(34\) −2.95699 2.95699i −0.507120 0.507120i
\(35\) 0 0
\(36\) −2.36799 + 4.12219i −0.394665 + 0.687032i
\(37\) −6.34157 + 6.34157i −1.04255 + 1.04255i −0.0434947 + 0.999054i \(0.513849\pi\)
−0.999054 + 0.0434947i \(0.986151\pi\)
\(38\) 3.17182i 0.514537i
\(39\) −0.304692 6.23756i −0.0487897 0.998809i
\(40\) 0 0
\(41\) −2.12973 2.12973i −0.332607 0.332607i 0.520968 0.853576i \(-0.325571\pi\)
−0.853576 + 0.520968i \(0.825571\pi\)
\(42\) 1.17890 4.41897i 0.181909 0.681863i
\(43\) −3.53474 −0.539043 −0.269522 0.962994i \(-0.586866\pi\)
−0.269522 + 0.962994i \(0.586866\pi\)
\(44\) 3.89666 + 3.89666i 0.587444 + 0.587444i
\(45\) 0 0
\(46\) 1.09063 + 1.09063i 0.160805 + 0.160805i
\(47\) 8.05214 + 8.05214i 1.17453 + 1.17453i 0.981119 + 0.193407i \(0.0619538\pi\)
0.193407 + 0.981119i \(0.438046\pi\)
\(48\) −2.81215 0.750230i −0.405899 0.108286i
\(49\) 9.78648i 1.39807i
\(50\) 0 0
\(51\) 2.89695 10.8589i 0.405655 1.52055i
\(52\) 5.44201 1.74034i 0.754670 0.241342i
\(53\) 9.32683 1.28114 0.640569 0.767901i \(-0.278699\pi\)
0.640569 + 0.767901i \(0.278699\pi\)
\(54\) 3.34881 0.0109441i 0.455715 0.00148931i
\(55\) 0 0
\(56\) 9.46535 1.26486
\(57\) −7.37760 + 4.27018i −0.977187 + 0.565599i
\(58\) −0.0332039 0.0332039i −0.00435988 0.00435988i
\(59\) −3.31055 + 3.31055i −0.430996 + 0.430996i −0.888967 0.457971i \(-0.848576\pi\)
0.457971 + 0.888967i \(0.348576\pi\)
\(60\) 0 0
\(61\) −1.29568 −0.165895 −0.0829473 0.996554i \(-0.526433\pi\)
−0.0829473 + 0.996554i \(0.526433\pi\)
\(62\) 2.88455i 0.366338i
\(63\) 11.8656 3.20711i 1.49493 0.404057i
\(64\) 0.315013i 0.0393766i
\(65\) 0 0
\(66\) 1.00063 3.75075i 0.123169 0.461685i
\(67\) 0.922676 + 0.922676i 0.112723 + 0.112723i 0.761218 0.648496i \(-0.224601\pi\)
−0.648496 + 0.761218i \(0.724601\pi\)
\(68\) 10.2822 1.24690
\(69\) −1.06849 + 4.00509i −0.128631 + 0.482156i
\(70\) 0 0
\(71\) −2.96569 2.96569i −0.351963 0.351963i 0.508877 0.860839i \(-0.330061\pi\)
−0.860839 + 0.508877i \(0.830061\pi\)
\(72\) 1.80838 + 6.69063i 0.213120 + 0.788498i
\(73\) −5.91079 + 5.91079i −0.691805 + 0.691805i −0.962629 0.270824i \(-0.912704\pi\)
0.270824 + 0.962629i \(0.412704\pi\)
\(74\) 5.77993i 0.671904i
\(75\) 0 0
\(76\) −5.51460 5.51460i −0.632568 0.632568i
\(77\) 14.2481i 1.62372i
\(78\) −2.98142 2.70371i −0.337579 0.306135i
\(79\) −9.54897 −1.07434 −0.537171 0.843473i \(-0.680507\pi\)
−0.537171 + 0.843473i \(0.680507\pi\)
\(80\) 0 0
\(81\) 4.53392 + 7.77455i 0.503769 + 0.863838i
\(82\) −1.94111 −0.214360
\(83\) −2.62525 + 2.62525i −0.288158 + 0.288158i −0.836352 0.548193i \(-0.815316\pi\)
0.548193 + 0.836352i \(0.315316\pi\)
\(84\) 5.63327 + 9.73260i 0.614640 + 1.06191i
\(85\) 0 0
\(86\) −1.61084 + 1.61084i −0.173702 + 0.173702i
\(87\) 0.0325297 0.121934i 0.00348755 0.0130727i
\(88\) 8.03402 0.856429
\(89\) −7.03107 + 7.03107i −0.745292 + 0.745292i −0.973591 0.228299i \(-0.926683\pi\)
0.228299 + 0.973591i \(0.426683\pi\)
\(90\) 0 0
\(91\) −13.1311 6.76754i −1.37651 0.709431i
\(92\) −3.79239 −0.395384
\(93\) −6.70942 + 3.88344i −0.695735 + 0.402694i
\(94\) 7.33901 0.756961
\(95\) 0 0
\(96\) −8.54979 + 4.94865i −0.872609 + 0.505069i
\(97\) 6.77490 + 6.77490i 0.687887 + 0.687887i 0.961765 0.273878i \(-0.0883063\pi\)
−0.273878 + 0.961765i \(0.588306\pi\)
\(98\) −4.45987 4.45987i −0.450515 0.450515i
\(99\) 10.0713 2.72214i 1.01221 0.273585i
\(100\) 0 0
\(101\) 3.16651 0.315080 0.157540 0.987513i \(-0.449644\pi\)
0.157540 + 0.987513i \(0.449644\pi\)
\(102\) −3.62839 6.26878i −0.359264 0.620702i
\(103\) −13.7432 −1.35416 −0.677080 0.735910i \(-0.736755\pi\)
−0.677080 + 0.735910i \(0.736755\pi\)
\(104\) 3.81599 7.40417i 0.374189 0.726039i
\(105\) 0 0
\(106\) 4.25040 4.25040i 0.412835 0.412835i
\(107\) 9.01108 0.871134 0.435567 0.900156i \(-0.356548\pi\)
0.435567 + 0.900156i \(0.356548\pi\)
\(108\) −5.80329 + 5.84135i −0.558422 + 0.562084i
\(109\) 5.87504 5.87504i 0.562727 0.562727i −0.367354 0.930081i \(-0.619736\pi\)
0.930081 + 0.367354i \(0.119736\pi\)
\(110\) 0 0
\(111\) −13.4440 + 7.78146i −1.27605 + 0.738584i
\(112\) −4.86824 + 4.86824i −0.460006 + 0.460006i
\(113\) 0.651432 0.0612816 0.0306408 0.999530i \(-0.490245\pi\)
0.0306408 + 0.999530i \(0.490245\pi\)
\(114\) −1.41611 + 5.30810i −0.132630 + 0.497149i
\(115\) 0 0
\(116\) 0.115458 0.0107200
\(117\) 2.27494 10.5747i 0.210319 0.977633i
\(118\) 3.01735i 0.277769i
\(119\) −18.7983 18.7983i −1.72324 1.72324i
\(120\) 0 0
\(121\) 1.09351i 0.0994103i
\(122\) −0.590464 + 0.590464i −0.0534581 + 0.0534581i
\(123\) −2.61329 4.51499i −0.235633 0.407103i
\(124\) −5.01515 5.01515i −0.450374 0.450374i
\(125\) 0 0
\(126\) 3.94583 6.86890i 0.351523 0.611931i
\(127\) 3.65542 0.324366 0.162183 0.986761i \(-0.448147\pi\)
0.162183 + 0.986761i \(0.448147\pi\)
\(128\) −7.92234 7.92234i −0.700242 0.700242i
\(129\) −5.91546 1.57814i −0.520827 0.138947i
\(130\) 0 0
\(131\) 10.5741i 0.923863i −0.886916 0.461932i \(-0.847157\pi\)
0.886916 0.461932i \(-0.152843\pi\)
\(132\) 4.78142 + 8.26086i 0.416169 + 0.719016i
\(133\) 20.1640i 1.74844i
\(134\) 0.840960 0.0726479
\(135\) 0 0
\(136\) 10.5998 10.5998i 0.908922 0.908922i
\(137\) 4.62847 + 4.62847i 0.395437 + 0.395437i 0.876620 0.481183i \(-0.159793\pi\)
−0.481183 + 0.876620i \(0.659793\pi\)
\(138\) 1.33826 + 2.31212i 0.113921 + 0.196821i
\(139\) −8.02113 −0.680343 −0.340172 0.940363i \(-0.610485\pi\)
−0.340172 + 0.940363i \(0.610485\pi\)
\(140\) 0 0
\(141\) 9.88042 + 17.0704i 0.832082 + 1.43759i
\(142\) −2.70304 −0.226834
\(143\) −11.1454 5.74417i −0.932026 0.480351i
\(144\) −4.37123 2.51105i −0.364270 0.209254i
\(145\) 0 0
\(146\) 5.38730i 0.445856i
\(147\) 4.36932 16.3779i 0.360375 1.35082i
\(148\) −10.0491 10.0491i −0.826033 0.826033i
\(149\) −1.16217 1.16217i −0.0952087 0.0952087i 0.657898 0.753107i \(-0.271446\pi\)
−0.753107 + 0.657898i \(0.771446\pi\)
\(150\) 0 0
\(151\) 5.51342 + 5.51342i 0.448675 + 0.448675i 0.894914 0.446239i \(-0.147237\pi\)
