Properties

Label 195.2.o.a.86.12
Level $195$
Weight $2$
Character 195.86
Analytic conductor $1.557$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,2,Mod(86,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.86"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 86.12
Character \(\chi\) \(=\) 195.86
Dual form 195.2.o.a.161.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.455718 - 0.455718i) q^{2} +(-0.446465 + 1.67352i) q^{3} +1.58464i q^{4} +(0.707107 - 0.707107i) q^{5} +(0.559191 + 0.966114i) q^{6} +(-2.89711 + 2.89711i) q^{7} +(1.63358 + 1.63358i) q^{8} +(-2.60134 - 1.49434i) q^{9} -0.644482i q^{10} +(-2.45902 - 2.45902i) q^{11} +(-2.65193 - 0.707488i) q^{12} +(3.43422 + 1.09825i) q^{13} +2.64053i q^{14} +(0.867659 + 1.49906i) q^{15} -1.68038 q^{16} +6.48865 q^{17} +(-1.86647 + 0.504480i) q^{18} +(3.48002 + 3.48002i) q^{19} +(1.12051 + 1.12051i) q^{20} +(-3.55491 - 6.14183i) q^{21} -2.24123 q^{22} +2.39321 q^{23} +(-3.46318 + 2.00450i) q^{24} -1.00000i q^{25} +(2.06553 - 1.06454i) q^{26} +(3.66221 - 3.68622i) q^{27} +(-4.59088 - 4.59088i) q^{28} +0.0728607i q^{29} +(1.07855 + 0.287739i) q^{30} +(-3.16484 - 3.16484i) q^{31} +(-4.03295 + 4.03295i) q^{32} +(5.21308 - 3.01735i) q^{33} +(2.95699 - 2.95699i) q^{34} +4.09713i q^{35} +(2.36799 - 4.12219i) q^{36} +(6.34157 - 6.34157i) q^{37} +3.17182 q^{38} +(-3.37121 + 5.25690i) q^{39} +2.31024 q^{40} +(2.12973 - 2.12973i) q^{41} +(-4.41897 - 1.17890i) q^{42} +3.53474i q^{43} +(3.89666 - 3.89666i) q^{44} +(-2.89608 + 0.782769i) q^{45} +(1.09063 - 1.09063i) q^{46} +(-8.05214 - 8.05214i) q^{47} +(0.750230 - 2.81215i) q^{48} -9.78648i q^{49} +(-0.455718 - 0.455718i) q^{50} +(-2.89695 + 10.8589i) q^{51} +(-1.74034 + 5.44201i) q^{52} +9.32683i q^{53} +(-0.0109441 - 3.34881i) q^{54} -3.47757 q^{55} -9.46535 q^{56} +(-7.37760 + 4.27018i) q^{57} +(0.0332039 + 0.0332039i) q^{58} +(-3.31055 - 3.31055i) q^{59} +(-2.37547 + 1.37493i) q^{60} -1.29568 q^{61} -2.88455 q^{62} +(11.8656 - 3.20711i) q^{63} +0.315013i q^{64} +(3.20494 - 1.65178i) q^{65} +(1.00063 - 3.75075i) q^{66} +(0.922676 + 0.922676i) q^{67} +10.2822i q^{68} +(-1.06849 + 4.00509i) q^{69} +(1.86713 + 1.86713i) q^{70} +(2.96569 - 2.96569i) q^{71} +(-1.80838 - 6.69063i) q^{72} +(-5.91079 + 5.91079i) q^{73} -5.77993i q^{74} +(1.67352 + 0.446465i) q^{75} +(-5.51460 + 5.51460i) q^{76} +14.2481 q^{77} +(0.859343 + 3.93198i) q^{78} +9.54897 q^{79} +(-1.18821 + 1.18821i) q^{80} +(4.53392 + 7.77455i) q^{81} -1.94111i q^{82} +(2.62525 - 2.62525i) q^{83} +(9.73260 - 5.63327i) q^{84} +(4.58817 - 4.58817i) q^{85} +(1.61084 + 1.61084i) q^{86} +(-0.121934 - 0.0325297i) q^{87} -8.03402i q^{88} +(-7.03107 - 7.03107i) q^{89} +(-0.963073 + 1.67652i) q^{90} +(-13.1311 + 6.76754i) q^{91} +3.79239i q^{92} +(6.70942 - 3.88344i) q^{93} -7.33901 q^{94} +4.92150 q^{95} +(-4.94865 - 8.54979i) q^{96} +(6.77490 + 6.77490i) q^{97} +(-4.45987 - 4.45987i) q^{98} +(2.72214 + 10.0713i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{6} - 16 q^{7} + 4 q^{15} - 64 q^{16} + 4 q^{18} - 16 q^{19} - 12 q^{21} + 8 q^{24} - 24 q^{27} + 32 q^{28} + 32 q^{31} - 4 q^{33} - 16 q^{34} + 32 q^{37} - 8 q^{39} + 8 q^{42} - 8 q^{45} - 40 q^{46}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.455718 0.455718i 0.322241 0.322241i −0.527385 0.849626i \(-0.676828\pi\)
0.849626 + 0.527385i \(0.176828\pi\)
\(3\) −0.446465 + 1.67352i −0.257767 + 0.966207i
\(4\) 1.58464i 0.792321i
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) 0.559191 + 0.966114i 0.228289 + 0.394415i
\(7\) −2.89711 + 2.89711i −1.09500 + 1.09500i −0.100019 + 0.994986i \(0.531890\pi\)
−0.994986 + 0.100019i \(0.968110\pi\)
\(8\) 1.63358 + 1.63358i 0.577559 + 0.577559i
\(9\) −2.60134 1.49434i −0.867113 0.498112i
\(10\) 0.644482i 0.203803i
\(11\) −2.45902 2.45902i −0.741421 0.741421i 0.231430 0.972851i \(-0.425659\pi\)
−0.972851 + 0.231430i \(0.925659\pi\)
\(12\) −2.65193 0.707488i −0.765547 0.204234i
\(13\) 3.43422 + 1.09825i 0.952480 + 0.304601i
\(14\) 2.64053i 0.705711i
\(15\) 0.867659 + 1.49906i 0.224029 + 0.387055i
\(16\) −1.68038 −0.420095
\(17\) 6.48865 1.57373 0.786864 0.617126i \(-0.211703\pi\)
0.786864 + 0.617126i \(0.211703\pi\)
\(18\) −1.86647 + 0.504480i −0.439931 + 0.118907i
\(19\) 3.48002 + 3.48002i 0.798372 + 0.798372i 0.982839 0.184466i \(-0.0590557\pi\)
−0.184466 + 0.982839i \(0.559056\pi\)
\(20\) 1.12051 + 1.12051i 0.250554 + 0.250554i
\(21\) −3.55491 6.14183i −0.775745 1.34026i
\(22\) −2.24123 −0.477833
\(23\) 2.39321 0.499020 0.249510 0.968372i \(-0.419730\pi\)
0.249510 + 0.968372i \(0.419730\pi\)
\(24\) −3.46318 + 2.00450i −0.706918 + 0.409167i
\(25\) 1.00000i 0.200000i
\(26\) 2.06553 1.06454i 0.405083 0.208773i
\(27\) 3.66221 3.68622i 0.704792 0.709414i
\(28\) −4.59088 4.59088i −0.867595 0.867595i
\(29\) 0.0728607i 0.0135299i 0.999977 + 0.00676494i \(0.00215336\pi\)
−0.999977 + 0.00676494i \(0.997847\pi\)
\(30\) 1.07855 + 0.287739i 0.196916 + 0.0525336i
\(31\) −3.16484 3.16484i −0.568423 0.568423i 0.363264 0.931686i \(-0.381662\pi\)
−0.931686 + 0.363264i \(0.881662\pi\)
\(32\) −4.03295 + 4.03295i −0.712931 + 0.712931i
\(33\) 5.21308 3.01735i 0.907480 0.525253i
\(34\) 2.95699 2.95699i 0.507120 0.507120i
\(35\) 4.09713i 0.692541i
\(36\) 2.36799 4.12219i 0.394665 0.687032i
\(37\) 6.34157 6.34157i 1.04255 1.04255i 0.0434947 0.999054i \(-0.486151\pi\)
0.999054 0.0434947i \(-0.0138492\pi\)
\(38\) 3.17182 0.514537
\(39\) −3.37121 + 5.25690i −0.539825 + 0.841777i
\(40\) 2.31024 0.365281
\(41\) 2.12973 2.12973i 0.332607 0.332607i −0.520968 0.853576i \(-0.674429\pi\)
0.853576 + 0.520968i \(0.174429\pi\)
\(42\) −4.41897 1.17890i −0.681863 0.181909i
\(43\) 3.53474i 0.539043i 0.962994 + 0.269522i \(0.0868655\pi\)
−0.962994 + 0.269522i \(0.913134\pi\)
\(44\) 3.89666 3.89666i 0.587444 0.587444i
\(45\) −2.89608 + 0.782769i −0.431722 + 0.116688i
\(46\) 1.09063 1.09063i 0.160805 0.160805i
\(47\) −8.05214 8.05214i −1.17453 1.17453i −0.981119 0.193407i \(-0.938046\pi\)
−0.193407 0.981119i \(-0.561954\pi\)
\(48\) 0.750230 2.81215i 0.108286 0.405899i
\(49\) 9.78648i 1.39807i
\(50\) −0.455718 0.455718i −0.0644482 0.0644482i
\(51\) −2.89695 + 10.8589i −0.405655 + 1.52055i
\(52\) −1.74034 + 5.44201i −0.241342 + 0.754670i
\(53\) 9.32683i 1.28114i 0.767901 + 0.640569i \(0.221301\pi\)
−0.767901 + 0.640569i \(0.778699\pi\)
\(54\) −0.0109441 3.34881i −0.00148931 0.455715i
\(55\) −3.47757 −0.468916
\(56\) −9.46535 −1.26486
\(57\) −7.37760 + 4.27018i −0.977187 + 0.565599i
\(58\) 0.0332039 + 0.0332039i 0.00435988 + 0.00435988i
\(59\) −3.31055 3.31055i −0.430996 0.430996i 0.457971 0.888967i \(-0.348576\pi\)
−0.888967 + 0.457971i \(0.848576\pi\)
\(60\) −2.37547 + 1.37493i −0.306672 + 0.177503i
\(61\) −1.29568 −0.165895 −0.0829473 0.996554i \(-0.526433\pi\)
−0.0829473 + 0.996554i \(0.526433\pi\)
\(62\) −2.88455 −0.366338
\(63\) 11.8656 3.20711i 1.49493 0.404057i
\(64\) 0.315013i 0.0393766i
\(65\) 3.20494 1.65178i 0.397524 0.204877i
\(66\) 1.00063 3.75075i 0.123169 0.461685i
\(67\) 0.922676 + 0.922676i 0.112723 + 0.112723i 0.761218 0.648496i \(-0.224601\pi\)
−0.648496 + 0.761218i \(0.724601\pi\)
\(68\) 10.2822i 1.24690i
\(69\) −1.06849 + 4.00509i −0.128631 + 0.482156i
\(70\) 1.86713 + 1.86713i 0.223165 + 0.223165i
