Properties

Label 975.2.bn.d.368.21
Level $975$
Weight $2$
Character 975.368
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 368.21
Character \(\chi\) \(=\) 975.368
Dual form 975.2.bn.d.257.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.561788 + 2.09662i) q^{2} +(-1.70619 - 0.298187i) q^{3} +(-2.34816 + 1.35571i) q^{4} +(-0.333332 - 3.74475i) q^{6} +(0.108168 - 0.403690i) q^{7} +(-1.09192 - 1.09192i) q^{8} +(2.82217 + 1.01753i) q^{9} +(-0.255945 + 0.443309i) q^{11} +(4.41067 - 1.61291i) q^{12} +(0.583017 + 3.55810i) q^{13} +0.907153 q^{14} +(-1.03551 + 1.79356i) q^{16} +(-0.493455 + 1.84160i) q^{17} +(-0.547908 + 6.48865i) q^{18} +(1.50433 + 2.60558i) q^{19} +(-0.304931 + 0.656518i) q^{21} +(-1.07324 - 0.287573i) q^{22} +(-1.50474 - 5.61575i) q^{23} +(1.53743 + 2.18862i) q^{24} +(-7.13246 + 3.22126i) q^{26} +(-4.51174 - 2.57763i) q^{27} +(0.293291 + 1.09458i) q^{28} +(-3.99826 + 6.92519i) q^{29} -3.08801i q^{31} +(-7.32533 - 1.96282i) q^{32} +(0.568879 - 0.680051i) q^{33} -4.13835 q^{34} +(-8.00639 + 1.43673i) q^{36} +(-7.16959 + 1.92109i) q^{37} +(-4.61780 + 4.61780i) q^{38} +(0.0662412 - 6.24465i) q^{39} +(-1.77356 + 3.07189i) q^{41} +(-1.54778 - 0.270501i) q^{42} +(1.87287 - 6.98963i) q^{43} -1.38795i q^{44} +(10.9288 - 6.30972i) q^{46} +(-5.15313 + 5.15313i) q^{47} +(2.30160 - 2.75138i) q^{48} +(5.91091 + 3.41267i) q^{49} +(1.39107 - 2.99498i) q^{51} +(-6.19278 - 7.56460i) q^{52} +(-7.15880 + 7.15880i) q^{53} +(2.86967 - 10.9075i) q^{54} +(-0.558908 + 0.322686i) q^{56} +(-1.78973 - 4.89419i) q^{57} +(-16.7657 - 4.49235i) q^{58} +(-1.74290 + 1.00626i) q^{59} +(-5.39613 - 9.34638i) q^{61} +(6.47438 - 1.73481i) q^{62} +(0.716035 - 1.02922i) q^{63} -12.3191i q^{64} +(1.74540 + 0.810680i) q^{66} +(9.33491 - 2.50128i) q^{67} +(-1.33797 - 4.99336i) q^{68} +(0.892822 + 10.0302i) q^{69} +(2.93620 + 5.08564i) q^{71} +(-1.97052 - 4.19264i) q^{72} +(2.10205 - 2.10205i) q^{73} +(-8.05558 - 13.9527i) q^{74} +(-7.06484 - 4.07889i) q^{76} +(0.151274 + 0.151274i) q^{77} +(13.1299 - 3.36928i) q^{78} +14.3974i q^{79} +(6.92928 + 5.74327i) q^{81} +(-7.43696 - 1.99273i) q^{82} +(6.15680 + 6.15680i) q^{83} +(-0.174021 - 1.95501i) q^{84} +15.7068 q^{86} +(8.88680 - 10.6235i) q^{87} +(0.763529 - 0.204587i) q^{88} +(-10.4966 - 6.06022i) q^{89} +(1.49943 + 0.149516i) q^{91} +(11.1467 + 11.1467i) q^{92} +(-0.920803 + 5.26873i) q^{93} +(-13.6991 - 7.90919i) q^{94} +(11.9131 + 5.53326i) q^{96} +(4.19510 - 15.6563i) q^{97} +(-3.83439 + 14.3101i) q^{98} +(-1.17340 + 0.990663i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.561788 + 2.09662i 0.397244 + 1.48253i 0.817924 + 0.575326i \(0.195125\pi\)
−0.420680 + 0.907209i \(0.638209\pi\)
\(3\) −1.70619 0.298187i −0.985069 0.172158i
\(4\) −2.34816 + 1.35571i −1.17408 + 0.677856i
\(5\) 0 0
\(6\) −0.333332 3.74475i −0.136082 1.52879i
\(7\) 0.108168 0.403690i 0.0408838 0.152581i −0.942466 0.334301i \(-0.891500\pi\)
0.983350 + 0.181720i \(0.0581665\pi\)
\(8\) −1.09192 1.09192i −0.386052 0.386052i
\(9\) 2.82217 + 1.01753i 0.940723 + 0.339176i
\(10\) 0 0
\(11\) −0.255945 + 0.443309i −0.0771702 + 0.133663i −0.902028 0.431678i \(-0.857922\pi\)
0.824858 + 0.565340i \(0.191255\pi\)
\(12\) 4.41067 1.61291i 1.27325 0.465608i
\(13\) 0.583017 + 3.55810i 0.161700 + 0.986840i
\(14\) 0.907153 0.242447
\(15\) 0 0
\(16\) −1.03551 + 1.79356i −0.258878 + 0.448390i
\(17\) −0.493455 + 1.84160i −0.119680 + 0.446653i −0.999594 0.0284797i \(-0.990933\pi\)
0.879914 + 0.475133i \(0.157600\pi\)