−0.446239 + 0.894914i \(0.647237\pi\)
\(152\) −11.3698 −0.922215
\(153\) 9.69622 16.8792i 0.783893 1.36460i
\(154\) −6.49310 6.49310i −0.523229 0.523229i
\(155\) 0 0
\(156\) 9.88431 0.482828i 0.791378 0.0386571i
\(157\) 20.7693i 1.65757i −0.559567 0.828785i \(-0.689032\pi\)
0.559567 0.828785i \(-0.310968\pi\)
\(158\) −4.35163 + 4.35163i −0.346197 + 0.346197i
\(159\) 15.6086 + 4.16410i 1.23784 + 0.330235i
\(160\) 0 0
\(161\) 6.93340 + 6.93340i 0.546429 + 0.546429i
\(162\) 5.60918 + 1.47681i 0.440699 + 0.116029i
\(163\) −1.79004 + 1.79004i −0.140207 + 0.140207i −0.773726 0.633520i \(-0.781610\pi\)
0.633520 + 0.773726i \(0.281610\pi\)
\(164\) 3.37486 3.37486i 0.263532 0.263532i
\(165\) 0 0
\(166\) 2.39274i 0.185713i
\(167\) −7.06139 7.06139i −0.546427 0.546427i 0.378979 0.925405i \(-0.376275\pi\)
−0.925405 + 0.378979i \(0.876275\pi\)
\(168\) 15.8404 + 4.22595i 1.22212 + 0.326039i
\(169\) −10.5877 + 7.54328i −0.814437 + 0.580252i
\(170\) 0 0
\(171\) −14.2530 + 3.85239i −1.08996 + 0.294600i
\(172\) 5.60130i 0.427095i
\(173\) 22.6054i 1.71866i −0.511423 0.859329i \(-0.670881\pi\)
0.511423 0.859329i \(-0.329119\pi\)
\(174\) −0.0407430 0.0703917i −0.00308872 0.00533638i
\(175\) 0 0
\(176\) −4.13208 + 4.13208i −0.311467 + 0.311467i
\(177\) −7.01831 + 4.06222i −0.527528 + 0.305335i
\(178\) 6.40836i 0.480327i
\(179\) 14.3368 1.07158 0.535790 0.844351i \(-0.320014\pi\)
0.535790 + 0.844351i \(0.320014\pi\)
\(180\) 0 0
\(181\) 14.9736i 1.11298i 0.830856 + 0.556488i \(0.187852\pi\)
−0.830856 + 0.556488i \(0.812148\pi\)
\(182\) −9.06814 + 2.89997i −0.672175 + 0.214960i
\(183\) −2.16834 0.578475i −0.160289 0.0427621i
\(184\) −3.90952 + 3.90952i −0.288214 + 0.288214i
\(185\) 0 0
\(186\) −1.28785 + 4.82735i −0.0944298 + 0.353959i
\(187\) −15.9557 15.9557i −1.16680 1.16680i
\(188\) −12.7598 + 12.7598i −0.930602 + 0.930602i
\(189\) 21.2892 0.0695745i 1.54856 0.00506080i
\(190\) 0 0
\(191\) 13.0774i 0.946247i 0.880996 + 0.473124i \(0.156874\pi\)
−0.880996 + 0.473124i \(0.843126\pi\)
\(192\) −0.140642 + 0.527180i −0.0101500 + 0.0380459i
\(193\) 8.44842 8.44842i 0.608130 0.608130i −0.334327 0.942457i \(-0.608509\pi\)
0.942457 + 0.334327i \(0.108509\pi\)
\(194\) 6.17488 0.443331
\(195\) 0 0
\(196\) 15.5081 1.10772
\(197\) −6.31663 + 6.31663i −0.450041 + 0.450041i −0.895368 0.445327i \(-0.853088\pi\)
0.445327 + 0.895368i \(0.353088\pi\)
\(198\) 3.34916 5.83021i 0.238014 0.414335i
\(199\) 21.9442i 1.55558i −0.628523 0.777791i \(-0.716340\pi\)
0.628523 0.777791i \(-0.283660\pi\)
\(200\) 0 0
\(201\) 1.13217 + 1.95606i 0.0798575 + 0.137970i
\(202\) 1.44304 1.44304i 0.101532 0.101532i
\(203\) −0.211085 0.211085i −0.0148153 0.0148153i
\(204\) 17.2075 + 4.59064i 1.20476 + 0.321409i
\(205\) 0 0
\(206\) −6.26302 + 6.26302i −0.436366 + 0.436366i
\(207\) −3.57627 + 6.22556i −0.248568 + 0.432706i
\(208\) 1.84548 + 5.77079i 0.127961 + 0.400132i
\(209\) 17.1149i 1.18386i
\(210\) 0 0
\(211\) 0.438580 0.0301931 0.0150966 0.999886i \(-0.495194\pi\)
0.0150966 + 0.999886i \(0.495194\pi\)
\(212\) 14.7797i 1.01507i
\(213\) −3.63907 6.28722i −0.249345 0.430793i
\(214\) 4.10651 4.10651i 0.280715 0.280715i
\(215\) 0 0
\(216\) 0.0392308 + 12.0043i 0.00266932 + 0.816788i
\(217\) 18.3378i 1.24485i
\(218\) 5.35472i 0.362667i
\(219\) −12.5308 + 7.25286i −0.846752 + 0.490103i
\(220\) 0 0
\(221\) −22.2834 + 7.12618i −1.49895 + 0.479359i
\(222\) −2.58054 + 9.67283i −0.173194 + 0.649198i
\(223\) 1.59677 + 1.59677i 0.106927 + 0.106927i 0.758546 0.651619i \(-0.225910\pi\)
−0.651619 + 0.758546i \(0.725910\pi\)
\(224\) 23.3678i 1.56133i
\(225\) 0 0
\(226\) 0.296869 0.296869i 0.0197474 0.0197474i
\(227\) 13.0961 13.0961i 0.869216 0.869216i −0.123169 0.992386i \(-0.539306\pi\)
0.992386 + 0.123169i \(0.0393058\pi\)
\(228\) −6.76671 11.6909i −0.448137 0.774246i
\(229\) 2.58892 + 2.58892i 0.171080 + 0.171080i 0.787454 0.616373i \(-0.211399\pi\)
−0.616373 + 0.787454i \(0.711399\pi\)
\(230\) 0 0
\(231\) 6.36126 23.8444i 0.418540 1.56885i
\(232\) 0.119024 0.119024i 0.00781431 0.00781431i
\(233\) 6.66598i 0.436703i 0.975870 + 0.218351i \(0.0700679\pi\)
−0.975870 + 0.218351i \(0.929932\pi\)
\(234\) −3.78235 5.85582i −0.247260 0.382807i
\(235\) 0 0
\(236\) −5.24603 5.24603i −0.341488 0.341488i
\(237\) −15.9804 4.26328i −1.03804 0.276930i
\(238\) −17.1335 −1.11060
\(239\) −1.15681 1.15681i −0.0748278 0.0748278i 0.668702 0.743530i \(-0.266850\pi\)
−0.743530 + 0.668702i \(0.766850\pi\)
\(240\) 0 0
\(241\) 3.93884 + 3.93884i 0.253723 + 0.253723i 0.822495 0.568772i \(-0.192581\pi\)
−0.568772 + 0.822495i \(0.692581\pi\)
\(242\) −0.498333 0.498333i −0.0320341 0.0320341i
\(243\) 4.11654 + 15.0351i 0.264076 + 0.964502i
\(244\) 2.05319i 0.131442i
\(245\) 0 0
\(246\) −3.24848 0.866637i −0.207116 0.0552547i
\(247\) 15.7731 + 8.12921i 1.00362 + 0.517249i
\(248\) −10.3401 −0.656596
\(249\) −5.56549 + 3.22132i −0.352698 + 0.204143i
\(250\) 0 0
\(251\) 17.0218 1.07441 0.537205 0.843452i \(-0.319480\pi\)
0.537205 + 0.843452i \(0.319480\pi\)
\(252\) 5.08212 + 18.8028i 0.320143 + 1.18446i
\(253\) 5.88495 + 5.88495i 0.369984 + 0.369984i
\(254\) 1.66584 1.66584i 0.104524 0.104524i
\(255\) 0 0
\(256\) −7.85072 −0.490670
\(257\) 15.7772i 0.984152i −0.870552 0.492076i \(-0.836238\pi\)
0.870552 0.492076i \(-0.163762\pi\)
\(258\) −3.41496 + 1.97659i −0.212606 + 0.123057i
\(259\) 36.7445i 2.28319i
\(260\) 0 0
\(261\) 0.108878 0.189535i 0.00673940 0.0117319i
\(262\) −4.81880 4.81880i −0.297707 0.297707i
\(263\) 5.23074 0.322541 0.161271 0.986910i \(-0.448441\pi\)
0.161271 + 0.986910i \(0.448441\pi\)
\(264\) 13.4451 + 3.58691i 0.827488 + 0.220759i
\(265\) 0 0
\(266\) 9.18910 + 9.18910i 0.563420 + 0.563420i
\(267\) −14.9058 + 8.62751i −0.912217 + 0.527995i
\(268\) −1.46211 + 1.46211i −0.0893127 + 0.0893127i
\(269\) 24.7143i 1.50686i −0.657529 0.753429i \(-0.728398\pi\)
0.657529 0.753429i \(-0.271602\pi\)
\(270\) 0 0