\(71\) 2.96569 2.96569i 0.351963 0.351963i −0.508877 0.860839i \(-0.669939\pi\)
0.860839 + 0.508877i \(0.169939\pi\)
\(72\) −1.80838 6.69063i −0.213120 0.788498i
\(73\) −5.91079 + 5.91079i −0.691805 + 0.691805i −0.962629 0.270824i \(-0.912704\pi\)
0.270824 + 0.962629i \(0.412704\pi\)
\(74\) 5.77993i 0.671904i
\(75\) 1.67352 + 0.446465i 0.193241 + 0.0515533i
\(76\) −5.51460 + 5.51460i −0.632568 + 0.632568i
\(77\) 14.2481 1.62372
\(78\) 0.859343 + 3.93198i 0.0973014 + 0.445209i
\(79\) 9.54897 1.07434 0.537171 0.843473i \(-0.319493\pi\)
0.537171 + 0.843473i \(0.319493\pi\)
\(80\) −1.18821 + 1.18821i −0.132846 + 0.132846i
\(81\) 4.53392 + 7.77455i 0.503769 + 0.863838i
\(82\) 1.94111i 0.214360i
\(83\) 2.62525 2.62525i 0.288158 0.288158i −0.548193 0.836352i \(-0.684684\pi\)
0.836352 + 0.548193i \(0.184684\pi\)
\(84\) 9.73260 5.63327i 1.06191 0.614640i
\(85\) 4.58817 4.58817i 0.497657 0.497657i
\(86\) 1.61084 + 1.61084i 0.173702 + 0.173702i
\(87\) −0.121934 0.0325297i −0.0130727 0.00348755i
\(88\) 8.03402i 0.856429i
\(89\) −7.03107 7.03107i −0.745292 0.745292i 0.228299 0.973591i \(-0.426683\pi\)
−0.973591 + 0.228299i \(0.926683\pi\)
\(90\) −0.963073 + 1.67652i −0.101517 + 0.176720i
\(91\) −13.1311 + 6.76754i −1.37651 + 0.709431i
\(92\) 3.79239i 0.395384i
\(93\) 6.70942 3.88344i 0.695735 0.402694i
\(94\) −7.33901 −0.756961
\(95\) 4.92150 0.504935
\(96\) −4.94865 8.54979i −0.505069 0.872609i
\(97\) 6.77490 + 6.77490i 0.687887 + 0.687887i 0.961765 0.273878i \(-0.0883063\pi\)
−0.273878 + 0.961765i \(0.588306\pi\)
\(98\) −4.45987 4.45987i −0.450515 0.450515i
\(99\) 2.72214 + 10.0713i 0.273585 + 1.01221i
\(100\) 1.58464 0.158464
\(101\) −3.16651 −0.315080 −0.157540 0.987513i \(-0.550356\pi\)
−0.157540 + 0.987513i \(0.550356\pi\)
\(102\) 3.62839 + 6.26878i 0.359264 + 0.620702i
\(103\) 13.7432i 1.35416i 0.735910 + 0.677080i \(0.236755\pi\)
−0.735910 + 0.677080i \(0.763245\pi\)
\(104\) 3.81599 + 7.40417i 0.374189 + 0.726039i
\(105\) −6.85663 1.82923i −0.669139 0.178514i
\(106\) 4.25040 + 4.25040i 0.412835 + 0.412835i
\(107\) 9.01108i 0.871134i −0.900156 0.435567i \(-0.856548\pi\)
0.900156 0.435567i \(-0.143452\pi\)
\(108\) 5.84135 + 5.80329i 0.562084 + 0.558422i
\(109\) −5.87504 5.87504i −0.562727 0.562727i 0.367354 0.930081i \(-0.380264\pi\)
−0.930081 + 0.367354i \(0.880264\pi\)
\(110\) −1.58479 + 1.58479i −0.151104 + 0.151104i
\(111\) 7.78146 + 13.4440i 0.738584 + 1.27605i
\(112\) 4.86824 4.86824i 0.460006 0.460006i
\(113\) 0.651432i 0.0612816i 0.999530 + 0.0306408i \(0.00975479\pi\)
−0.999530 + 0.0306408i \(0.990245\pi\)
\(114\) −1.41611 + 5.30810i −0.132630 + 0.497149i
\(115\) 1.69226 1.69226i 0.157804 0.157804i
\(116\) −0.115458 −0.0107200
\(117\) −7.29240 7.98880i −0.674182 0.738565i
\(118\) −3.01735 −0.277769
\(119\) −18.7983 + 18.7983i −1.72324 + 1.72324i
\(120\) −1.03144 + 3.86623i −0.0941572 + 0.352937i
\(121\) 1.09351i 0.0994103i
\(122\) −0.590464 + 0.590464i −0.0534581 + 0.0534581i
\(123\) 2.61329 + 4.51499i 0.235633 + 0.407103i
\(124\) 5.01515 5.01515i 0.450374 0.450374i
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 3.94583 6.86890i 0.351523 0.611931i
\(127\) 3.65542i 0.324366i 0.986761 + 0.162183i \(0.0518534\pi\)
−0.986761 + 0.162183i \(0.948147\pi\)
\(128\) −7.92234 7.92234i −0.700242 0.700242i
\(129\) −5.91546 1.57814i −0.520827 0.138947i
\(130\) 0.707804 2.21329i 0.0620786 0.194118i
\(131\) 10.5741i 0.923863i −0.886916 0.461932i \(-0.847157\pi\)
0.886916 0.461932i \(-0.152843\pi\)
\(132\) 4.78142 + 8.26086i 0.416169 + 0.719016i
\(133\) −20.1640 −1.74844
\(134\) 0.840960 0.0726479
\(135\) −0.0169813 5.19612i −0.00146152 0.447211i
\(136\) 10.5998 + 10.5998i 0.908922 + 0.908922i
\(137\) −4.62847 4.62847i −0.395437 0.395437i 0.481183 0.876620i \(-0.340207\pi\)
−0.876620 + 0.481183i \(0.840207\pi\)
\(138\) 1.33826 + 2.31212i 0.113921 + 0.196821i
\(139\) 8.02113 0.680343 0.340172 0.940363i \(-0.389515\pi\)
0.340172 + 0.940363i \(0.389515\pi\)
\(140\) −6.49249 −0.548715
\(141\) 17.0704 9.88042i 1.43759 0.832082i
\(142\) 2.70304i 0.226834i
\(143\) −5.74417 11.1454i −0.480351 0.932026i
\(144\) 4.37123 + 2.51105i 0.364270 + 0.209254i
\(145\) 0.0515203 + 0.0515203i 0.00427853 + 0.00427853i
\(146\) 5.38730i 0.445856i
\(147\) 16.3779 + 4.36932i 1.35082 + 0.360375i
\(148\) 10.0491 + 10.0491i 0.826033 + 0.826033i
\(149\) −1.16217 + 1.16217i −0.0952087 + 0.0952087i −0.753107 0.657898i \(-0.771446\pi\)
0.657898 + 0.753107i \(0.271446\pi\)
\(150\) 0.966114 0.559191i 0.0788829 0.0456577i
\(151\) 5.51342 5.51342i 0.448675 0.448675i −0.446239 0.894914i \(-0.647237\pi\)
0.894914 + 0.446239i \(0.147237\pi\)
\(152\) 11.3698i 0.922215i
\(153\) −16.8792 9.69622i −1.36460 0.783893i
\(154\) 6.49310 6.49310i 0.523229 0.523229i
\(155\) −4.47577 −0.359502
\(156\) −8.33031 5.34216i −0.666958 0.427715i
\(157\) −20.7693 −1.65757 −0.828785 0.559567i \(-0.810968\pi\)
−0.828785 + 0.559567i \(0.810968\pi\)
\(158\) 4.35163 4.35163i 0.346197 0.346197i
\(159\) −15.6086 4.16410i −1.23784 0.330235i
\(160\) 5.70345i 0.450897i
\(161\) −6.93340 + 6.93340i −0.546429 + 0.546429i
\(162\) 5.60918 + 1.47681i 0.440699 + 0.116029i
\(163\) −1.79004 + 1.79004i −0.140207 + 0.140207i −0.773726 0.633520i \(-0.781610\pi\)
0.633520 + 0.773726i \(0.281610\pi\)
\(164\) 3.37486 + 3.37486i 0.263532 + 0.263532i
\(165\) 1.55261 5.81979i 0.120871 0.453070i
\(166\) 2.39274i 0.185713i
\(167\) 7.06139 + 7.06139i 0.546427 + 0.546427i 0.925405 0.378979i \(-0.123725\pi\)
−0.378979 + 0.925405i \(0.623725\pi\)
\(168\) 4.22595 15.8404i 0.326039 1.22212i
\(169\) 10.5877 + 7.54328i 0.814437 + 0.580252i
\(170\) 4.18182i 0.320731i
\(171\) −3.85239 14.2530i −0.294600 1.08996i
\(172\) −5.60130 −0.427095
\(173\) −22.6054 −1.71866 −0.859329 0.511423i \(-0.829119\pi\)
−0.859329 + 0.511423i \(0.829119\pi\)
\(174\) −0.0703917 + 0.0407430i −0.00533638 + 0.00308872i
\(175\) 2.89711 + 2.89711i 0.219001 + 0.219001i
\(176\) 4.13208 + 4.13208i 0.311467 + 0.311467i
\(177\) 7.01831 4.06222i 0.527528 0.305335i
\(178\) −6.40836 −0.480327
\(179\) 14.3368 1.07158 0.535790 0.844351i \(-0.320014\pi\)
0.535790 + 0.844351i \(0.320014\pi\)
\(180\) −1.24041 4.58925i −0.0924546 0.342063i
\(181\) 14.9736i 1.11298i −0.830856 0.556488i \(-0.812148\pi\)
0.830856 0.556488i \(-0.187852\pi\)
\(182\) −2.89997 + 9.06814i −0.214960 + 0.672175i
\(183\) 0.578475 2.16834i 0.0427621 0.160289i
\(184\) 3.90952 + 3.90952i 0.288214 + 0.288214i
\(185\) 8.96834i 0.659365i
\(186\) 1.28785 4.82735i 0.0944298 0.353959i
\(187\) −15.9557 15.9557i −1.16680 1.16680i
\(188\) 12.7598 12.7598i 0.930602 0.930602i
\(189\) 0.0695745 + 21.2892i 0.00506080 + 1.54856i
\(190\) 2.24281 2.24281i 0.162711 0.162711i
\(191\) 13.0774i 0.946247i 0.880996 + 0.473124i \(0.156874\pi\)
−0.880996 + 0.473124i \(0.843126\pi\)
\(192\) −0.527180 0.140642i −0.0380459 0.0101500i
\(193\) 8.44842 8.44842i 0.608130 0.608130i −0.334327 0.942457i \(-0.608509\pi\)
0.942457 + 0.334327i \(0.108509\pi\)
\(194\) 6.17488 0.443331
\(195\) 1.33339 + 6.10099i 0.0954857 + 0.436901i
\(196\) 15.5081 1.10772
\(197\) −6.31663 + 6.31663i −0.450041 + 0.450041i −0.895368 0.445327i \(-0.853088\pi\)
0.445327 + 0.895368i \(0.353088\pi\)
\(198\) 5.83021 + 3.34916i 0.414335 + 0.238014i
\(199\) 21.9442i 1.55558i −0.628523 0.777791i \(-0.716340\pi\)
