L(s) = 1 | + (0.455 − 0.455i)2-s + (1.67 + 0.446i)3-s + 1.58i·4-s + (0.966 − 0.559i)6-s + (2.89 − 2.89i)7-s + (1.63 + 1.63i)8-s + (2.60 + 1.49i)9-s + (2.45 − 2.45i)11-s + (−0.707 + 2.65i)12-s + (−1.09 − 3.43i)13-s − 2.64i·14-s − 1.68·16-s − 6.48i·17-s + (1.86 − 0.504i)18-s + (−3.48 + 3.48i)19-s + ⋯ |
L(s) = 1 | + (0.322 − 0.322i)2-s + (0.966 + 0.257i)3-s + 0.792i·4-s + (0.394 − 0.228i)6-s + (1.09 − 1.09i)7-s + (0.577 + 0.577i)8-s + (0.867 + 0.498i)9-s + (0.741 − 0.741i)11-s + (−0.204 + 0.765i)12-s + (−0.304 − 0.952i)13-s − 0.705i·14-s − 0.420·16-s − 1.57i·17-s + (0.439 − 0.118i)18-s + (−0.798 + 0.798i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.120i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.120i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.03958 - 0.183871i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.03958 - 0.183871i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.67 - 0.446i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (1.09 + 3.43i)T \) |
good | 2 | \( 1 + (-0.455 + 0.455i)T - 2iT^{2} \) |
| 7 | \( 1 + (-2.89 + 2.89i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.45 + 2.45i)T - 11iT^{2} \) |
| 17 | \( 1 + 6.48iT - 17T^{2} \) |
| 19 | \( 1 + (3.48 - 3.48i)T - 19iT^{2} \) |
| 23 | \( 1 - 2.39iT - 23T^{2} \) |
| 29 | \( 1 + 0.0728iT - 29T^{2} \) |
| 31 | \( 1 + (3.16 - 3.16i)T - 31iT^{2} \) |
| 37 | \( 1 + (6.34 - 6.34i)T - 37iT^{2} \) |
| 41 | \( 1 + (2.12 + 2.12i)T + 41iT^{2} \) |
| 43 | \( 1 + 3.53T + 43T^{2} \) |
| 47 | \( 1 + (-8.05 - 8.05i)T + 47iT^{2} \) |
| 53 | \( 1 - 9.32T + 53T^{2} \) |
| 59 | \( 1 + (3.31 - 3.31i)T - 59iT^{2} \) |
| 61 | \( 1 + 1.29T + 61T^{2} \) |
| 67 | \( 1 + (-0.922 - 0.922i)T + 67iT^{2} \) |
| 71 | \( 1 + (2.96 + 2.96i)T + 71iT^{2} \) |
| 73 | \( 1 + (5.91 - 5.91i)T - 73iT^{2} \) |
| 79 | \( 1 + 9.54T + 79T^{2} \) |
| 83 | \( 1 + (2.62 - 2.62i)T - 83iT^{2} \) |
| 89 | \( 1 + (7.03 - 7.03i)T - 89iT^{2} \) |
| 97 | \( 1 + (-6.77 - 6.77i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12916967721619384469306652921, −8.934015218314999962241610095452, −8.325096516363907874177629159486, −7.57177425543230731723740868824, −7.04501166765804787475106513481, −5.26650550054350840238924708566, −4.38878074060024888217532447103, −3.65270551237005003203820326620, −2.80033533770378380965427526018, −1.44179943053198897365500145656,
1.76937354678321903987767792408, 2.09917243446003607012439786220, 4.02645000391457068877892915508, 4.62818398064472765950192196374, 5.75608205867177662800472353979, 6.67886441431279602817089328869, 7.37011487500341992106510435351, 8.729484326708764629273955846617, 8.808799722143082437414446128418, 9.888505958802593060059857527983