\(271\) −13.3905 13.3905i −0.813413 0.813413i 0.171730 0.985144i \(-0.445064\pi\)
−0.985144 + 0.171730i \(0.945064\pi\)
\(272\) 10.9034i 0.661115i
\(273\) −18.9536 17.1882i −1.14713 1.04028i
\(274\) 4.21855 0.254852
\(275\) 0 0
\(276\) −6.34664 1.69317i −0.382023 0.101917i
\(277\) 5.07891 0.305162 0.152581 0.988291i \(-0.451241\pi\)
0.152581 + 0.988291i \(0.451241\pi\)
\(278\) −3.65537 + 3.65537i −0.219234 + 0.219234i
\(279\) −12.9622 + 3.50349i −0.776025 + 0.209748i
\(280\) 0 0
\(281\) 1.89588 1.89588i 0.113098 0.113098i −0.648293 0.761391i \(-0.724517\pi\)
0.761391 + 0.648293i \(0.224517\pi\)
\(282\) 12.2820 + 3.27661i 0.731381 + 0.195119i
\(283\) 12.6318 0.750881 0.375440 0.926847i \(-0.377491\pi\)
0.375440 + 0.926847i \(0.377491\pi\)
\(284\) 4.69956 4.69956i 0.278868 0.278868i
\(285\) 0 0
\(286\) −7.69688 + 2.46144i −0.455126 + 0.145548i
\(287\) −12.3401 −0.728413
\(288\) −16.5176 + 4.46448i −0.973311 + 0.263072i
\(289\) −25.1026 −1.47662
\(290\) 0 0
\(291\) 8.31317 + 14.3627i 0.487327 + 0.841956i
\(292\) −9.36649 9.36649i −0.548132 0.548132i
\(293\) −19.7059 19.7059i −1.15123 1.15123i −0.986306 0.164928i \(-0.947261\pi\)
−0.164928 0.986306i \(-0.552739\pi\)
\(294\) −5.47251 9.45486i −0.319163 0.551419i
\(295\) 0 0
\(296\) −20.7190 −1.20427
\(297\) 18.0699 0.0590536i 1.04852 0.00342664i
\(298\) −1.05924 −0.0613603
\(299\) 8.21882 2.62836i 0.475306 0.152002i
\(300\) 0 0
\(301\) −10.2405 + 10.2405i −0.590254 + 0.590254i
\(302\) 5.02512 0.289163
\(303\) 5.29922 + 1.41374i 0.304432 + 0.0812171i
\(304\) 5.84776 5.84776i 0.335392 0.335392i
\(305\) 0 0
\(306\) −3.27340 12.1109i −0.187128 0.692333i
\(307\) −8.41607 + 8.41607i −0.480330 + 0.480330i −0.905237 0.424907i \(-0.860307\pi\)
0.424907 + 0.905237i \(0.360307\pi\)
\(308\) 22.5781 1.28651
\(309\) −22.9995 6.13586i −1.30840 0.349057i
\(310\) 0 0
\(311\) −24.9831 −1.41666 −0.708330 0.705881i \(-0.750551\pi\)
−0.708330 + 0.705881i \(0.750551\pi\)
\(312\) 9.69184 10.6873i 0.548693 0.605051i
\(313\) 8.22919i 0.465141i 0.972579 + 0.232571i \(0.0747137\pi\)
−0.972579 + 0.232571i \(0.925286\pi\)
\(314\) −9.46493 9.46493i −0.534137 0.534137i
\(315\) 0 0
\(316\) 15.1317i 0.851225i
\(317\) 5.60105 5.60105i 0.314586 0.314586i −0.532097 0.846683i \(-0.678596\pi\)
0.846683 + 0.532097i \(0.178596\pi\)
\(318\) 9.01078 5.21547i 0.505300 0.292469i
\(319\) −0.179165 0.179165i −0.0100313 0.0100313i
\(320\) 0 0
\(321\) 15.0802 + 4.02313i 0.841696 + 0.224549i
\(322\) 6.31935 0.352163
\(323\) 22.5807 + 22.5807i 1.25642 + 1.25642i
\(324\) −12.3199 + 7.18464i −0.684438 + 0.399147i
\(325\) 0 0
\(326\) 1.63150i 0.0903607i
\(327\) 12.4550 7.20900i 0.688763 0.398658i
\(328\) 6.95818i 0.384201i
\(329\) 46.6559 2.57222
\(330\) 0 0
\(331\) 0.890691 0.890691i 0.0489568 0.0489568i −0.682205 0.731161i \(-0.738979\pi\)
0.731161 + 0.682205i \(0.238979\pi\)
\(332\) −4.16008 4.16008i −0.228314 0.228314i
\(333\) −25.9730 + 7.02014i −1.42331 + 0.384701i
\(334\) −6.43600 −0.352162
\(335\) 0 0
\(336\) −10.3206 + 5.97360i −0.563035 + 0.325887i
\(337\) 0.362018 0.0197204 0.00986020 0.999951i \(-0.496861\pi\)
0.00986020 + 0.999951i \(0.496861\pi\)
\(338\) −1.38739 + 8.26260i −0.0754639 + 0.449426i
\(339\) 1.09018 + 0.290842i 0.0592107 + 0.0157964i
\(340\) 0 0
\(341\) 15.5648i 0.842881i
\(342\) −4.73976 + 8.25097i −0.256297 + 0.446161i
\(343\) −8.07273 8.07273i −0.435887 0.435887i
\(344\) −5.77430 5.77430i −0.311329 0.311329i
\(345\) 0 0
\(346\) −10.3017 10.3017i −0.553822 0.553822i
\(347\) 5.96761 0.320358 0.160179 0.987088i \(-0.448793\pi\)
0.160179 + 0.987088i \(0.448793\pi\)
\(348\) 0.193221 + 0.0515480i 0.0103578 + 0.00276326i
\(349\) 13.7435 + 13.7435i 0.735673 + 0.735673i 0.971737 0.236064i \(-0.0758575\pi\)
−0.236064 + 0.971737i \(0.575858\pi\)
\(350\) 0 0
\(351\) 8.52841 16.6813i 0.455213 0.890383i
\(352\) 19.8342i 1.05716i
\(353\) −13.8222 + 13.8222i −0.735682 + 0.735682i −0.971739 0.236057i \(-0.924145\pi\)
0.236057 + 0.971739i \(0.424145\pi\)
\(354\) −1.34714 + 5.04959i −0.0715997 + 0.268383i
\(355\) 0 0
\(356\) −11.1417 11.1417i −0.590511 0.590511i
\(357\) −23.0666 39.8522i −1.22081 2.10920i
\(358\) 6.53352 6.53352i 0.345307 0.345307i
\(359\) −1.19127 + 1.19127i −0.0628729 + 0.0628729i −0.737844 0.674971i \(-0.764156\pi\)
0.674971 + 0.737844i \(0.264156\pi\)
\(360\) 0 0
\(361\) 5.22115i 0.274797i
\(362\) 6.82372 + 6.82372i 0.358647 + 0.358647i
\(363\) 0.488215 1.83002i 0.0256247 0.0960509i
\(364\) 10.7241 20.8080i 0.562097 1.09064i
\(365\) 0 0
\(366\) −1.25177 + 0.724531i −0.0654313 + 0.0378719i
\(367\) 23.7852i 1.24158i 0.783977 + 0.620790i \(0.213188\pi\)
−0.783977 + 0.620790i \(0.786812\pi\)
\(368\) 4.02151i 0.209636i
\(369\) −2.35761 8.72267i −0.122732 0.454084i
\(370\) 0 0
\(371\) 27.0208 27.0208i 1.40285 1.40285i
\(372\) −6.15386 10.6320i −0.319063 0.551246i
\(373\) 27.0932i 1.40283i −0.712752 0.701416i \(-0.752552\pi\)
0.712752 0.701416i \(-0.247448\pi\)
\(374\) −14.5426 −0.751979
\(375\) 0 0
\(376\) 26.3077i 1.35672i
\(377\) −0.250219 + 0.0800195i −0.0128869 + 0.00412121i
\(378\) 9.67016 9.73357i 0.497379 0.500641i
\(379\) 9.55318 9.55318i 0.490714 0.490714i −0.417817 0.908531i \(-0.637205\pi\)
0.908531 + 0.417817i \(0.137205\pi\)
\(380\) 0 0
\(381\) 6.11741 + 1.63201i 0.313404 + 0.0836107i
\(382\) 5.95960 + 5.95960i 0.304920 + 0.304920i
\(383\) 19.9744 19.9744i 1.02064 1.02064i 0.0208607 0.999782i \(-0.493359\pi\)
0.999782 0.0208607i \(-0.00664064\pi\)
\(384\) −9.72115 16.7952i −0.496080 0.857079i
\(385\) 0 0
\(386\) 7.70018i 0.391929i
\(387\) −9.19506 5.28209i −0.467411 0.268504i
\(388\) −10.7358 + 10.7358i −0.545028 + 0.545028i
\(389\) −35.1328 −1.78130 −0.890651 0.454688i \(-0.849751\pi\)
−0.890651 + 0.454688i \(0.849751\pi\)
\(390\) 0 0
\(391\) 15.5287 0.785322
\(392\) 15.9870 15.9870i 0.807468 0.807468i
\(393\) 4.72096 17.6960i 0.238141 0.892643i
\(394\) 5.75720i 0.290044i
\(395\) 0 0