0.628523 0.777791i \(-0.283660\pi\)
\(200\) 1.63358 1.63358i 0.115512 0.115512i
\(201\) −1.95606 + 1.13217i −0.137970 + 0.0798575i
\(202\) −1.44304 + 1.44304i −0.101532 + 0.101532i
\(203\) −0.211085 0.211085i −0.0148153 0.0148153i
\(204\) −17.2075 4.59064i −1.20476 0.321409i
\(205\) 3.01189i 0.210359i
\(206\) 6.26302 + 6.26302i 0.436366 + 0.436366i
\(207\) −6.22556 3.57627i −0.432706 0.248568i
\(208\) −5.77079 1.84548i −0.400132 0.127961i
\(209\) 17.1149i 1.18386i
\(210\) −3.95830 + 2.29108i −0.273148 + 0.158099i
\(211\) 0.438580 0.0301931 0.0150966 0.999886i \(-0.495194\pi\)
0.0150966 + 0.999886i \(0.495194\pi\)
\(212\) −14.7797 −1.01507
\(213\) 3.63907 + 6.28722i 0.249345 + 0.430793i
\(214\) −4.10651 4.10651i −0.280715 0.280715i
\(215\) 2.49944 + 2.49944i 0.170460 + 0.170460i
\(216\) 12.0043 0.0392308i 0.816788 0.00266932i
\(217\) 18.3378 1.24485
\(218\) −5.35472 −0.362667
\(219\) −7.25286 12.5308i −0.490103 0.846752i
\(220\) 5.51071i 0.371532i
\(221\) 22.2834 + 7.12618i 1.49895 + 0.479359i
\(222\) 9.67283 + 2.58054i 0.649198 + 0.173194i
\(223\) −1.59677 1.59677i −0.106927 0.106927i 0.651619 0.758546i \(-0.274090\pi\)
−0.758546 + 0.651619i \(0.774090\pi\)
\(224\) 23.3678i 1.56133i
\(225\) −1.49434 + 2.60134i −0.0996224 + 0.173423i
\(226\) 0.296869 + 0.296869i 0.0197474 + 0.0197474i
\(227\) 13.0961 13.0961i 0.869216 0.869216i −0.123169 0.992386i \(-0.539306\pi\)
0.992386 + 0.123169i \(0.0393058\pi\)
\(228\) −6.76671 11.6909i −0.448137 0.774246i
\(229\) −2.58892 + 2.58892i −0.171080 + 0.171080i −0.787454 0.616373i \(-0.788601\pi\)
0.616373 + 0.787454i \(0.288601\pi\)
\(230\) 1.54238i 0.101702i
\(231\) −6.36126 + 23.8444i −0.418540 + 1.56885i
\(232\) −0.119024 + 0.119024i −0.00781431 + 0.00781431i
\(233\) 6.66598 0.436703 0.218351 0.975870i \(-0.429932\pi\)
0.218351 + 0.975870i \(0.429932\pi\)
\(234\) −6.96391 0.317363i −0.455245 0.0207467i
\(235\) −11.3874 −0.742835
\(236\) 5.24603 5.24603i 0.341488 0.341488i
\(237\) −4.26328 + 15.9804i −0.276930 + 1.03804i
\(238\) 17.1335i 1.11060i
\(239\) −1.15681 + 1.15681i −0.0748278 + 0.0748278i −0.743530 0.668702i \(-0.766850\pi\)
0.668702 + 0.743530i \(0.266850\pi\)
\(240\) −1.45800 2.51898i −0.0941132 0.162600i
\(241\) 3.93884 3.93884i 0.253723 0.253723i −0.568772 0.822495i \(-0.692581\pi\)
0.822495 + 0.568772i \(0.192581\pi\)
\(242\) 0.498333 + 0.498333i 0.0320341 + 0.0320341i
\(243\) −15.0351 + 4.11654i −0.964502 + 0.264076i
\(244\) 2.05319i 0.131442i
\(245\) −6.92009 6.92009i −0.442108 0.442108i
\(246\) 3.24848 + 0.866637i 0.207116 + 0.0552547i
\(247\) 8.12921 + 15.7731i 0.517249 + 1.00362i
\(248\) 10.3401i 0.656596i
\(249\) 3.22132 + 5.56549i 0.204143 + 0.352698i
\(250\) −0.644482 −0.0407606
\(251\) −17.0218 −1.07441 −0.537205 0.843452i \(-0.680520\pi\)
−0.537205 + 0.843452i \(0.680520\pi\)
\(252\) 5.08212 + 18.8028i 0.320143 + 1.18446i
\(253\) −5.88495 5.88495i −0.369984 0.369984i
\(254\) 1.66584 + 1.66584i 0.104524 + 0.104524i
\(255\) 5.62994 + 9.72685i 0.352560 + 0.609119i
\(256\) −7.85072 −0.490670
\(257\) 15.7772 0.984152 0.492076 0.870552i \(-0.336238\pi\)
0.492076 + 0.870552i \(0.336238\pi\)
\(258\) −3.41496 + 1.97659i −0.212606 + 0.123057i
\(259\) 36.7445i 2.28319i
\(260\) 2.61747 + 5.07869i 0.162329 + 0.314967i
\(261\) 0.108878 0.189535i 0.00673940 0.0117319i
\(262\) −4.81880 4.81880i −0.297707 0.297707i
\(263\) 5.23074i 0.322541i 0.986910 + 0.161271i \(0.0515592\pi\)
−0.986910 + 0.161271i \(0.948441\pi\)
\(264\) 13.4451 + 3.58691i 0.827488 + 0.220759i
\(265\) 6.59506 + 6.59506i 0.405131 + 0.405131i
\(266\) −9.18910 + 9.18910i −0.563420 + 0.563420i
\(267\) 14.9058 8.62751i 0.912217 0.527995i
\(268\) −1.46211 + 1.46211i −0.0893127 + 0.0893127i
\(269\) 24.7143i 1.50686i 0.657529 + 0.753429i \(0.271602\pi\)
−0.657529 + 0.753429i \(0.728398\pi\)
\(270\) −2.37570 2.36023i −0.144581 0.143639i
\(271\) −13.3905 + 13.3905i −0.813413 + 0.813413i −0.985144 0.171730i \(-0.945064\pi\)
0.171730 + 0.985144i \(0.445064\pi\)
\(272\) −10.9034 −0.661115
\(273\) −5.46305 24.9966i −0.330639 1.51286i
\(274\) −4.21855 −0.254852
\(275\) −2.45902 + 2.45902i −0.148284 + 0.148284i
\(276\) −6.34664 1.69317i −0.382023 0.101917i
\(277\) 5.07891i 0.305162i 0.988291 + 0.152581i \(0.0487585\pi\)
−0.988291 + 0.152581i \(0.951241\pi\)
\(278\) 3.65537 3.65537i 0.219234 0.219234i
\(279\) 3.50349 + 12.9622i 0.209748 + 0.776025i
\(280\) −6.69301 + 6.69301i −0.399984 + 0.399984i
\(281\) −1.89588 1.89588i −0.113098 0.113098i 0.648293 0.761391i \(-0.275483\pi\)
−0.761391 + 0.648293i \(0.775483\pi\)
\(282\) 3.27661 12.2820i 0.195119 0.731381i
\(283\) 12.6318i 0.750881i −0.926847 0.375440i \(-0.877491\pi\)
0.926847 0.375440i \(-0.122509\pi\)
\(284\) 4.69956 + 4.69956i 0.278868 + 0.278868i
\(285\) −2.19728 + 8.23623i −0.130155 + 0.487872i
\(286\) −7.69688 2.46144i −0.455126 0.145548i
\(287\) 12.3401i 0.728413i
\(288\) 16.5176 4.46448i 0.973311 0.263072i
\(289\) 25.1026 1.47662
\(290\) 0.0469574 0.00275743
\(291\) −14.3627 + 8.31317i −0.841956 + 0.487327i
\(292\) −9.36649 9.36649i −0.548132 0.548132i
\(293\) −19.7059 19.7059i −1.15123 1.15123i −0.986306 0.164928i \(-0.947261\pi\)
−0.164928 0.986306i \(-0.552739\pi\)
\(294\) 9.45486 5.47251i 0.551419 0.319163i
\(295\) −4.68182 −0.272586
\(296\) 20.7190 1.20427
\(297\) −18.0699 + 0.0590536i −1.04852 + 0.00342664i
\(298\) 1.05924i 0.0613603i
\(299\) 8.21882 + 2.62836i 0.475306 + 0.152002i
\(300\) −0.707488 + 2.65193i −0.0408468 + 0.153109i
\(301\) −10.2405 10.2405i −0.590254 0.590254i
\(302\) 5.02512i 0.289163i
\(303\) 1.41374 5.29922i 0.0812171 0.304432i
\(304\) −5.84776 5.84776i −0.335392 0.335392i
\(305\) −0.916183 + 0.916183i −0.0524605 + 0.0524605i
\(306\) −12.1109 + 3.27340i −0.692333 + 0.187128i
\(307\) 8.41607 8.41607i 0.480330 0.480330i −0.424907 0.905237i \(-0.639693\pi\)
0.905237 + 0.424907i \(0.139693\pi\)
\(308\) 22.5781i 1.28651i
\(309\) −22.9995 6.13586i −1.30840 0.349057i
\(310\) −2.03969 + 2.03969i −0.115846 + 0.115846i
\(311\) 24.9831 1.41666 0.708330 0.705881i \(-0.249449\pi\)
0.708330 + 0.705881i \(0.249449\pi\)
\(312\) −14.0947 + 3.08044i −0.797957 + 0.174395i
\(313\) −8.22919 −0.465141 −0.232571 0.972579i \(-0.574714\pi\)
−0.232571 + 0.972579i \(0.574714\pi\)
\(314\) −9.46493 + 9.46493i −0.534137 + 0.534137i
\(315\) 6.12249 10.6580i 0.344963 0.600512i
\(316\) 15.1317i 0.851225i
\(317\) 5.60105 5.60105i 0.314586 0.314586i −0.532097 0.846683i \(-0.678596\pi\)
0.846683 + 0.532097i \(0.178596\pi\)
\(318\) −9.01078 + 5.21547i −0.505300 + 0.292469i
\(319\) 0.179165 0.179165i 0.0100313 0.0100313i
\(320\) 0.222747 + 0.222747i 0.0124520 + 0.0124520i
\(321\) 15.0802 + 4.02313i 0.841696 + 0.224549i
\(322\) 6.31935i 0.352163i
\(323\) 22.5807 + 22.5807i 1.25642 + 1.25642i
\(324\) −12.3199 + 7.18464i −0.684438 + 0.399147i
\(325\) 1.09825 3.43422i 0.0609201 0.190496i
\(326\) 1.63150i 0.0903607i
\(327\) 12.4550 7.20900i 0.688763 0.398658i
\(328\) 6.95818 0.384201
\(329\) 46.6559 2.57222
\(330\) −1.94463 3.35973i −0.107048 0.184947i
\(331\) 0.890691 + 0.890691i 0.0489568 + 0.0489568i 0.731161 0.682205i \(-0.238979\pi\)
−0.682205 + 0.731161i \(0.738979\pi\)
\(332\) 4.16008 + 4.16008i 0.228314 + 0.228314i
\(333\) −25.9730 + 7.02014i −1.42331 + 0.384701i
\(334\) 6.43600 0.352162
\(335\) 1.30486 0.0712922
\(336\) 5.97360 + 10.3206i 0.325887 + 0.563035i
\(337\) 0.362018i 0.0197204i 0.999951 + 0.00986020i \(0.00313865\pi\)
−0.999951 + 0.00986020i \(0.996861\pi\)
\(338\) 8.26260 1.38739i 0.449426 0.0754639i
\(339\) −1.09018 0.290842i −0.0592107 0.0157964i
\(340\) 7.27061 + 7.27061i 0.394304 + 0.394304i
\(341\) 15.5648i 0.842881i
\(342\) −8.25097 4.73976i −0.446161 0.256297i
\(343\) 8.07273 + 8.07273i 0.435887 + 0.435887i
\(344\) −5.77430 + 5.77430i −0.311329 + 0.311329i
\(345\) 2.07649 + 3.58756i 0.111795 + 0.193148i
\(346\) −10.3017 + 10.3017i −0.553822 + 0.553822i
\(347\) 5.96761i 0.320358i −0.987088 0.160179i \(-0.948793\pi\)
0.987088 0.160179i \(-0.0512071\pi\)
\(348\) 0.0515480 0.193221i 0.00276326 0.0103578i
\(349\) −13.7435 + 13.7435i −0.735673 + 0.735673i −0.971737 0.236064i \(-0.924142\pi\)
0.236064 + 0.971737i \(0.424142\pi\)
\(350\) 2.64053 0.141142
\(351\) 16.6252 8.63725i 0.887388 0.461022i
\(352\) 19.8342 1.05716
\(353\) 13.8222 13.8222i 0.735682 0.735682i −0.236057 0.971739i \(-0.575855\pi\)
0.971739 + 0.236057i \(0.0758554\pi\)
\(354\) 1.34714 5.04959i 0.0715997 0.268383i
\(355\) 4.19412i 0.222601i
\(356\) 11.1417 11.1417i 0.590511 0.590511i
\(357\) −23.0666 39.8522i −1.22081 2.10920i
\(358\) 6.53352 6.53352i 0.345307 0.345307i
\(359\) −1.19127 1.19127i −0.0628729 0.0628729i 0.674971 0.737844i \(-0.264156\pi\)
−0.737844 + 0.674971i \(0.764156\pi\)
\(360\) −6.00971 3.45227i −0.316740 0.181951i
\(361\) 5.22115i 0.274797i
\(362\) −6.82372 6.82372i −0.358647 0.358647i
\(363\) −1.83002 0.488215i −0.0960509 0.0256247i
\(364\) −10.7241 20.8080i −0.562097 1.09064i
\(365\) 8.35911i 0.437536i
\(366\) −0.724531 1.25177i −0.0378719 0.0654313i
\(367\) 23.7852 1.24158 0.620790 0.783977i \(-0.286812\pi\)
0.620790 + 0.783977i \(0.286812\pi\)
\(368\) −4.02151 −0.209636
\(369\) −8.72267 + 2.35761i −0.454084 + 0.122732i
\(370\) −4.08703 4.08703i −0.212475 0.212475i
\(371\) −27.0208 27.0208i −1.40285 1.40285i
\(372\) 6.15386 + 10.6320i 0.319063 + 0.551246i
\(373\) 27.0932 1.40283 0.701416 0.712752i \(-0.252552\pi\)
0.701416 + 0.712752i \(0.252552\pi\)
\(374\) −14.5426 −0.751979
\(375\) 1.49906 0.867659i 0.0774109 0.0448057i
\(376\) 26.3077i 1.35672i
\(377\) −0.0800195 + 0.250219i −0.00412121 + 0.0128869i
\(378\) 9.73357 + 9.67016i 0.500641 + 0.497379i
\(379\) −9.55318 9.55318i −0.490714 0.490714i 0.417817 0.908531i \(-0.362795\pi\)
−0.908531 + 0.417817i \(0.862795\pi\)
\(380\) 7.79882i 0.400071i
\(381\) −6.11741 1.63201i −0.313404 0.0836107i
\(382\) 5.95960 + 5.95960i 0.304920 + 0.304920i
\(383\) −19.9744 + 19.9744i −1.02064 + 1.02064i −0.0208607 + 0.999782i \(0.506641\pi\)
−0.999782 + 0.0208607i \(0.993359\pi\)
\(384\) 16.7952 9.72115i 0.857079 0.496080i
\(385\) 10.0749 10.0749i 0.513465 0.513465i
\(386\) 7.70018i 0.391929i
\(387\) 5.28209 9.19506i 0.268504 0.467411i
\(388\) −10.7358 + 10.7358i −0.545028 + 0.545028i
\(389\) −35.1328 −1.78130 −0.890651 0.454688i \(-0.849751\pi\)
−0.890651 + 0.454688i \(0.849751\pi\)
\(390\) 3.38798 + 2.17268i 0.171557 + 0.110018i
\(391\) 15.5287 0.785322
\(392\) 15.9870 15.9870i 0.807468 0.807468i
\(393\) 17.6960 + 4.72096i 0.892643 + 0.238141i
\(394\) 5.75720i 0.290044i
\(395\) 6.75214 6.75214i 0.339737 0.339737i
\(396\) −15.9595 + 4.31361i −0.801993 + 0.216767i
\(397\) −13.0793 + 13.0793i −0.656433 + 0.656433i −0.954534 0.298101i \(-0.903647\pi\)
0.298101 + 0.954534i \(0.403647\pi\)
\(398\) −10.0004 10.0004i −0.501272 0.501272i
\(399\) 9.00253 33.7449i 0.450690 1.68936i
\(400\) 1.68038i 0.0840190i
\(401\) −1.57949 1.57949i −0.0788759 0.0788759i 0.666568 0.745444i \(-0.267763\pi\)
−0.745444 + 0.666568i \(0.767763\pi\)
\(402\) −0.375459 + 1.40736i −0.0187262 + 0.0701929i
\(403\) −7.39296 14.3446i −0.368270 0.714553i
\(404\) 5.01779i 0.249644i
\(405\) 8.70340 + 2.29147i 0.432475 + 0.113864i
\(406\) −0.192391 −0.00954818
\(407\) −31.1881 −1.54593
\(408\) −22.4713 + 13.0065i −1.11250 + 0.643917i
\(409\) −9.54482 9.54482i −0.471961 0.471961i 0.430588 0.902549i \(-0.358306\pi\)
−0.902549 + 0.430588i \(0.858306\pi\)
\(410\) −1.37257 1.37257i −0.0677864 0.0677864i
\(411\) 9.81229 5.67939i 0.484005 0.280144i
\(412\) −21.7781 −1.07293
\(413\) 19.1820 0.943885
\(414\) −4.46687 + 1.20733i −0.219534 + 0.0593370i
\(415\) 3.71266i 0.182247i
\(416\) −18.2792 + 9.42082i −0.896212 + 0.461894i
\(417\) −3.58115 + 13.4235i −0.175370 + 0.657353i
\(418\) −7.79955 7.79955i −0.381488 0.381488i
\(419\) 36.4123i 1.77886i −0.457074 0.889428i \(-0.651103\pi\)
0.457074 0.889428i \(-0.348897\pi\)
\(420\) 2.89867 10.8653i 0.141441 0.530173i
\(421\) −4.66950 4.66950i −0.227578 0.227578i 0.584102 0.811680i \(-0.301447\pi\)
−0.811680 + 0.584102i \(0.801447\pi\)
\(422\) 0.199869 0.199869i 0.00972946 0.00972946i
\(423\) 8.91374 + 32.9790i 0.433401 + 1.60349i
\(424\) −15.2362 + 15.2362i −0.739933 + 0.739933i
\(425\) 6.48865i 0.314746i
\(426\) 4.52359 + 1.20681i 0.219168 + 0.0584702i
\(427\) 3.75372 3.75372i 0.181655 0.181655i
\(428\) 14.2794 0.690218
\(429\) 21.2166 4.63694i 1.02435 0.223874i
\(430\) 2.27808 0.109859
\(431\) −3.48824 + 3.48824i −0.168023 + 0.168023i −0.786110 0.618087i \(-0.787908\pi\)
0.618087 + 0.786110i \(0.287908\pi\)
\(432\) −6.15390 + 6.19425i −0.296080 + 0.298021i
\(433\) 0.0657330i 0.00315893i −0.999999 0.00157946i \(-0.999497\pi\)
0.999999 0.00157946i \(-0.000502759\pi\)
\(434\) 8.35686 8.35686i 0.401142 0.401142i
\(435\) −0.109222 + 0.0632182i −0.00523680 + 0.00303108i
\(436\) 9.30984 9.30984i 0.445860 0.445860i
\(437\) 8.32845 + 8.32845i 0.398404 + 0.398404i
\(438\) −9.01575 2.40524i −0.430789 0.114927i
\(439\) 9.56530i 0.456527i 0.973599 + 0.228264i \(0.0733048\pi\)
−0.973599 + 0.228264i \(0.926695\pi\)
\(440\) −5.68091 5.68091i −0.270827 0.270827i
\(441\) −14.6243 + 25.4579i −0.696395 + 1.21228i
\(442\) 13.4025 6.90742i 0.637491 0.328553i
\(443\) 35.0176i 1.66374i 0.554973 + 0.831868i \(0.312728\pi\)
−0.554973 + 0.831868i \(0.687272\pi\)
\(444\) −21.3040 + 12.3308i −1.01104 + 0.585196i
\(445\) −9.94343 −0.471364
\(446\) −1.45535 −0.0689128
\(447\) −1.42605 2.46378i −0.0674497 0.116533i
\(448\) −0.912626 0.912626i −0.0431175 0.0431175i
\(449\) 23.2242 + 23.2242i 1.09602 + 1.09602i 0.994871 + 0.101149i \(0.0322517\pi\)
0.101149 + 0.994871i \(0.467748\pi\)
\(450\) 0.504480 + 1.86647i 0.0237814 + 0.0879863i
\(451\) −10.4741 −0.493204
\(452\) −1.03229 −0.0485547
\(453\) 6.76526 + 11.6884i 0.317860 + 0.549167i
\(454\) 11.9362i 0.560194i
\(455\) −4.49969 + 14.0704i −0.210949 + 0.659632i
\(456\) −19.0276 5.07623i −0.891051 0.237716i
\(457\) 5.85273 + 5.85273i 0.273779 + 0.273779i 0.830620 0.556840i \(-0.187986\pi\)
−0.556840 + 0.830620i \(0.687986\pi\)
\(458\) 2.35963i 0.110258i
\(459\) 23.7628 23.9186i 1.10915 1.11643i
\(460\) 2.68163 + 2.68163i 0.125031 + 0.125031i
\(461\) 24.2884 24.2884i 1.13122 1.13122i 0.141250 0.989974i \(-0.454888\pi\)
0.989974 0.141250i \(-0.0451123\pi\)
\(462\) 7.96739 + 13.7653i 0.370676 + 0.640418i
\(463\) 11.4811 11.4811i 0.533570 0.533570i −0.388063 0.921633i \(-0.626856\pi\)
0.921633 + 0.388063i \(0.126856\pi\)
\(464\) 0.122434i 0.00568383i
\(465\) 1.99827 7.49028i 0.0926677 0.347354i
\(466\) 3.03780 3.03780i 0.140724 0.140724i
\(467\) −21.9057 −1.01367 −0.506837 0.862042i \(-0.669185\pi\)