\(396\) 4.31361 + 15.9595i 0.216767 + 0.801993i
\(397\) 13.0793 13.0793i 0.656433 0.656433i −0.298101 0.954534i \(-0.596353\pi\)
0.954534 + 0.298101i \(0.0963532\pi\)
\(398\) −10.0004 10.0004i −0.501272 0.501272i
\(399\) −9.00253 + 33.7449i −0.450690 + 1.68936i
\(400\) 0 0
\(401\) 1.57949 1.57949i 0.0788759 0.0788759i −0.666568 0.745444i \(-0.732237\pi\)
0.745444 + 0.666568i \(0.232237\pi\)
\(402\) 1.40736 + 0.375459i 0.0701929 + 0.0187262i
\(403\) 14.3446 + 7.39296i 0.714553 + 0.368270i
\(404\) 5.01779i 0.249644i
\(405\) 0 0
\(406\) −0.192391 −0.00954818
\(407\) 31.1881i 1.54593i
\(408\) 22.4713 13.0065i 1.11250 0.643917i
\(409\) 9.54482 9.54482i 0.471961 0.471961i −0.430588 0.902549i \(-0.641694\pi\)
0.902549 + 0.430588i \(0.141694\pi\)
\(410\) 0 0
\(411\) 5.67939 + 9.81229i 0.280144 + 0.484005i
\(412\) 21.7781i 1.07293i
\(413\) 19.1820i 0.943885i
\(414\) 1.20733 + 4.46687i 0.0593370 + 0.219534i
\(415\) 0 0
\(416\) 18.2792 + 9.42082i 0.896212 + 0.461894i
\(417\) −13.4235 3.58115i −0.657353 0.175370i
\(418\) 7.79955 + 7.79955i 0.381488 + 0.381488i
\(419\) 36.4123i 1.77886i 0.457074 + 0.889428i \(0.348897\pi\)
−0.457074 + 0.889428i \(0.651103\pi\)
\(420\) 0 0
\(421\) −4.66950 + 4.66950i −0.227578 + 0.227578i −0.811680 0.584102i \(-0.801447\pi\)
0.584102 + 0.811680i \(0.301447\pi\)
\(422\) 0.199869 0.199869i 0.00972946 0.00972946i
\(423\) 8.91374 + 32.9790i 0.433401 + 1.60349i
\(424\) 15.2362 + 15.2362i 0.739933 + 0.739933i
\(425\) 0 0
\(426\) −4.52359 1.20681i −0.219168 0.0584702i
\(427\) −3.75372 + 3.75372i −0.181655 + 0.181655i
\(428\) 14.2794i 0.690218i
\(429\) −16.0875 14.5890i −0.776712 0.704364i
\(430\) 0 0
\(431\) 3.48824 + 3.48824i 0.168023 + 0.168023i 0.786110 0.618087i \(-0.212092\pi\)
−0.618087 + 0.786110i \(0.712092\pi\)
\(432\) −6.19425 6.15390i −0.298021 0.296080i
\(433\) 0.0657330 0.00315893 0.00157946 0.999999i \(-0.499497\pi\)
0.00157946 + 0.999999i \(0.499497\pi\)
\(434\) 8.35686 + 8.35686i 0.401142 + 0.401142i
\(435\) 0 0
\(436\) 9.30984 + 9.30984i 0.445860 + 0.445860i
\(437\) −8.32845 8.32845i −0.398404 0.398404i
\(438\) −2.40524 + 9.01575i −0.114927 + 0.430789i
\(439\) 9.56530i 0.456527i 0.973599 + 0.228264i \(0.0733048\pi\)
−0.973599 + 0.228264i \(0.926695\pi\)
\(440\) 0 0
\(441\) 14.6243 25.4579i 0.696395 1.21228i
\(442\) −6.90742 + 13.4025i −0.328553 + 0.637491i
\(443\) 35.0176 1.66374 0.831868 0.554973i \(-0.187272\pi\)
0.831868 + 0.554973i \(0.187272\pi\)
\(444\) −12.3308 21.3040i −0.585196 1.01104i
\(445\) 0 0
\(446\) 1.45535 0.0689128
\(447\) −1.42605 2.46378i −0.0674497 0.116533i
\(448\) 0.912626 + 0.912626i 0.0431175 + 0.0431175i
\(449\) 23.2242 23.2242i 1.09602 1.09602i 0.101149 0.994871i \(-0.467748\pi\)
0.994871 0.101149i \(-0.0322517\pi\)
\(450\) 0 0
\(451\) −10.4741 −0.493204
\(452\) 1.03229i 0.0485547i
\(453\) 6.76526 + 11.6884i 0.317860 + 0.549167i
\(454\) 11.9362i 0.560194i
\(455\) 0 0
\(456\) −19.0276 5.07623i −0.891051 0.237716i
\(457\) 5.85273 + 5.85273i 0.273779 + 0.273779i 0.830620 0.556840i \(-0.187986\pi\)
−0.556840 + 0.830620i \(0.687986\pi\)
\(458\) 2.35963 0.110258
\(459\) 23.7628 23.9186i 1.10915 1.11643i
\(460\) 0 0
\(461\) −24.2884 24.2884i −1.13122 1.13122i −0.989974 0.141250i \(-0.954888\pi\)
−0.141250 0.989974i \(-0.545112\pi\)
\(462\) −7.96739 13.7653i −0.370676 0.640418i
\(463\) 11.4811 11.4811i 0.533570 0.533570i −0.388063 0.921633i \(-0.626856\pi\)
0.921633 + 0.388063i \(0.126856\pi\)
\(464\) 0.122434i 0.00568383i
\(465\) 0 0
\(466\) 3.03780 + 3.03780i 0.140724 + 0.140724i
\(467\) 21.9057i 1.01367i 0.862042 + 0.506837i \(0.169185\pi\)
−0.862042 + 0.506837i \(0.830815\pi\)
\(468\) 16.7571 + 3.60497i 0.774600 + 0.166640i
\(469\) 5.34619 0.246864
\(470\) 0 0
\(471\) 9.27276 34.7578i 0.427266 1.60156i
\(472\) −10.8161 −0.497852
\(473\) −8.69198 + 8.69198i −0.399658 + 0.399658i
\(474\) −9.22539 + 5.33969i −0.423736 + 0.245260i
\(475\) 0 0
\(476\) 29.7886 29.7886i 1.36536 1.36536i
\(477\) 24.2622 + 13.9374i 1.11089 + 0.638150i
\(478\) −1.05436 −0.0482251
\(479\) −19.9645 + 19.9645i −0.912201 + 0.912201i −0.996445 0.0842446i \(-0.973152\pi\)
0.0842446 + 0.996445i \(0.473152\pi\)
\(480\) 0 0
\(481\) 28.7430 + 14.8137i 1.31057 + 0.675446i
\(482\) 3.59000 0.163520
\(483\) 8.50767 + 14.6987i 0.387112 + 0.668814i
\(484\) 1.73283 0.0787649
\(485\) 0 0
\(486\) 8.72774 + 4.97578i 0.395898 + 0.225706i
\(487\) 12.2103 + 12.2103i 0.553302 + 0.553302i 0.927392 0.374091i \(-0.122045\pi\)
−0.374091 + 0.927392i \(0.622045\pi\)
\(488\) −2.11660 2.11660i −0.0958140 0.0958140i
\(489\) −3.79486 + 2.19648i −0.171609 + 0.0993281i
\(490\) 0 0
\(491\) 23.7653 1.07251 0.536257 0.844054i \(-0.319838\pi\)
0.536257 + 0.844054i \(0.319838\pi\)
\(492\) 7.15464 4.14113i 0.322556 0.186697i
\(493\) −0.472767 −0.0212924
\(494\) 10.8927 3.48346i 0.490086 0.156728i
\(495\) 0 0
\(496\) 5.31814 5.31814i 0.238791 0.238791i
\(497\) −17.1839 −0.770802
\(498\) −1.06828 + 4.00430i −0.0478706 + 0.179437i
\(499\) −13.6731 + 13.6731i −0.612092 + 0.612092i −0.943491 0.331399i \(-0.892480\pi\)
0.331399 + 0.943491i \(0.392480\pi\)
\(500\) 0 0
\(501\) −8.66471 14.9700i −0.387111 0.668812i
\(502\) 7.75715 7.75715i 0.346219 0.346219i
\(503\) 17.6986 0.789140 0.394570 0.918866i \(-0.370894\pi\)
0.394570 + 0.918866i \(0.370894\pi\)
\(504\) 24.6226 + 14.1444i 1.09678 + 0.630042i
\(505\) 0 0
\(506\) 5.36375 0.238448
\(507\) −21.0865 + 7.89680i −0.936484 + 0.350709i
\(508\) 5.79253i 0.257002i
\(509\) −23.6849 23.6849i −1.04982 1.04982i −0.998692 0.0511241i \(-0.983720\pi\)
−0.0511241 0.998692i \(-0.516280\pi\)
\(510\) 0 0
\(511\) 34.2484i 1.51506i
\(512\) 12.2670 12.2670i 0.542128 0.542128i
\(513\) −25.5727 + 0.0835734i −1.12906 + 0.00368985i
\(514\) −7.18993 7.18993i −0.317134 0.317134i
\(515\) 0 0
\(516\) 2.50079 9.37389i 0.110091 0.412663i
\(517\) 39.6007 1.74164
\(518\) 16.7451 + 16.7451i 0.735737 + 0.735737i
\(519\) 10.0925 37.8306i 0.443013 1.66058i