−0.506837 + 0.862042i \(0.669185\pi\)
\(468\) 12.6594 11.5558i 0.585181 0.534169i
\(469\) −5.34619 −0.246864
\(470\) −5.18946 + 5.18946i −0.239372 + 0.239372i
\(471\) 9.27276 34.7578i 0.427266 1.60156i
\(472\) 10.8161i 0.497852i
\(473\) 8.69198 8.69198i 0.399658 0.399658i
\(474\) 5.33969 + 9.22539i 0.245260 + 0.423736i
\(475\) 3.48002 3.48002i 0.159674 0.159674i
\(476\) −29.7886 29.7886i −1.36536 1.36536i
\(477\) 13.9374 24.2622i 0.638150 1.11089i
\(478\) 1.05436i 0.0482251i
\(479\) −19.9645 19.9645i −0.912201 0.912201i 0.0842446 0.996445i \(-0.473152\pi\)
−0.996445 + 0.0842446i \(0.973152\pi\)
\(480\) −9.54484 2.54639i −0.435660 0.116226i
\(481\) 28.7430 14.8137i 1.31057 0.675446i
\(482\) 3.59000i 0.163520i
\(483\) −8.50767 14.6987i −0.387112 0.668814i
\(484\) −1.73283 −0.0787649
\(485\) 9.58116 0.435058
\(486\) −4.97578 + 8.72774i −0.225706 + 0.395898i
\(487\) 12.2103 + 12.2103i 0.553302 + 0.553302i 0.927392 0.374091i \(-0.122045\pi\)
−0.374091 + 0.927392i \(0.622045\pi\)
\(488\) −2.11660 2.11660i −0.0958140 0.0958140i
\(489\) −2.19648 3.79486i −0.0993281 0.171609i
\(490\) −6.30721 −0.284931
\(491\) −23.7653 −1.07251 −0.536257 0.844054i \(-0.680162\pi\)
−0.536257 + 0.844054i \(0.680162\pi\)
\(492\) −7.15464 + 4.14113i −0.322556 + 0.186697i
\(493\) 0.472767i 0.0212924i
\(494\) 10.8927 + 3.48346i 0.490086 + 0.156728i
\(495\) 9.04634 + 5.19666i 0.406603 + 0.233573i
\(496\) 5.31814 + 5.31814i 0.238791 + 0.238791i
\(497\) 17.1839i 0.770802i
\(498\) 4.00430 + 1.06828i 0.179437 + 0.0478706i
\(499\) 13.6731 + 13.6731i 0.612092 + 0.612092i 0.943491 0.331399i \(-0.107520\pi\)
−0.331399 + 0.943491i \(0.607520\pi\)
\(500\) 1.12051 1.12051i 0.0501108 0.0501108i
\(501\) −14.9700 + 8.66471i −0.668812 + 0.387111i
\(502\) −7.75715 + 7.75715i −0.346219 + 0.346219i
\(503\) 17.6986i 0.789140i 0.918866 + 0.394570i \(0.129106\pi\)
−0.918866 + 0.394570i \(0.870894\pi\)
\(504\) 24.6226 + 14.1444i 1.09678 + 0.630042i
\(505\) −2.23906 + 2.23906i −0.0996370 + 0.0996370i
\(506\) −5.36375 −0.238448
\(507\) −17.3509 + 14.3509i −0.770578 + 0.637345i
\(508\) −5.79253 −0.257002
\(509\) −23.6849 + 23.6849i −1.04982 + 1.04982i −0.0511241 + 0.998692i \(0.516280\pi\)
−0.998692 + 0.0511241i \(0.983720\pi\)
\(510\) 6.99836 + 1.86704i 0.309892 + 0.0826737i
\(511\) 34.2484i 1.51506i
\(512\) 12.2670 12.2670i 0.542128 0.542128i
\(513\) 25.5727 0.0835734i 1.12906 0.00368985i
\(514\) 7.18993 7.18993i 0.317134 0.317134i
\(515\) 9.71792 + 9.71792i 0.428223 + 0.428223i
\(516\) 2.50079 9.37389i 0.110091 0.412663i
\(517\) 39.6007i 1.74164i
\(518\) 16.7451 + 16.7451i 0.735737 + 0.735737i
\(519\) 10.0925 37.8306i 0.443013 1.66058i
\(520\) 7.93386 + 2.53723i 0.347923 + 0.111265i
\(521\) 12.3852i 0.542605i 0.962494 + 0.271302i \(0.0874544\pi\)
−0.962494 + 0.271302i \(0.912546\pi\)
\(522\) −0.0367568 0.135992i −0.00160880 0.00595222i
\(523\) 41.8255 1.82890 0.914450 0.404699i \(-0.132624\pi\)
0.914450 + 0.404699i \(0.132624\pi\)
\(524\) 16.7562 0.731997
\(525\) −6.14183 + 3.55491i −0.268051 + 0.155149i
\(526\) 2.38374 + 2.38374i 0.103936 + 0.103936i
\(527\) −20.5356 20.5356i −0.894543 0.894543i
\(528\) −8.75994 + 5.07029i −0.381228 + 0.220656i
\(529\) −17.2725 −0.750979
\(530\) 6.01097 0.261100
\(531\) 3.66478 + 13.5589i 0.159038 + 0.588407i
\(532\) 31.9528i 1.38533i
\(533\) 9.65292 4.97496i 0.418114 0.215490i
\(534\) 2.86111 10.7245i 0.123812 0.464095i
\(535\) −6.37180 6.37180i −0.275477 0.275477i
\(536\) 3.01454i 0.130208i
\(537\) −6.40087 + 23.9929i −0.276218 + 1.03537i
\(538\) 11.2627 + 11.2627i 0.485571 + 0.485571i
\(539\) −24.0651 + 24.0651i −1.03656 + 1.03656i
\(540\) 8.23400 0.0269093i 0.354335 0.00115799i
\(541\) −22.6303 + 22.6303i −0.972954 + 0.972954i −0.999644 0.0266894i \(-0.991504\pi\)
0.0266894 + 0.999644i \(0.491504\pi\)
\(542\) 12.2046i 0.524230i
\(543\) 25.0586 + 6.68517i 1.07537 + 0.286888i
\(544\) −26.1684 + 26.1684i −1.12196 + 1.12196i
\(545\) −8.30856 −0.355900
\(546\) −13.8810 8.90176i −0.594051 0.380960i
\(547\) −38.6695 −1.65339 −0.826694 0.562652i \(-0.809781\pi\)
−0.826694 + 0.562652i \(0.809781\pi\)
\(548\) 7.33448 7.33448i 0.313313 0.313313i
\(549\) 3.37050 + 1.93618i 0.143849 + 0.0826341i
\(550\) 2.24123i 0.0955665i
\(551\) −0.253557 + 0.253557i −0.0108019 + 0.0108019i
\(552\) −8.28812 + 4.79720i −0.352766 + 0.204182i
\(553\) −27.6644 + 27.6644i −1.17641 + 1.17641i
\(554\) 2.31455 + 2.31455i 0.0983358 + 0.0983358i
\(555\) 15.0087 + 4.00405i 0.637084 + 0.169962i
\(556\) 12.7106i 0.539051i
\(557\) −7.82191 7.82191i −0.331425 0.331425i 0.521702 0.853128i \(-0.325297\pi\)
−0.853128 + 0.521702i \(0.825297\pi\)
\(558\) 7.50369 + 4.31049i 0.317657 + 0.182477i
\(559\) −3.88204 + 12.1391i −0.164193 + 0.513428i
\(560\) 6.88473i 0.290933i
\(561\) 33.8258 19.5785i 1.42813 0.826605i
\(562\) −1.72797 −0.0728899
\(563\) −37.4306 −1.57751 −0.788755 0.614708i \(-0.789274\pi\)
−0.788755 + 0.614708i \(0.789274\pi\)
\(564\) 15.6569 + 27.0505i 0.659276 + 1.13903i
\(565\) 0.460632 + 0.460632i 0.0193789 + 0.0193789i
\(566\) −5.75652 5.75652i −0.241965 0.241965i
\(567\) −35.6590 9.38845i −1.49754 0.394278i
\(568\) 9.68942 0.406559
\(569\) 2.32113 0.0973066 0.0486533 0.998816i \(-0.484507\pi\)
0.0486533 + 0.998816i \(0.484507\pi\)
\(570\) 2.75206 + 4.75473i 0.115271 + 0.199154i
\(571\) 12.7963i 0.535507i 0.963487 + 0.267753i \(0.0862812\pi\)
−0.963487 + 0.267753i \(0.913719\pi\)
\(572\) 17.6615 9.10246i 0.738464 0.380593i
\(573\) −21.8853 5.83860i −0.914271 0.243911i
\(574\) 5.62360 + 5.62360i 0.234725 + 0.234725i
\(575\) 2.39321i 0.0998039i
\(576\) 0.470735 0.819454i 0.0196139 0.0341439i
\(577\) −0.396526 0.396526i −0.0165076 0.0165076i 0.698805 0.715312i \(-0.253716\pi\)
−0.715312 + 0.698805i \(0.753716\pi\)
\(578\) 11.4397 11.4397i 0.475828 0.475828i
\(579\) 10.3667 + 17.9105i 0.430824 + 0.744336i
\(580\) −0.0816412 + 0.0816412i −0.00338997 + 0.00338997i
\(581\) 15.2113i 0.631069i
\(582\) −2.75687 + 10.3338i −0.114276 + 0.428349i
\(583\) 22.9348 22.9348i 0.949863 0.949863i
\(584\) −19.3115 −0.799117
\(585\) −10.8054 0.492431i −0.446750 0.0203595i
\(586\) −17.9607 −0.741949
\(587\) −4.38510 + 4.38510i −0.180992 + 0.180992i −0.791788 0.610796i \(-0.790850\pi\)
0.610796 + 0.791788i \(0.290850\pi\)
\(588\) −6.92381 + 25.9531i −0.285533 + 1.07029i
\(589\) 22.0275i 0.907626i
\(590\) −2.13359 + 2.13359i −0.0878384 + 0.0878384i
\(591\) −7.75086 13.3912i −0.318828 0.550839i
\(592\) −10.6562 + 10.6562i −0.437969 + 0.437969i
\(593\) −4.95766 4.95766i −0.203587 0.203587i 0.597948 0.801535i \(-0.295983\pi\)
−0.801535 + 0.597948i \(0.795983\pi\)
\(594\) −8.20786 + 8.26168i −0.336773 + 0.338981i
\(595\) 26.5848i 1.08987i
\(596\) −1.84162 1.84162i −0.0754359 0.0754359i
\(597\) 36.7240 + 9.79731i 1.50302 + 0.400977i
\(598\) 4.94325 2.54767i 0.202144 0.104182i
\(599\) 5.16408i 0.210998i −0.994419 0.105499i \(-0.966356\pi\)
0.994419 0.105499i \(-0.0336441\pi\)
\(600\) 2.00450 + 3.46318i 0.0818333 + 0.141384i
\(601\) 28.3815 1.15770 0.578852 0.815432i \(-0.303501\pi\)
0.578852 + 0.815432i \(0.303501\pi\)
\(602\) −9.33358 −0.380408
\(603\) −1.02140 3.77898i −0.0415948 0.153892i
\(604\) 8.73679 + 8.73679i 0.355495 + 0.355495i
\(605\) 0.773230 + 0.773230i 0.0314363 + 0.0314363i
\(606\) −1.77068 3.05921i −0.0719291 0.124272i
\(607\) −35.8341 −1.45446 −0.727230 0.686394i \(-0.759192\pi\)
−0.727230 + 0.686394i \(0.759192\pi\)
\(608\) −28.0695 −1.13837
\(609\) 0.447498 0.259013i 0.0181335 0.0104957i
\(610\) 0.835042i 0.0338099i
\(611\) −18.8095 36.4961i −0.760951 1.47647i
\(612\) 15.3651 26.7475i 0.621095 1.08120i
\(613\) 5.88345 + 5.88345i 0.237630 + 0.237630i 0.815868 0.578238i \(-0.196259\pi\)
−0.578238 + 0.815868i \(0.696259\pi\)
\(614\) 7.67070i 0.309564i
\(615\) 5.04046 + 1.34470i 0.203251 + 0.0542236i
\(616\) 23.2754 + 23.2754i 0.937794 + 0.937794i
\(617\) −30.1305 + 30.1305i −1.21301 + 1.21301i −0.242977 + 0.970032i \(0.578124\pi\)
−0.970032 + 0.242977i \(0.921876\pi\)
\(618\) −13.2775 + 7.68508i −0.534100 + 0.309139i
\(619\) −8.02687 + 8.02687i −0.322627 + 0.322627i −0.849774 0.527147i \(-0.823262\pi\)
0.527147 + 0.849774i \(0.323262\pi\)
\(620\) 7.09249i 0.284841i
\(621\) 8.76445 8.82192i 0.351705 0.354012i
\(622\) 11.3852 11.3852i 0.456506 0.456506i
\(623\) 40.7395 1.63219
\(624\) 5.66490 8.83358i 0.226778 0.353626i
\(625\) −1.00000 −0.0400000
\(626\) −3.75019 + 3.75019i −0.149888 + 0.149888i
\(627\) 28.6421 + 7.64119i 1.14385 + 0.305160i
\(628\) 32.9119i 1.31333i
\(629\) 41.1483 41.1483i 1.64069 1.64069i
\(630\) −2.06692 7.64717i −0.0823481 0.304671i
\(631\) −14.4365 + 14.4365i −0.574709 + 0.574709i −0.933441 0.358732i \(-0.883209\pi\)
0.358732 + 0.933441i \(0.383209\pi\)
\(632\) 15.5990 + 15.5990i 0.620497 + 0.620497i
\(633\) −0.195811 + 0.733973i −0.00778278 + 0.0291728i
\(634\) 5.10500i 0.202745i
\(635\) 2.58477 + 2.58477i 0.102573 + 0.102573i
\(636\) 6.59861 24.7341i 0.261652 0.980771i
\(637\) 10.7480 33.6089i 0.425853 1.33163i
\(638\) 0.163298i 0.00646502i
\(639\) −12.1465 + 3.28303i −0.480508 + 0.129875i
\(640\) −11.2039 −0.442872
\(641\) 13.1832 0.520706 0.260353 0.965513i \(-0.416161\pi\)
0.260353 + 0.965513i \(0.416161\pi\)
\(642\) 8.70574 5.03891i 0.343588 0.198870i
\(643\) −26.1092 26.1092i −1.02964 1.02964i −0.999547 0.0300976i \(-0.990418\pi\)
−0.0300976 0.999547i \(-0.509582\pi\)
\(644\) −10.9870 10.9870i −0.432947 0.432947i
\(645\) −5.29877 + 3.06695i −0.208639 + 0.120761i
\(646\) 20.5808 0.809741
\(647\) 24.4734 0.962150 0.481075 0.876679i \(-0.340246\pi\)
0.481075 + 0.876679i \(0.340246\pi\)
\(648\) −5.29384 + 20.1069i −0.207962 + 0.789875i
\(649\) 16.2814i 0.639099i
\(650\) −1.06454 2.06553i −0.0417547 0.0810166i
\(651\) −8.18718 + 30.6887i −0.320881 + 1.20278i
\(652\) −2.83657 2.83657i −0.111089 0.111089i
\(653\) 27.4272i 1.07331i 0.843802 + 0.536655i \(0.180312\pi\)
−0.843802 + 0.536655i \(0.819688\pi\)
\(654\) 2.39069 8.96123i 0.0934835 0.350412i
\(655\) −7.47702 7.47702i −0.292151 0.292151i
\(656\) −3.57875 + 3.57875i −0.139727 + 0.139727i
\(657\) 24.2087 6.54325i 0.944470 0.255277i
\(658\) 21.2619 21.2619i 0.828875 0.828875i
\(659\) 28.8992i 1.12575i −0.826541 0.562877i \(-0.809695\pi\)
0.826541 0.562877i \(-0.190305\pi\)
\(660\) 9.22229 + 2.46034i 0.358977 + 0.0957686i
\(661\) 2.27091 2.27091i 0.0883282 0.0883282i −0.661562 0.749890i \(-0.730106\pi\)
0.749890 + 0.661562i \(0.230106\pi\)
\(662\) 0.811807 0.0315518
\(663\) −21.8746 + 34.1102i −0.849538 + 1.32473i
\(664\) 8.57713 0.332857
\(665\) −14.2581 + 14.2581i −0.552906 + 0.552906i
\(666\) −8.63716 + 15.0356i −0.334683 + 0.582616i
\(667\) 0.174371i 0.00675168i
\(668\) −11.1898 + 11.1898i −0.432946 + 0.432946i
\(669\) 3.38512 1.95932i 0.130876 0.0757517i
\(670\) 0.594648 0.594648i 0.0229733 0.0229733i
\(671\) 3.18609 + 3.18609i 0.122998 + 0.122998i
\(672\) 39.1064 + 10.4329i 1.50856 + 0.402458i
\(673\) 35.6852i 1.37556i 0.725918 + 0.687782i \(0.241415\pi\)
−0.725918 + 0.687782i \(0.758585\pi\)
\(674\) 0.164978 + 0.164978i 0.00635472 + 0.00635472i
\(675\) −3.68622 3.66221i −0.141883 0.140958i
\(676\) −11.9534 + 16.7777i −0.459746 + 0.645296i
\(677\) 2.22785i 0.0856231i 0.999083 + 0.0428116i \(0.0136315\pi\)
−0.999083 + 0.0428116i \(0.986368\pi\)
\(678\) −0.629358 + 0.364275i −0.0241704 + 0.0139899i
\(679\) −39.2552 −1.50648
\(680\) 14.9903 0.574853
\(681\) 16.0696 + 27.7635i 0.615788 + 1.06390i
\(682\) 7.09315 + 7.09315i 0.271611 + 0.271611i
\(683\) −5.68940 5.68940i −0.217699 0.217699i 0.589829 0.807528i \(-0.299195\pi\)
−0.807528 + 0.589829i \(0.799195\pi\)
\(684\) 22.5860 6.10467i 0.863597 0.233418i
\(685\) −6.54565 −0.250096
\(686\) 7.35777 0.280921
\(687\) −3.17674 5.48847i −0.121200 0.209398i
\(688\) 5.93971i 0.226449i
\(689\) −10.2432 + 32.0303i −0.390236 + 1.22026i
\(690\) 2.58121 + 0.688620i 0.0982650 + 0.0262153i
\(691\) 10.3521 + 10.3521i 0.393813 + 0.393813i 0.876044 0.482231i \(-0.160174\pi\)
−0.482231 + 0.876044i \(0.660174\pi\)
\(692\) 35.8215i 1.36173i
\(693\) −37.0640 21.2914i −1.40795 0.808794i
\(694\) −2.71954 2.71954i −0.103232 0.103232i
\(695\) 5.67179 5.67179i 0.215143 0.215143i
\(696\) −0.146049 0.252329i −0.00553598 0.00956451i
\(697\) 13.8191 13.8191i 0.523434 0.523434i
\(698\) 12.5263i 0.474128i
\(699\) −2.97613 + 11.1557i −0.112567 + 0.421946i
\(700\) −4.59088 + 4.59088i −0.173519 + 0.173519i
\(701\) 12.8424 0.485052 0.242526 0.970145i \(-0.422024\pi\)
0.242526 + 0.970145i \(0.422024\pi\)
\(702\) 3.64026 11.5126i 0.137393 0.434513i
\(703\) 44.1377 1.66468
\(704\) 0.774621 0.774621i 0.0291946 0.0291946i
\(705\) 5.08410 19.0571i 0.191478 0.717733i
\(706\) 12.5980i 0.474134i
\(707\) 9.17373 9.17373i 0.345014 0.345014i
\(708\) 6.43717 + 11.1215i 0.241924 + 0.417972i
\(709\) −4.43471 + 4.43471i −0.166549 + 0.166549i −0.785461 0.618912i \(-0.787574\pi\)
0.618912 + 0.785461i \(0.287574\pi\)
\(710\) −1.91134 1.91134i −0.0717311 0.0717311i
\(711\) −24.8401 14.2694i −0.931576 0.535143i
\(712\) 22.9717i 0.860900i
\(713\) −7.57415 7.57415i −0.283654 0.283654i
\(714\) −28.6732 7.64949i −1.07307 0.286275i
\(715\) −11.9427 3.81926i −0.446633 0.142832i
\(716\) 22.7187i 0.849036i
\(717\) −1.41947 2.45242i −0.0530110 0.0915872i
\(718\) −1.08577 −0.0405204
\(719\) −47.3354 −1.76531 −0.882656 0.470019i \(-0.844247\pi\)
−0.882656 + 0.470019i \(0.844247\pi\)
\(720\) 4.86651 1.31535i 0.181364 0.0490201i
\(721\) −39.8156 39.8156i −1.48281 1.48281i
\(722\) 2.37937 + 2.37937i 0.0885509 + 0.0885509i
\(723\) 4.83317 + 8.35028i 0.179748 + 0.310550i
\(724\) 23.7278 0.881835
\(725\) 0.0728607 0.00270598
\(726\) −1.05646 + 0.611482i −0.0392089 + 0.0226942i
\(727\) 12.6597i 0.469523i −0.972053 0.234762i \(-0.924569\pi\)
0.972053 0.234762i \(-0.0754310\pi\)
\(728\) −32.5060 10.3953i −1.20475 0.385277i
\(729\) −0.176474 26.9994i −0.00653606 0.999979i
\(730\) 3.80940 + 3.80940i 0.140992 + 0.140992i
\(731\) 22.9357i 0.848308i
\(732\) 3.43605 + 0.916677i 0.127000 + 0.0338813i
\(733\) −34.2421 34.2421i −1.26476 1.26476i −0.948758 0.316003i \(-0.897659\pi\)
−0.316003 0.948758i \(-0.602341\pi\)
\(734\) 10.8394 10.8394i 0.400088 0.400088i
\(735\) 14.6705 8.49133i 0.541129 0.313207i
\(736\) −9.65171 + 9.65171i −0.355767 + 0.355767i
\(737\) 4.53775i 0.167150i
\(738\) −2.90067 + 5.04948i −0.106775 + 0.185874i
\(739\) 0.527783 0.527783i 0.0194148 0.0194148i −0.697333 0.716748i \(-0.745630\pi\)
0.716748 + 0.697333i \(0.245630\pi\)
\(740\) 14.2116 0.522429
\(741\) −30.0260 + 6.56225i −1.10303 + 0.241070i
\(742\) −24.6277 −0.904113
\(743\) 15.9143 15.9143i 0.583840 0.583840i −0.352116 0.935956i \(-0.614538\pi\)