\(520\) 0 0
\(521\) 12.3852i 0.542605i 0.962494 + 0.271302i \(0.0874544\pi\)
−0.962494 + 0.271302i \(0.912546\pi\)
\(522\) −0.0367568 0.135992i −0.00160880 0.00595222i
\(523\) 41.8255i 1.82890i −0.404699 0.914450i \(-0.632624\pi\)
0.404699 0.914450i \(-0.367376\pi\)
\(524\) 16.7562 0.731997
\(525\) 0 0
\(526\) 2.38374 2.38374i 0.103936 0.103936i
\(527\) 20.5356 + 20.5356i 0.894543 + 0.894543i
\(528\) −8.75994 + 5.07029i −0.381228 + 0.220656i
\(529\) 17.2725 0.750979
\(530\) 0 0
\(531\) −13.5589 + 3.66478i −0.588407 + 0.159038i
\(532\) −31.9528 −1.38533
\(533\) −4.97496 + 9.65292i −0.215490 + 0.418114i
\(534\) −2.86111 + 10.7245i −0.123812 + 0.464095i
\(535\) 0 0
\(536\) 3.01454i 0.130208i
\(537\) 23.9929 + 6.40087i 1.03537 + 0.276218i
\(538\) −11.2627 11.2627i −0.485571 0.485571i
\(539\) −24.0651 24.0651i −1.03656 1.03656i
\(540\) 0 0
\(541\) −22.6303 22.6303i −0.972954 0.972954i 0.0266894 0.999644i \(-0.491504\pi\)
−0.999644 + 0.0266894i \(0.991504\pi\)
\(542\) −12.2046 −0.524230
\(543\) −6.68517 + 25.0586i −0.286888 + 1.07537i
\(544\) 26.1684 + 26.1684i 1.12196 + 1.12196i
\(545\) 0 0
\(546\) −16.4704 + 0.804547i −0.704870 + 0.0344314i
\(547\) 38.6695i 1.65339i −0.562652 0.826694i \(-0.690219\pi\)
0.562652 0.826694i \(-0.309781\pi\)
\(548\) −7.33448 + 7.33448i −0.313313 + 0.313313i
\(549\) −3.37050 1.93618i −0.143849 0.0826341i
\(550\) 0 0
\(551\) 0.253557 + 0.253557i 0.0108019 + 0.0108019i
\(552\) −8.28812 + 4.79720i −0.352766 + 0.204182i
\(553\) −27.6644 + 27.6644i −1.17641 + 1.17641i
\(554\) 2.31455 2.31455i 0.0983358 0.0983358i
\(555\) 0 0
\(556\) 12.7106i 0.539051i
\(557\) 7.82191 + 7.82191i 0.331425 + 0.331425i 0.853128 0.521702i \(-0.174703\pi\)
−0.521702 + 0.853128i \(0.674703\pi\)
\(558\) −4.31049 + 7.50369i −0.182477 + 0.317657i
\(559\) 3.88204 + 12.1391i 0.164193 + 0.513428i
\(560\) 0 0
\(561\) −19.5785 33.8258i −0.826605 1.42813i
\(562\) 1.72797i 0.0728899i
\(563\) 37.4306i 1.57751i −0.614708 0.788755i \(-0.710726\pi\)
0.614708 0.788755i \(-0.289274\pi\)
\(564\) −27.0505 + 15.6569i −1.13903 + 0.659276i
\(565\) 0 0
\(566\) 5.75652 5.75652i 0.241965 0.241965i
\(567\) 35.6590 + 9.38845i 1.49754 + 0.394278i
\(568\) 9.68942i 0.406559i
\(569\) 2.32113 0.0973066 0.0486533 0.998816i \(-0.484507\pi\)
0.0486533 + 0.998816i \(0.484507\pi\)
\(570\) 0 0
\(571\) 12.7963i 0.535507i −0.963487 0.267753i \(-0.913719\pi\)
0.963487 0.267753i \(-0.0862812\pi\)
\(572\) 9.10246 17.6615i 0.380593 0.738464i
\(573\) −5.83860 + 21.8853i −0.243911 + 0.914271i
\(574\) −5.62360 + 5.62360i −0.234725 + 0.234725i
\(575\) 0 0
\(576\) −0.470735 + 0.819454i −0.0196139 + 0.0341439i
\(577\) −0.396526 0.396526i −0.0165076 0.0165076i 0.698805 0.715312i \(-0.253716\pi\)
−0.715312 + 0.698805i \(0.753716\pi\)
\(578\) −11.4397 + 11.4397i −0.475828 + 0.475828i
\(579\) 17.9105 10.3667i 0.744336 0.430824i
\(580\) 0 0
\(581\) 15.2113i 0.631069i
\(582\) 10.3338 + 2.75687i 0.428349 + 0.114276i
\(583\) 22.9348 22.9348i 0.949863 0.949863i
\(584\) −19.3115 −0.799117
\(585\) 0 0
\(586\) −17.9607 −0.741949
\(587\) −4.38510 + 4.38510i −0.180992 + 0.180992i −0.791788 0.610796i \(-0.790850\pi\)
0.610796 + 0.791788i \(0.290850\pi\)
\(588\) 25.9531 + 6.92381i 1.07029 + 0.285533i
\(589\) 22.0275i 0.907626i
\(590\) 0 0
\(591\) −13.3912 + 7.75086i −0.550839 + 0.318828i
\(592\) 10.6562 10.6562i 0.437969 0.437969i
\(593\) −4.95766 4.95766i −0.203587 0.203587i 0.597948 0.801535i \(-0.295983\pi\)
−0.801535 + 0.597948i \(0.795983\pi\)
\(594\) 8.20786 8.26168i 0.336773 0.338981i
\(595\) 0 0
\(596\) 1.84162 1.84162i 0.0754359 0.0754359i
\(597\) 9.79731 36.7240i 0.400977 1.50302i
\(598\) 2.54767 4.94325i 0.104182 0.202144i
\(599\) 5.16408i 0.210998i 0.994419 + 0.105499i \(0.0336441\pi\)
−0.994419 + 0.105499i \(0.966356\pi\)
\(600\) 0 0
\(601\) 28.3815 1.15770 0.578852 0.815432i \(-0.303501\pi\)
0.578852 + 0.815432i \(0.303501\pi\)
\(602\) 9.33358i 0.380408i
\(603\) 1.02140 + 3.77898i 0.0415948 + 0.153892i
\(604\) −8.73679 + 8.73679i −0.355495 + 0.355495i
\(605\) 0 0
\(606\) 3.05921 1.77068i 0.124272 0.0719291i
\(607\) 35.8341i 1.45446i −0.686394 0.727230i \(-0.740808\pi\)
0.686394 0.727230i \(-0.259192\pi\)
\(608\) 28.0695i 1.13837i
\(609\) −0.259013 0.447498i −0.0104957 0.0181335i
\(610\) 0 0
\(611\) 18.8095 36.4961i 0.760951 1.47647i
\(612\) 26.7475 + 15.3651i 1.08120 + 0.621095i
\(613\) −5.88345 5.88345i −0.237630 0.237630i 0.578238 0.815868i \(-0.303741\pi\)
−0.815868 + 0.578238i \(0.803741\pi\)
\(614\) 7.67070i 0.309564i
\(615\) 0 0
\(616\) 23.2754 23.2754i 0.937794 0.937794i
\(617\) −30.1305 + 30.1305i −1.21301 + 1.21301i −0.242977 + 0.970032i \(0.578124\pi\)
−0.970032 + 0.242977i \(0.921876\pi\)
\(618\) −13.2775 + 7.68508i −0.534100 + 0.309139i
\(619\) 8.02687 + 8.02687i 0.322627 + 0.322627i 0.849774 0.527147i \(-0.176738\pi\)
−0.527147 + 0.849774i \(0.676738\pi\)
\(620\) 0 0
\(621\) −8.76445 + 8.82192i −0.351705 + 0.354012i
\(622\) −11.3852 + 11.3852i −0.456506 + 0.456506i
\(623\) 40.7395i 1.63219i
\(624\) 0.511998 + 10.4815i 0.0204963 + 0.419594i
\(625\) 0 0
\(626\) 3.75019 + 3.75019i 0.149888 + 0.149888i
\(627\) −7.64119 + 28.6421i −0.305160 + 1.14385i
\(628\) 32.9119 1.31333
\(629\) 41.1483 + 41.1483i 1.64069 + 1.64069i
\(630\) 0 0
\(631\) −14.4365 14.4365i −0.574709 0.574709i 0.358732 0.933441i \(-0.383209\pi\)
−0.933441 + 0.358732i \(0.883209\pi\)
\(632\) −15.5990 15.5990i −0.620497 0.620497i
\(633\) 0.733973 + 0.195811i 0.0291728 + 0.00778278i
\(634\) 5.10500i 0.202745i
\(635\) 0 0
\(636\) −6.59861 + 24.7341i −0.261652 + 0.980771i
\(637\) −33.6089 + 10.7480i −1.33163 + 0.425853i
\(638\) −0.163298 −0.00646502
\(639\) −3.28303 12.1465i −0.129875 0.480508i
\(640\) 0 0
\(641\) −13.1832 −0.520706 −0.260353 0.965513i \(-0.583839\pi\)
−0.260353 + 0.965513i \(0.583839\pi\)
\(642\) 8.70574 5.03891i 0.343588 0.198870i
\(643\) 26.1092 + 26.1092i 1.02964 + 1.02964i 0.999547 + 0.0300976i \(0.00958181\pi\)
0.0300976 + 0.999547i \(0.490418\pi\)
\(644\) −10.9870 + 10.9870i −0.432947 + 0.432947i
\(645\) 0 0
\(646\) 20.5808 0.809741
\(647\) 24.4734i 0.962150i −0.876679 0.481075i \(-0.840246\pi\)
0.876679 0.481075i \(-0.159754\pi\)
\(648\) −5.29384 + 20.1069i −0.207962 + 0.789875i
\(649\) 16.2814i 0.639099i
\(650\) 0 0
\(651\) −8.18718 + 30.6887i −0.320881 + 1.20278i
\(652\) −2.83657 2.83657i −0.111089 0.111089i
\(653\) 27.4272 1.07331 0.536655 0.843802i \(-0.319688\pi\)
0.536655 + 0.843802i \(0.319688\pi\)
\(654\) 2.39069 8.96123i 0.0934835 0.350412i
\(655\) 0 0
\(656\) 3.57875 + 3.57875i 0.139727 + 0.139727i
\(657\) −24.2087 + 6.54325i −0.944470 + 0.255277i
\(658\) 21.2619 21.2619i 0.828875 0.828875i
\(659\) 28.8992i 1.12575i 0.826541 + 0.562877i \(0.190305\pi\)
−0.826541 + 0.562877i \(0.809695\pi\)
\(660\) 0 0
\(661\) 2.27091 + 2.27091i 0.0883282 + 0.0883282i 0.749890 0.661562i \(-0.230106\pi\)
−0.661562 + 0.749890i \(0.730106\pi\)
\(662\) 0.811807i 0.0315518i
\(663\) −40.4733 + 1.97704i −1.57185 + 0.0767818i
\(664\) −8.57713 −0.332857
\(665\) 0 0
\(666\) −8.63716 + 15.0356i −0.334683 + 0.582616i
\(667\) 0.174371 0.00675168
\(668\) 11.1898 11.1898i 0.432946 0.432946i
\(669\) 1.95932 + 3.38512i 0.0757517 + 0.130876i
\(670\) 0 0
\(671\) −3.18609 + 3.18609i −0.122998 + 0.122998i
\(672\) −10.4329 + 39.1064i −0.402458 + 1.50856i
\(673\) −35.6852 −1.37556 −0.687782 0.725918i \(-0.741415\pi\)
−0.687782 + 0.725918i \(0.741415\pi\)
\(674\) 0.164978 0.164978i 0.00635472 0.00635472i
\(675\) 0 0
\(676\) −11.9534 16.7777i −0.459746 0.645296i
\(677\) −2.22785 −0.0856231 −0.0428116 0.999083i \(-0.513632\pi\)
−0.0428116 + 0.999083i \(0.513632\pi\)
\(678\) 0.629358 0.364275i 0.0241704 0.0139899i
\(679\) 39.2552 1.50648
\(680\) 0 0
\(681\) 27.7635 16.0696i 1.06390 0.615788i
\(682\) 7.09315 + 7.09315i 0.271611 + 0.271611i
\(683\) −5.68940 5.68940i −0.217699 0.217699i 0.589829 0.807528i \(-0.299195\pi\)
−0.807528 + 0.589829i \(0.799195\pi\)
\(684\) −6.10467 22.5860i −0.233418 0.863597i
\(685\) 0 0
\(686\) −7.35777 −0.280921
\(687\) 3.17674 + 5.48847i 0.121200 + 0.209398i
\(688\) 5.93971 0.226449
\(689\) −10.2432 32.0303i −0.390236 1.22026i
\(690\) 0 0
\(691\) 10.3521 10.3521i 0.393813 0.393813i −0.482231 0.876044i \(-0.660174\pi\)
0.876044 + 0.482231i \(0.160174\pi\)
\(692\) 35.8215 1.36173
\(693\) 21.2914 37.0640i 0.808794 1.40795i
\(694\) 2.71954 2.71954i 0.103232 0.103232i
\(695\) 0 0
\(696\) 0.252329 0.146049i 0.00956451 0.00553598i
\(697\) −13.8191 + 13.8191i −0.523434 + 0.523434i
\(698\) 12.5263 0.474128
\(699\) −2.97613 + 11.1557i −0.112567 + 0.421946i
\(700\) 0 0
\(701\) −12.8424 −0.485052 −0.242526 0.970145i \(-0.577976\pi\)
−0.242526 + 0.970145i \(0.577976\pi\)
\(702\) −3.71542 11.4885i −0.140230 0.433606i
\(703\) 44.1377i 1.66468i
\(704\) 0.774621 + 0.774621i 0.0291946 + 0.0291946i
\(705\) 0 0
\(706\) 12.5980i 0.474134i
\(707\) 9.17373 9.17373i 0.345014 0.345014i
\(708\) −6.43717 11.1215i −0.241924 0.417972i
\(709\) 4.43471 + 4.43471i 0.166549 + 0.166549i 0.785461 0.618912i \(-0.212426\pi\)
−0.618912 + 0.785461i \(0.712426\pi\)
\(710\) 0 0
\(711\) −24.8401 14.2694i −0.931576 0.535143i
\(712\) −22.9717 −0.860900
\(713\) −7.57415 7.57415i −0.283654 0.283654i
\(714\) −28.6732 7.64949i −1.07307 0.286275i
\(715\) 0 0
\(716\) 22.7187i 0.849036i
\(717\) −1.41947 2.45242i −0.0530110 0.0915872i
\(718\) 1.08577i 0.0405204i
\(719\) −47.3354 −1.76531 −0.882656 0.470019i \(-0.844247\pi\)
−0.882656 + 0.470019i \(0.844247\pi\)
\(720\) 0 0
\(721\) −39.8156 + 39.8156i −1.48281 + 1.48281i
\(722\) −2.37937 2.37937i −0.0885509 0.0885509i
\(723\) 4.83317 + 8.35028i 0.179748 + 0.310550i
\(724\) −23.7278 −0.881835
\(725\) 0 0
\(726\) −0.611482 1.05646i −0.0226942 0.0392089i
\(727\) −12.6597 −0.469523 −0.234762 0.972053i \(-0.575431\pi\)
−0.234762 + 0.972053i \(0.575431\pi\)
\(728\) −10.3953 32.5060i −0.385277 1.20475i
\(729\) 0.176474 + 26.9994i 0.00653606 + 0.999979i
\(730\) 0 0
\(731\) 22.9357i 0.848308i
\(732\) 0.916677 3.43605i 0.0338813 0.127000i
\(733\) 34.2421 + 34.2421i 1.26476 + 1.26476i 0.948758 + 0.316003i \(0.102341\pi\)
0.316003 + 0.948758i \(0.397659\pi\)
\(734\) 10.8394 + 10.8394i 0.400088 + 0.400088i
\(735\) 0 0
\(736\) −9.65171 9.65171i −0.355767 0.355767i
\(737\) 4.53775 0.167150
\(738\) −5.04948 2.90067i −0.185874 0.106775i
\(739\) −0.527783 0.527783i −0.0194148 0.0194148i 0.697333 0.716748i \(-0.254370\pi\)
−0.716748 + 0.697333i \(0.754370\pi\)
\(740\) 0 0
\(741\) 22.7672 + 20.6465i 0.836374 + 0.758469i
\(742\) 24.6277i 0.904113i
\(743\) −15.9143 + 15.9143i −0.583840 + 0.583840i −0.935956 0.352116i \(-0.885462\pi\)
0.352116 + 0.935956i \(0.385462\pi\)
\(744\) −17.3043 4.61648i −0.634408 0.169249i
\(745\) 0 0
\(746\) −12.3468 12.3468i −0.452050 0.452050i
\(747\) −10.7522 + 2.90616i −0.393401 + 0.106331i
\(748\) 25.2841 25.2841i 0.924477 0.924477i
\(749\) 26.1061 26.1061i 0.953896 0.953896i
\(750\) 0 0
\(751\) 44.2811i 1.61584i 0.589292 + 0.807920i \(0.299407\pi\)
−0.589292 + 0.807920i \(0.700593\pi\)
\(752\) −13.5307 13.5307i −0.493412 0.493412i
\(753\) 28.4864 + 7.59966i 1.03810 + 0.276947i
\(754\) −0.0775630 + 0.150496i −0.00282468 + 0.00548073i
\(755\) 0 0
\(756\) 0.110251 + 33.7358i 0.00400978 + 1.22696i
\(757\) 22.8856i 0.831790i 0.909413 + 0.415895i \(0.136532\pi\)
−0.909413 + 0.415895i \(0.863468\pi\)
\(758\) 8.70710i 0.316256i
\(759\) 7.22116 + 12.4760i 0.262111 + 0.452850i
\(760\) 0 0
\(761\) −7.52971 + 7.52971i −0.272952 + 0.272952i −0.830287 0.557336i \(-0.811824\pi\)
0.557336 + 0.830287i \(0.311824\pi\)
\(762\) 3.53155 2.04407i 0.127935 0.0740490i
\(763\) 34.0413i 1.23238i
\(764\) −20.7230 −0.749732
\(765\) 0 0
\(766\) 18.2054i 0.657786i
\(767\) 15.0049 + 7.73331i 0.541797 + 0.279234i
\(768\) −13.1383 3.50507i −0.474089 0.126478i
\(769\) −36.8433 + 36.8433i −1.32860 + 1.32860i −0.422015 + 0.906589i \(0.638677\pi\)