0.935956 + 0.352116i \(0.114538\pi\)
\(744\) 17.3043 + 4.61648i 0.634408 + 0.169249i
\(745\) 1.64356i 0.0602152i
\(746\) 12.3468 12.3468i 0.452050 0.452050i
\(747\) −10.7522 + 2.90616i −0.393401 + 0.106331i
\(748\) 25.2841 25.2841i 0.924477 0.924477i
\(749\) 26.1061 + 26.1061i 0.953896 + 0.953896i
\(750\) 0.287739 1.07855i 0.0105067 0.0393832i
\(751\) 44.2811i 1.61584i −0.589292 0.807920i \(-0.700593\pi\)
0.589292 0.807920i \(-0.299407\pi\)
\(752\) 13.5307 + 13.5307i 0.493412 + 0.493412i
\(753\) 7.59966 28.4864i 0.276947 1.03810i
\(754\) 0.0775630 + 0.150496i 0.00282468 + 0.00548073i
\(755\) 7.79715i 0.283767i
\(756\) −33.7358 + 0.110251i −1.22696 + 0.00400978i
\(757\) 22.8856 0.831790 0.415895 0.909413i \(-0.363468\pi\)
0.415895 + 0.909413i \(0.363468\pi\)
\(758\) −8.70710 −0.316256
\(759\) 12.4760 7.22116i 0.452850 0.262111i
\(760\) 8.03969 + 8.03969i 0.291630 + 0.291630i
\(761\) 7.52971 + 7.52971i 0.272952 + 0.272952i 0.830287 0.557336i \(-0.188176\pi\)
−0.557336 + 0.830287i \(0.688176\pi\)
\(762\) −3.53155 + 2.04407i −0.127935 + 0.0740490i
\(763\) 34.0413 1.23238
\(764\) −20.7230 −0.749732
\(765\) −18.7916 + 5.07911i −0.679413 + 0.183636i
\(766\) 18.2054i 0.657786i
\(767\) −7.73331 15.0049i −0.279234 0.541797i
\(768\) 3.50507 13.1383i 0.126478 0.474089i
\(769\) 36.8433 + 36.8433i 1.32860 + 1.32860i 0.906589 + 0.422015i \(0.138677\pi\)
0.422015 + 0.906589i \(0.361323\pi\)
\(770\) 9.18262i 0.330919i
\(771\) −7.04394 + 26.4034i −0.253681 + 0.950894i
\(772\) 13.3877 + 13.3877i 0.481835 + 0.481835i
\(773\) −10.1075 + 10.1075i −0.363542 + 0.363542i −0.865115 0.501573i \(-0.832755\pi\)
0.501573 + 0.865115i \(0.332755\pi\)
\(774\) −1.78321 6.59749i −0.0640961 0.237142i
\(775\) −3.16484 + 3.16484i −0.113685 + 0.113685i
\(776\) 22.1347i 0.794591i
\(777\) −61.4926 16.4051i −2.20603 0.588530i
\(778\) −16.0106 + 16.0106i −0.574008 + 0.574008i
\(779\) 14.8230 0.531089
\(780\) −9.66789 + 2.11294i −0.346166 + 0.0756554i
\(781\) −14.5854 −0.521905
\(782\) 7.07672 7.07672i 0.253063 0.253063i
\(783\) 0.268581 + 0.266831i 0.00959829 + 0.00953576i
\(784\) 16.4450i 0.587321i
\(785\) −14.6861 + 14.6861i −0.524170 + 0.524170i
\(786\) 10.2158 5.91294i 0.364385 0.210907i
\(787\) 20.3419 20.3419i 0.725112 0.725112i −0.244530 0.969642i \(-0.578634\pi\)
0.969642 + 0.244530i \(0.0786336\pi\)
\(788\) −10.0096 10.0096i −0.356577 0.356577i
\(789\) −8.75375 2.33534i −0.311642 0.0831404i
\(790\) 6.15414i 0.218954i
\(791\) −1.88727 1.88727i −0.0671036 0.0671036i
\(792\) −12.0055 + 20.8992i −0.426598 + 0.742621i
\(793\) −4.44964 1.42298i −0.158011 0.0505316i
\(794\) 11.9210i 0.423059i
\(795\) −13.9814 + 8.09250i −0.495870 + 0.287012i
\(796\) 34.7737 1.23252
\(797\) 22.8088 0.807930 0.403965 0.914774i \(-0.367632\pi\)
0.403965 + 0.914774i \(0.367632\pi\)
\(798\) −11.2755 19.4808i −0.399149 0.689611i
\(799\) −52.2475 52.2475i −1.84838 1.84838i
\(800\) 4.03295 + 4.03295i 0.142586 + 0.142586i
\(801\) 7.78341 + 28.7970i 0.275013 + 1.01749i
\(802\) −1.43960 −0.0508341
\(803\) 29.0694 1.02584
\(804\) −1.79409 3.09966i −0.0632728 0.109316i
\(805\) 9.80531i 0.345592i
\(806\) −9.90617 3.16797i −0.348930 0.111587i
\(807\) −41.3599 11.0341i −1.45594 0.388418i
\(808\) −5.17277 5.17277i −0.181977 0.181977i
\(809\) 2.21292i 0.0778020i −0.999243 0.0389010i \(-0.987614\pi\)
0.999243 0.0389010i \(-0.0123857\pi\)
\(810\) 5.01056 2.92203i 0.176053 0.102670i
\(811\) −10.2655 10.2655i −0.360469 0.360469i 0.503517 0.863985i \(-0.332039\pi\)
−0.863985 + 0.503517i \(0.832039\pi\)
\(812\) 0.334495 0.334495i 0.0117385 0.0117385i
\(813\) −16.4309 28.3876i −0.576255 0.995597i
\(814\) −14.2129 + 14.2129i −0.498163 + 0.498163i
\(815\) 2.53150i 0.0886745i
\(816\) 4.86798 18.2470i 0.170413 0.638774i
\(817\) −12.3010 + 12.3010i −0.430357 + 0.430357i
\(818\) −8.69948 −0.304170
\(819\) 44.2713 + 2.01756i 1.54696 + 0.0704991i
\(820\) 4.77277 0.166672
\(821\) −0.236912 + 0.236912i −0.00826830 + 0.00826830i −0.711229 0.702961i \(-0.751861\pi\)
0.702961 + 0.711229i \(0.251861\pi\)
\(822\) 1.88344 7.05983i 0.0656924 0.246240i
\(823\) 9.65610i 0.336591i 0.985737 + 0.168295i \(0.0538262\pi\)
−0.985737 + 0.168295i \(0.946174\pi\)
\(824\) −22.4507 + 22.4507i −0.782107 + 0.782107i
\(825\) −3.01735 5.21308i −0.105051 0.181496i
\(826\) 8.74158 8.74158i 0.304159 0.304159i
\(827\) −6.76442 6.76442i −0.235222 0.235222i 0.579646 0.814868i \(-0.303191\pi\)
−0.814868 + 0.579646i \(0.803191\pi\)
\(828\) 5.66711 9.86529i 0.196946 0.342843i
\(829\) 10.8499i 0.376834i −0.982089 0.188417i \(-0.939664\pi\)
0.982089 0.188417i \(-0.0603356\pi\)
\(830\) −1.69193 1.69193i −0.0587276 0.0587276i
\(831\) −8.49966 2.26756i −0.294850 0.0786607i
\(832\) −0.345964 + 1.08182i −0.0119941 + 0.0375054i
\(833\) 63.5010i 2.20018i
\(834\) 4.48534 + 7.74933i 0.155315 + 0.268337i
\(835\) 9.98631 0.345591
\(836\) 27.1210 0.937998
\(837\) −23.2566 + 0.0760042i −0.803867 + 0.00262709i
\(838\) −16.5937 16.5937i −0.573221 0.573221i
\(839\) 34.4849 + 34.4849i 1.19055 + 1.19055i 0.976912 + 0.213640i \(0.0685319\pi\)
0.213640 + 0.976912i \(0.431468\pi\)
\(840\) −8.21269 14.1891i −0.283365 0.489570i
\(841\) 28.9947 0.999817
\(842\) −4.25595 −0.146670
\(843\) 4.01923 2.32634i 0.138430 0.0801235i
\(844\) 0.694993i 0.0239227i
\(845\) 12.8205 2.15272i 0.441039 0.0740557i
\(846\) 19.0912 + 10.9669i 0.656370 + 0.377051i
\(847\) −3.16803 3.16803i −0.108855 0.108855i
\(848\) 15.6726i 0.538199i
\(849\) 21.1395 + 5.63964i 0.725506 + 0.193552i
\(850\) −2.95699 2.95699i −0.101424 0.101424i
\(851\) 15.1767 15.1767i 0.520252 0.520252i
\(852\) −9.96300 + 5.76662i −0.341327 + 0.197561i
\(853\) −30.7565 + 30.7565i −1.05308 + 1.05308i −0.0545730 + 0.998510i \(0.517380\pi\)
−0.998510 + 0.0545730i \(0.982620\pi\)
\(854\) 3.42128i 0.117074i
\(855\) −12.8025 7.35437i −0.437836 0.251514i
\(856\) 14.7204 14.7204i 0.503132 0.503132i
\(857\) 38.8679 1.32770 0.663852 0.747864i \(-0.268921\pi\)
0.663852 + 0.747864i \(0.268921\pi\)
\(858\) 7.55566 11.7819i 0.257946 0.402229i
\(859\) −3.20072 −0.109207 −0.0546036 0.998508i \(-0.517390\pi\)
−0.0546036 + 0.998508i \(0.517390\pi\)
\(860\) −3.96072 + 3.96072i −0.135059 + 0.135059i
\(861\) −20.6514 5.50942i −0.703798 0.187761i
\(862\) 3.17930i 0.108288i
\(863\) −24.0668 + 24.0668i −0.819244 + 0.819244i −0.985998 0.166755i \(-0.946671\pi\)
0.166755 + 0.985998i \(0.446671\pi\)
\(864\) 0.0968519 + 29.6358i 0.00329497 + 1.00823i
\(865\) −15.9844 + 15.9844i −0.543488 + 0.543488i
\(866\) −0.0299557 0.0299557i −0.00101794 0.00101794i
\(867\) −11.2074 + 42.0097i −0.380624 + 1.42672i
\(868\) 29.0589i 0.986322i
\(869\) −23.4811 23.4811i −0.796540 0.796540i
\(870\) −0.0209648 + 0.0785841i −0.000710774 + 0.00266425i
\(871\) 2.15534 + 4.18200i 0.0730308 + 0.141702i
\(872\) 19.1948i 0.650016i
\(873\) −7.49983 27.7478i −0.253831 0.939120i
\(874\) 7.59084 0.256764
\(875\) 4.09713 0.138508
\(876\) 19.8568 11.4932i 0.670899 0.388319i
\(877\) 34.6511 + 34.6511i 1.17008 + 1.17008i 0.982189 + 0.187895i \(0.0601664\pi\)
0.187895 + 0.982189i \(0.439834\pi\)
\(878\) 4.35908 + 4.35908i 0.147112 + 0.147112i
\(879\) 41.7763 24.1803i 1.40908 0.815580i
\(880\) 5.84364 0.196989
\(881\) 5.44243 0.183360 0.0916800 0.995789i \(-0.470776\pi\)
0.0916800 + 0.995789i \(0.470776\pi\)