−0.906589 + 0.422015i \(0.861323\pi\)
\(770\) 0 0
\(771\) 7.04394 26.4034i 0.253681 0.950894i
\(772\) 13.3877 + 13.3877i 0.481835 + 0.481835i
\(773\) 10.1075 10.1075i 0.363542 0.363542i −0.501573 0.865115i \(-0.667245\pi\)
0.865115 + 0.501573i \(0.167245\pi\)
\(774\) −6.59749 + 1.78321i −0.237142 + 0.0640961i
\(775\) 0 0
\(776\) 22.1347i 0.794591i
\(777\) −16.4051 + 61.4926i −0.588530 + 2.20603i
\(778\) −16.0106 + 16.0106i −0.574008 + 0.574008i
\(779\) 14.8230 0.531089
\(780\) 0 0
\(781\) −14.5854 −0.521905
\(782\) 7.07672 7.07672i 0.253063 0.253063i
\(783\) 0.266831 0.268581i 0.00953576 0.00959829i
\(784\) 16.4450i 0.587321i
\(785\) 0 0
\(786\) −5.91294 10.2158i −0.210907 0.364385i
\(787\) −20.3419 + 20.3419i −0.725112 + 0.725112i −0.969642 0.244530i \(-0.921366\pi\)
0.244530 + 0.969642i \(0.421366\pi\)
\(788\) −10.0096 10.0096i −0.356577 0.356577i
\(789\) 8.75375 + 2.33534i 0.311642 + 0.0831404i
\(790\) 0 0
\(791\) 1.88727 1.88727i 0.0671036 0.0671036i
\(792\) 20.8992 + 12.0055i 0.742621 + 0.426598i
\(793\) 1.42298 + 4.44964i 0.0505316 + 0.158011i
\(794\) 11.9210i 0.423059i
\(795\) 0 0
\(796\) 34.7737 1.23252
\(797\) 22.8088i 0.807930i −0.914774 0.403965i \(-0.867632\pi\)
0.914774 0.403965i \(-0.132368\pi\)
\(798\) 11.2755 + 19.4808i 0.399149 + 0.689611i
\(799\) 52.2475 52.2475i 1.84838 1.84838i
\(800\) 0 0
\(801\) −28.7970 + 7.78341i −1.01749 + 0.275013i
\(802\) 1.43960i 0.0508341i
\(803\) 29.0694i 1.02584i
\(804\) −3.09966 + 1.79409i −0.109316 + 0.0632728i
\(805\) 0 0
\(806\) 9.90617 3.16797i 0.348930 0.111587i
\(807\) 11.0341 41.3599i 0.388418 1.45594i
\(808\) 5.17277 + 5.17277i 0.181977 + 0.181977i
\(809\) 2.21292i 0.0778020i 0.999243 + 0.0389010i \(0.0123857\pi\)
−0.999243 + 0.0389010i \(0.987614\pi\)
\(810\) 0 0
\(811\) −10.2655 + 10.2655i −0.360469 + 0.360469i −0.863985 0.503517i \(-0.832039\pi\)
0.503517 + 0.863985i \(0.332039\pi\)
\(812\) 0.334495 0.334495i 0.0117385 0.0117385i
\(813\) −16.4309 28.3876i −0.576255 0.995597i
\(814\) 14.2129 + 14.2129i 0.498163 + 0.498163i
\(815\) 0 0
\(816\) −4.86798 + 18.2470i −0.170413 + 0.638774i
\(817\) 12.3010 12.3010i 0.430357 0.430357i
\(818\) 8.69948i 0.304170i
\(819\) −24.0453 37.2269i −0.840212 1.30081i
\(820\) 0 0
\(821\) 0.236912 + 0.236912i 0.00826830 + 0.00826830i 0.711229 0.702961i \(-0.248139\pi\)
−0.702961 + 0.711229i \(0.748139\pi\)
\(822\) 7.05983 + 1.88344i 0.246240 + 0.0656924i
\(823\) −9.65610 −0.336591 −0.168295 0.985737i \(-0.553826\pi\)
−0.168295 + 0.985737i \(0.553826\pi\)
\(824\) −22.4507 22.4507i −0.782107 0.782107i
\(825\) 0 0
\(826\) 8.74158 + 8.74158i 0.304159 + 0.304159i
\(827\) 6.76442 + 6.76442i 0.235222 + 0.235222i 0.814868 0.579646i \(-0.196809\pi\)
−0.579646 + 0.814868i \(0.696809\pi\)
\(828\) −9.86529 5.66711i −0.342843 0.196946i
\(829\) 10.8499i 0.376834i −0.982089 0.188417i \(-0.939664\pi\)
0.982089 0.188417i \(-0.0603356\pi\)
\(830\) 0 0
\(831\) 8.49966 + 2.26756i 0.294850 + 0.0786607i
\(832\) 1.08182 0.345964i 0.0375054 0.0119941i
\(833\) −63.5010 −2.20018
\(834\) −7.74933 + 4.48534i −0.268337 + 0.155315i
\(835\) 0 0
\(836\) −27.1210 −0.937998
\(837\) −23.2566 + 0.0760042i −0.803867 + 0.00262709i
\(838\) 16.5937 + 16.5937i 0.573221 + 0.573221i
\(839\) 34.4849 34.4849i 1.19055 1.19055i 0.213640 0.976912i \(-0.431468\pi\)
0.976912 0.213640i \(-0.0685319\pi\)
\(840\) 0 0
\(841\) 28.9947 0.999817
\(842\) 4.25595i 0.146670i
\(843\) 4.01923 2.32634i 0.138430 0.0801235i
\(844\) 0.694993i 0.0239227i
\(845\) 0 0
\(846\) 19.0912 + 10.9669i 0.656370 + 0.377051i
\(847\) −3.16803 3.16803i −0.108855 0.108855i
\(848\) −15.6726 −0.538199
\(849\) 21.1395 + 5.63964i 0.725506 + 0.193552i
\(850\) 0 0
\(851\) −15.1767 15.1767i −0.520252 0.520252i
\(852\) 9.96300 5.76662i 0.341327 0.197561i
\(853\) −30.7565 + 30.7565i −1.05308 + 1.05308i −0.0545730 + 0.998510i \(0.517380\pi\)
−0.998510 + 0.0545730i \(0.982620\pi\)
\(854\) 3.42128i 0.117074i
\(855\) 0 0
\(856\) 14.7204 + 14.7204i 0.503132 + 0.503132i
\(857\) 38.8679i 1.32770i −0.747864 0.663852i \(-0.768921\pi\)
0.747864 0.663852i \(-0.231079\pi\)
\(858\) −13.9798 + 0.682885i −0.477263 + 0.0233133i
\(859\) 3.20072 0.109207 0.0546036 0.998508i \(-0.482610\pi\)
0.0546036 + 0.998508i \(0.482610\pi\)
\(860\) 0 0
\(861\) −20.6514 5.50942i −0.703798 0.187761i
\(862\) 3.17930 0.108288
\(863\) 24.0668 24.0668i 0.819244 0.819244i −0.166755 0.985998i \(-0.553329\pi\)
0.985998 + 0.166755i \(0.0533288\pi\)
\(864\) −29.6358 + 0.0968519i −1.00823 + 0.00329497i
\(865\) 0 0
\(866\) 0.0299557 0.0299557i 0.00101794 0.00101794i
\(867\) −42.0097 11.2074i −1.42672 0.380624i
\(868\) −29.0589 −0.986322
\(869\) −23.4811 + 23.4811i −0.796540 + 0.796540i
\(870\) 0 0
\(871\) 2.15534 4.18200i 0.0730308 0.141702i
\(872\) 19.1948 0.650016
\(873\) 7.49983 + 27.7478i 0.253831 + 0.939120i
\(874\) −7.59084 −0.256764
\(875\) 0 0
\(876\) −11.4932 19.8568i −0.388319 0.670899i
\(877\) 34.6511 + 34.6511i 1.17008 + 1.17008i 0.982189 + 0.187895i \(0.0601664\pi\)
0.187895 + 0.982189i \(0.439834\pi\)
\(878\) 4.35908 + 4.35908i 0.147112 + 0.147112i
\(879\) −24.1803 41.7763i −0.815580 1.40908i
\(880\) 0 0
\(881\) −5.44243 −0.183360 −0.0916800 0.995789i \(-0.529224\pi\)
−0.0916800 + 0.995789i \(0.529224\pi\)
\(882\) −4.93709 18.2662i −0.166240 0.615054i
\(883\) 2.38247 0.0801763 0.0400882 0.999196i \(-0.487236\pi\)
0.0400882 + 0.999196i \(0.487236\pi\)
\(884\) −11.2925 35.3113i −0.379806 1.18765i
\(885\) 0 0
\(886\) 15.9581 15.9581i 0.536124 0.536124i
\(887\) −36.3502 −1.22052 −0.610260 0.792201i \(-0.708935\pi\)
−0.610260 + 0.792201i \(0.708935\pi\)
\(888\) −34.6737 9.25031i −1.16357 0.310420i
\(889\) 10.5901 10.5901i 0.355182 0.355182i
\(890\) 0 0
\(891\) 30.2667 + 7.96875i 1.01397 + 0.266963i
\(892\) −2.53030 + 2.53030i −0.0847209 + 0.0847209i
\(893\) −56.0433 −1.87542
\(894\) −1.77266 0.472915i −0.0592867 0.0158166i
\(895\) 0 0
\(896\) −45.9038 −1.53354