\(882\) 4.93709 + 18.2662i 0.166240 + 0.615054i
\(883\) 2.38247i 0.0801763i −0.999196 0.0400882i \(-0.987236\pi\)
0.999196 0.0400882i \(-0.0127639\pi\)
\(884\) −11.2925 + 35.3113i −0.379806 + 1.18765i
\(885\) 2.09027 7.83512i 0.0702636 0.263375i
\(886\) 15.9581 + 15.9581i 0.536124 + 0.536124i
\(887\) 36.3502i 1.22052i 0.792201 + 0.610260i \(0.208935\pi\)
−0.792201 + 0.610260i \(0.791065\pi\)
\(888\) −9.25031 + 34.6737i −0.310420 + 1.16357i
\(889\) −10.5901 10.5901i −0.355182 0.355182i
\(890\) −4.53140 + 4.53140i −0.151893 + 0.151893i
\(891\) 7.96875 30.2667i 0.266963 1.01397i
\(892\) 2.53030 2.53030i 0.0847209 0.0847209i
\(893\) 56.0433i 1.87542i
\(894\) −1.77266 0.472915i −0.0592867 0.0158166i
\(895\) 10.1376 10.1376i 0.338864 0.338864i
\(896\) 45.9038 1.53354
\(897\) −8.06802 + 12.5809i −0.269383 + 0.420063i
\(898\) 21.1674 0.706365
\(899\) 0.230593 0.230593i 0.00769070 0.00769070i
\(900\) −4.12219 2.36799i −0.137406 0.0789330i
\(901\) 60.5185i 2.01616i
\(902\) −4.77321 + 4.77321i −0.158931 + 0.158931i
\(903\) 21.7098 12.5657i 0.722456 0.418160i
\(904\) −1.06417 + 1.06417i −0.0353938 + 0.0353938i
\(905\) −10.5879 10.5879i −0.351954 0.351954i
\(906\) 8.40964 + 2.24354i 0.279392 + 0.0745366i
\(907\) 17.6809i 0.587085i 0.955946 + 0.293542i \(0.0948342\pi\)
−0.955946 + 0.293542i \(0.905166\pi\)
\(908\) 20.7526 + 20.7526i 0.688699 + 0.688699i
\(909\) 8.23717 + 4.73183i 0.273210 + 0.156945i
\(910\) 4.36156 + 8.46273i 0.144584 + 0.280537i
\(911\) 5.92923i 0.196444i −0.995165 0.0982220i \(-0.968684\pi\)
0.995165 0.0982220i \(-0.0313155\pi\)
\(912\) 12.3972 7.17552i 0.410511 0.237605i
\(913\) −12.9111 −0.427293
\(914\) 5.33439 0.176446
\(915\) −1.12421 1.94229i −0.0371651 0.0642103i
\(916\) −4.10251 4.10251i −0.135551 0.135551i
\(917\) 30.6343 + 30.6343i 1.01163 + 1.01163i
\(918\) −0.0710126 21.7292i −0.00234377 0.717172i
\(919\) −22.9927 −0.758459 −0.379230 0.925303i \(-0.623811\pi\)
−0.379230 + 0.925303i \(0.623811\pi\)
\(920\) 5.52890 0.182282
\(921\) 10.3270 + 17.8419i 0.340286 + 0.587912i
\(922\) 22.1373i 0.729054i
\(923\) 13.4419 6.92775i 0.442446 0.228030i
\(924\) −37.7849 10.0803i −1.24303 0.331619i
\(925\) −6.34157 6.34157i −0.208510 0.208510i
\(926\) 10.4642i 0.343876i
\(927\) 20.5370 35.7507i 0.674523 1.17421i
\(928\) −0.293843 0.293843i −0.00964588 0.00964588i
\(929\) 31.4998 31.4998i 1.03348 1.03348i 0.0340553 0.999420i \(-0.489158\pi\)
0.999420 0.0340553i \(-0.0108422\pi\)
\(930\) −2.50281 4.32410i −0.0820702 0.141793i
\(931\) 34.0572 34.0572i 1.11618 1.11618i
\(932\) 10.5632i 0.346009i
\(933\) −11.1541 + 41.8097i −0.365168 + 1.36879i
\(934\) −9.98280 + 9.98280i −0.326647 + 0.326647i
\(935\) −22.5648 −0.737946
\(936\) 1.13763 24.9631i 0.0371847 0.815946i
\(937\) 40.0311 1.30776 0.653879 0.756599i \(-0.273141\pi\)
0.653879 + 0.756599i \(0.273141\pi\)
\(938\) −2.43635 + 2.43635i −0.0795497 + 0.0795497i
\(939\) 3.67405 13.7717i 0.119898 0.449423i
\(940\) 18.0450i 0.588564i
\(941\) −41.8084 + 41.8084i −1.36292 + 1.36292i −0.492738 + 0.870178i \(0.664004\pi\)
−0.870178 + 0.492738i \(0.835996\pi\)
\(942\) −11.6140 20.0655i −0.378404 0.653770i
\(943\) 5.09689 5.09689i 0.165978 0.165978i
\(944\) 5.56297 + 5.56297i 0.181059 + 0.181059i
\(945\) 15.1029 + 15.0045i 0.491299 + 0.488098i
\(946\) 7.92218i 0.257572i
\(947\) 33.2177 + 33.2177i 1.07943 + 1.07943i 0.996560 + 0.0828703i \(0.0264087\pi\)
0.0828703 + 0.996560i \(0.473591\pi\)
\(948\) −25.3232 6.75577i −0.822459 0.219417i
\(949\) −26.7905 + 13.8074i −0.869655 + 0.448206i
\(950\) 3.17182i 0.102907i
\(951\) 6.87280 + 11.8741i 0.222866 + 0.385046i
\(952\) −61.4173 −1.99055
\(953\) −9.16362 −0.296839 −0.148419 0.988925i \(-0.547419\pi\)
−0.148419 + 0.988925i \(0.547419\pi\)
\(954\) −4.70520 17.4082i −0.152336 0.563613i
\(955\) 9.24712 + 9.24712i 0.299230 + 0.299230i
\(956\) −1.83313 1.83313i −0.0592876 0.0592876i
\(957\) 0.219846 + 0.379828i 0.00710661 + 0.0122781i
\(958\) −18.1963 −0.587897
\(959\) 26.8184 0.866011
\(960\) −0.472221 + 0.273323i −0.0152409 + 0.00882148i
\(961\) 10.9675i 0.353791i
\(962\) 6.34783 19.8495i 0.204662 0.639975i
\(963\) −13.4656 + 23.4409i −0.433923 + 0.755372i
\(964\) 6.24165 + 6.24165i 0.201030 + 0.201030i
\(965\) 11.9479i 0.384615i
\(966\) −10.5756 2.82137i −0.340263 0.0907760i
\(967\) 27.6848 + 27.6848i 0.890282 + 0.890282i 0.994549 0.104268i \(-0.0332498\pi\)
−0.104268 + 0.994549i \(0.533250\pi\)
\(968\) −1.78635 + 1.78635i −0.0574153 + 0.0574153i
\(969\) −47.8707 + 27.7077i −1.53783 + 0.890100i
\(970\) 4.36630 4.36630i 0.140193 0.140193i
\(971\) 22.0979i 0.709156i 0.935026 + 0.354578i \(0.115376\pi\)
−0.935026 + 0.354578i \(0.884624\pi\)
\(972\) −6.52325 23.8253i −0.209233 0.764195i
\(973\) −23.2381 + 23.2381i −0.744979 + 0.744979i
\(974\) 11.1289 0.356593
\(975\) 5.25690 + 3.37121i 0.168355 + 0.107965i
\(976\) 2.17723 0.0696915
\(977\) −40.2412 + 40.2412i −1.28743 + 1.28743i −0.351086 + 0.936343i \(0.614188\pi\)
−0.936343 + 0.351086i \(0.885812\pi\)
\(978\) −2.73036 0.728409i −0.0873071 0.0232920i
\(979\) 34.5790i 1.10515i
\(980\) 10.9659 10.9659i 0.350292 0.350292i
\(981\) 6.50368 + 24.0622i 0.207647 + 0.768248i
\(982\) −10.8303 + 10.8303i −0.345608 + 0.345608i
\(983\) −10.0169 10.0169i −0.319490 0.319490i 0.529081 0.848571i \(-0.322537\pi\)
−0.848571 + 0.529081i \(0.822537\pi\)
\(984\) −3.10658 + 11.6447i −0.0990342 + 0.371218i
\(985\) 8.93307i 0.284631i
\(986\) 0.215448 + 0.215448i 0.00686127 + 0.00686127i
\(987\) −20.8302 + 78.0795i −0.663033 + 2.48530i
\(988\) −24.9947 + 12.8819i −0.795189 + 0.409828i
\(989\) 8.45939i 0.268993i
\(990\) 6.49079 1.75437i 0.206291 0.0557574i
\(991\) −21.7567 −0.691124 −0.345562 0.938396i \(-0.612312\pi\)
−0.345562 + 0.938396i \(0.612312\pi\)
\(992\) 25.5273 0.810493
\(993\) −1.88825 + 1.09293i −0.0599218 + 0.0346830i
\(994\) 7.83099 + 7.83099i 0.248384 + 0.248384i
\(995\) −15.5169 15.5169i −0.491918 0.491918i
\(996\) −8.81931 + 5.10465i −0.279450 + 0.161747i
\(997\) −27.2276 −0.862308 −0.431154 0.902278i \(-0.641893\pi\)
−0.431154 + 0.902278i \(0.641893\pi\)
\(998\) 12.4622 0.394482
\(999\) −0.152294 46.6006i −0.00481837 1.47438i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.2.o.a.86.12 yes 40
3.2 odd 2 inner 195.2.o.a.86.9 40
5.2 odd 4 975.2.n.q.749.12 40
5.3 odd 4 975.2.n.r.749.9 40
5.4 even 2 975.2.o.p.476.9 40
13.5 odd 4 inner 195.2.o.a.161.9 yes 40
15.2 even 4 975.2.n.q.749.9 40
15.8 even 4 975.2.n.r.749.12 40
15.14 odd 2 975.2.o.p.476.12 40
39.5 even 4 inner 195.2.o.a.161.12 yes 40
65.18 even 4 975.2.n.q.824.9 40
65.44 odd 4 975.2.o.p.551.12 40
65.57 even 4 975.2.n.r.824.12 40
195.44 even 4 975.2.o.p.551.9 40
195.83 odd 4 975.2.n.q.824.12 40
195.122 odd 4 975.2.n.r.824.9 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.o.a.86.9 40 3.2 odd 2 inner
195.2.o.a.86.12 yes 40 1.1 even 1 trivial
195.2.o.a.161.9 yes 40 13.5 odd 4 inner
195.2.o.a.161.12 yes 40 39.5 even 4 inner
975.2.n.q.749.9 40 15.2 even 4
975.2.n.q.749.12 40 5.2 odd 4
975.2.n.q.824.9 40 65.18 even 4
975.2.n.q.824.12 40 195.83 odd 4
975.2.n.r.749.9 40 5.3 odd 4
975.2.n.r.749.12 40 15.8 even 4
975.2.n.r.824.9 40 195.122 odd 4
975.2.n.r.824.12 40 65.57 even 4
975.2.o.p.476.9 40 5.4 even 2
975.2.o.p.476.12 40 15.14 odd 2
975.2.o.p.551.9 40 195.44 even 4
975.2.o.p.551.12 40 65.44 odd 4