\(897\) 14.9278 0.729193i 0.498425 0.0243470i
\(898\) 21.1674i 0.706365i
\(899\) 0.230593 + 0.230593i 0.00769070 + 0.00769070i
\(900\) 0 0
\(901\) 60.5185i 2.01616i
\(902\) −4.77321 + 4.77321i −0.158931 + 0.158931i
\(903\) −21.7098 + 12.5657i −0.722456 + 0.418160i
\(904\) 1.06417 + 1.06417i 0.0353938 + 0.0353938i
\(905\) 0 0
\(906\) 8.40964 + 2.24354i 0.279392 + 0.0745366i
\(907\) 17.6809 0.587085 0.293542 0.955946i \(-0.405166\pi\)
0.293542 + 0.955946i \(0.405166\pi\)
\(908\) 20.7526 + 20.7526i 0.688699 + 0.688699i
\(909\) 8.23717 + 4.73183i 0.273210 + 0.156945i
\(910\) 0 0
\(911\) 5.92923i 0.196444i −0.995165 0.0982220i \(-0.968684\pi\)
0.995165 0.0982220i \(-0.0313155\pi\)
\(912\) 12.3972 7.17552i 0.410511 0.237605i
\(913\) 12.9111i 0.427293i
\(914\) 5.33439 0.176446
\(915\) 0 0
\(916\) −4.10251 + 4.10251i −0.135551 + 0.135551i
\(917\) −30.6343 30.6343i −1.01163 1.01163i
\(918\) −0.0710126 21.7292i −0.00234377 0.717172i
\(919\) 22.9927 0.758459 0.379230 0.925303i \(-0.376189\pi\)
0.379230 + 0.925303i \(0.376189\pi\)
\(920\) 0 0
\(921\) −17.8419 + 10.3270i −0.587912 + 0.340286i
\(922\) −22.1373 −0.729054
\(923\) −6.92775 + 13.4419i −0.228030 + 0.442446i
\(924\) 37.7849 + 10.0803i 1.24303 + 0.331619i
\(925\) 0 0
\(926\) 10.4642i 0.343876i
\(927\) −35.7507 20.5370i −1.17421 0.674523i
\(928\) 0.293843 + 0.293843i 0.00964588 + 0.00964588i
\(929\) 31.4998 + 31.4998i 1.03348 + 1.03348i 0.999420 + 0.0340553i \(0.0108422\pi\)
0.0340553 + 0.999420i \(0.489158\pi\)
\(930\) 0 0
\(931\) 34.0572 + 34.0572i 1.11618 + 1.11618i
\(932\) −10.5632 −0.346009
\(933\) −41.8097 11.1541i −1.36879 0.365168i
\(934\) 9.98280 + 9.98280i 0.326647 + 0.326647i
\(935\) 0 0
\(936\) 20.9910 13.5584i 0.686113 0.443170i
\(937\) 40.0311i 1.30776i 0.756599 + 0.653879i \(0.226859\pi\)
−0.756599 + 0.653879i \(0.773141\pi\)
\(938\) 2.43635 2.43635i 0.0795497 0.0795497i
\(939\) −3.67405 + 13.7717i −0.119898 + 0.449423i
\(940\) 0 0
\(941\) 41.8084 + 41.8084i 1.36292 + 1.36292i 0.870178 + 0.492738i \(0.164004\pi\)
0.492738 + 0.870178i \(0.335996\pi\)
\(942\) −11.6140 20.0655i −0.378404 0.653770i
\(943\) 5.09689 5.09689i 0.165978 0.165978i
\(944\) 5.56297 5.56297i 0.181059 0.181059i
\(945\) 0 0
\(946\) 7.92218i 0.257572i
\(947\) −33.2177 33.2177i −1.07943 1.07943i −0.996560 0.0828703i \(-0.973591\pi\)
−0.0828703 0.996560i \(-0.526409\pi\)
\(948\) 6.75577 25.3232i 0.219417 0.822459i
\(949\) 26.7905 + 13.8074i 0.869655 + 0.448206i
\(950\) 0 0
\(951\) 11.8741 6.87280i 0.385046 0.222866i
\(952\) 61.4173i 1.99055i
\(953\) 9.16362i 0.296839i −0.988925 0.148419i \(-0.952581\pi\)
0.988925 0.148419i \(-0.0474185\pi\)
\(954\) 17.4082 4.70520i 0.563613 0.152336i
\(955\) 0 0
\(956\) 1.83313 1.83313i 0.0592876 0.0592876i
\(957\) −0.219846 0.379828i −0.00710661 0.0122781i
\(958\) 18.1963i 0.587897i
\(959\) 26.8184 0.866011
\(960\) 0 0
\(961\) 10.9675i 0.353791i
\(962\) 19.8495 6.34783i 0.639975 0.204662i
\(963\) 23.4409 + 13.4656i 0.755372 + 0.433923i
\(964\) −6.24165 + 6.24165i −0.201030 + 0.201030i
\(965\) 0 0
\(966\) 10.5756 + 2.82137i 0.340263 + 0.0907760i
\(967\) 27.6848 + 27.6848i 0.890282 + 0.890282i 0.994549 0.104268i \(-0.0332498\pi\)
−0.104268 + 0.994549i \(0.533250\pi\)
\(968\) 1.78635 1.78635i 0.0574153 0.0574153i
\(969\) 27.7077 + 47.8707i 0.890100 + 1.53783i
\(970\) 0 0
\(971\) 22.0979i 0.709156i 0.935026 + 0.354578i \(0.115376\pi\)
−0.935026 + 0.354578i \(0.884624\pi\)
\(972\) −23.8253 + 6.52325i −0.764195 + 0.209233i
\(973\) −23.2381 + 23.2381i −0.744979 + 0.744979i
\(974\) 11.1289 0.356593
\(975\) 0 0
\(976\) 2.17723 0.0696915
\(977\) −40.2412 + 40.2412i −1.28743 + 1.28743i −0.351086 + 0.936343i \(0.614188\pi\)
−0.936343 + 0.351086i \(0.885812\pi\)
\(978\) −0.728409 + 2.73036i −0.0232920 + 0.0873071i
\(979\) 34.5790i 1.10515i
\(980\) 0 0
\(981\) 24.0622 6.50368i 0.768248 0.207647i
\(982\) 10.8303 10.8303i 0.345608 0.345608i
\(983\) −10.0169 10.0169i −0.319490 0.319490i 0.529081 0.848571i \(-0.322537\pi\)
−0.848571 + 0.529081i \(0.822537\pi\)
\(984\) 3.10658 11.6447i 0.0990342 0.371218i
\(985\) 0 0
\(986\) −0.215448 + 0.215448i −0.00686127 + 0.00686127i
\(987\) 78.0795 + 20.8302i 2.48530 + 0.663033i
\(988\) −12.8819 + 24.9947i −0.409828 + 0.795189i
\(989\) 8.45939i 0.268993i
\(990\) 0 0
\(991\) −21.7567 −0.691124 −0.345562 0.938396i \(-0.612312\pi\)
−0.345562 + 0.938396i \(0.612312\pi\)
\(992\) 25.5273i 0.810493i
\(993\) 1.88825 1.09293i 0.0599218 0.0346830i
\(994\) −7.83099 + 7.83099i −0.248384 + 0.248384i
\(995\) 0 0
\(996\) −5.10465 8.81931i −0.161747 0.279450i
\(997\) 27.2276i 0.862308i −0.902278 0.431154i \(-0.858107\pi\)
0.902278 0.431154i \(-0.141893\pi\)
\(998\) 12.4622i 0.394482i
\(999\) −46.6006 + 0.152294i −1.47438 + 0.00481837i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.n.r.824.12 40
3.2 odd 2 inner 975.2.n.r.824.9 40
5.2 odd 4 975.2.o.p.551.12 40
5.3 odd 4 195.2.o.a.161.9 yes 40
5.4 even 2 975.2.n.q.824.9 40
13.8 odd 4 975.2.n.q.749.12 40
15.2 even 4 975.2.o.p.551.9 40
15.8 even 4 195.2.o.a.161.12 yes 40
15.14 odd 2 975.2.n.q.824.12 40
39.8 even 4 975.2.n.q.749.9 40
65.8 even 4 195.2.o.a.86.12 yes 40
65.34 odd 4 inner 975.2.n.r.749.9 40
65.47 even 4 975.2.o.p.476.9 40
195.8 odd 4 195.2.o.a.86.9 40
195.47 odd 4 975.2.o.p.476.12 40
195.164 even 4 inner 975.2.n.r.749.12 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.o.a.86.9 40 195.8 odd 4
195.2.o.a.86.12 yes 40 65.8 even 4
195.2.o.a.161.9 yes 40 5.3 odd 4
195.2.o.a.161.12 yes 40 15.8 even 4
975.2.n.q.749.9 40 39.8 even 4
975.2.n.q.749.12 40 13.8 odd 4
975.2.n.q.824.9 40 5.4 even 2
975.2.n.q.824.12 40 15.14 odd 2
975.2.n.r.749.9 40 65.34 odd 4 inner
975.2.n.r.749.12 40 195.164 even 4 inner
975.2.n.r.824.9 40 3.2 odd 2 inner
975.2.n.r.824.12 40 1.1 even 1 trivial
975.2.o.p.476.9 40 65.47 even 4
975.2.o.p.476.12 40 195.47 odd 4
975.2.o.p.551.9 40 15.2 even 4
975.2.o.p.551.12 40 5.2 odd 4