\(18\) −0.547908 + 6.48865i −0.129143 + 1.52939i
\(19\) 1.50433 + 2.60558i 0.345118 + 0.597762i 0.985375 0.170399i \(-0.0545056\pi\)
−0.640257 + 0.768161i \(0.721172\pi\)
\(20\) 0 0
\(21\) −0.304931 + 0.656518i −0.0665414 + 0.143264i
\(22\) −1.07324 0.287573i −0.228815 0.0613108i
\(23\) −1.50474 5.61575i −0.313759 1.17097i −0.925139 0.379628i \(-0.876052\pi\)
0.611380 0.791337i \(-0.290615\pi\)
\(24\) 1.53743 + 2.18862i 0.313826 + 0.446750i
\(25\) 0 0
\(26\) −7.13246 + 3.22126i −1.39879 + 0.631742i
\(27\) −4.51174 2.57763i −0.868285 0.496065i
\(28\) 0.293291 + 1.09458i 0.0554267 + 0.206855i
\(29\) −3.99826 + 6.92519i −0.742459 + 1.28598i 0.208914 + 0.977934i \(0.433007\pi\)
−0.951373 + 0.308042i \(0.900326\pi\)
\(30\) 0 0
\(31\) 3.08801i 0.554622i −0.960780 0.277311i \(-0.910557\pi\)
0.960780 0.277311i \(-0.0894433\pi\)
\(32\) −7.32533 1.96282i −1.29495 0.346980i
\(33\) 0.568879 0.680051i 0.0990292 0.118382i
\(34\) −4.13835 −0.709722
\(35\) 0 0
\(36\) −8.00639 + 1.43673i −1.33440 + 0.239455i
\(37\) −7.16959 + 1.92109i −1.17867 + 0.315825i −0.794400 0.607395i \(-0.792215\pi\)
−0.384273 + 0.923219i \(0.625548\pi\)
\(38\) −4.61780 + 4.61780i −0.749107 + 0.749107i
\(39\) 0.0662412 6.24465i 0.0106071 0.999944i
\(40\) 0 0
\(41\) −1.77356 + 3.07189i −0.276983 + 0.479749i −0.970634 0.240563i \(-0.922668\pi\)
0.693650 + 0.720312i \(0.256001\pi\)
\(42\) −1.54778 0.270501i −0.238827 0.0417392i
\(43\) 1.87287 6.98963i 0.285609 1.06591i −0.662783 0.748811i \(-0.730625\pi\)
0.948393 0.317098i \(-0.102708\pi\)
\(44\) 1.38795i 0.209241i
\(45\) 0 0
\(46\) 10.9288 6.30972i 1.61136 0.930318i
\(47\) −5.15313 + 5.15313i −0.751661 + 0.751661i −0.974789 0.223128i \(-0.928373\pi\)
0.223128 + 0.974789i \(0.428373\pi\)
\(48\) 2.30160 2.75138i 0.332207 0.397127i
\(49\) 5.91091 + 3.41267i 0.844416 + 0.487524i
\(50\) 0 0
\(51\) 1.39107 2.99498i 0.194789 0.419381i
\(52\) −6.19278 7.56460i −0.858785 1.04902i
\(53\) −7.15880 + 7.15880i −0.983337 + 0.983337i −0.999863 0.0165265i \(-0.994739\pi\)
0.0165265 + 0.999863i \(0.494739\pi\)
\(54\) 2.86967 10.9075i 0.390512 1.48432i
\(55\) 0 0
\(56\) −0.558908 + 0.322686i −0.0746872 + 0.0431207i
\(57\) −1.78973 4.89419i −0.237055 0.648252i
\(58\) −16.7657 4.49235i −2.20144 0.589875i
\(59\) −1.74290 + 1.00626i −0.226906 + 0.131004i −0.609144 0.793060i \(-0.708487\pi\)
0.382238 + 0.924064i \(0.375153\pi\)
\(60\) 0 0
\(61\) −5.39613 9.34638i −0.690904 1.19668i −0.971542 0.236867i \(-0.923879\pi\)
0.280638 0.959814i \(-0.409454\pi\)
\(62\) 6.47438 1.73481i 0.822247 0.220320i
\(63\) 0.716035 1.02922i 0.0902120 0.129669i
\(64\) 12.3191i 1.53988i
\(65\) 0 0
\(66\) 1.74540 + 0.810680i 0.214844 + 0.0997879i
\(67\) 9.33491 2.50128i 1.14044 0.305580i 0.361312 0.932445i \(-0.382329\pi\)
0.779128 + 0.626865i \(0.215662\pi\)
\(68\) −1.33797 4.99336i −0.162252 0.605534i
\(69\) 0.892822 + 10.0302i 0.107483 + 1.20750i
\(70\) 0 0
\(71\) 2.93620 + 5.08564i 0.348463 + 0.603555i 0.985977 0.166884i \(-0.0533705\pi\)
−0.637514 + 0.770439i \(0.720037\pi\)
\(72\) −1.97052 4.19264i −0.232228 0.494107i
\(73\) 2.10205 2.10205i 0.246026 0.246026i −0.573311 0.819338i \(-0.694341\pi\)
0.819338 + 0.573311i \(0.194341\pi\)
\(74\) −8.05558 13.9527i −0.936442 1.62196i
\(75\) 0 0
\(76\) −7.06484 4.07889i −0.810393 0.467881i
\(77\) 0.151274 + 0.151274i 0.0172393 + 0.0172393i
\(78\) 13.1299 3.36928i 1.48667 0.381496i
\(79\) 14.3974i 1.61983i 0.586544 + 0.809917i \(0.300488\pi\)
−0.586544 + 0.809917i \(0.699512\pi\)
\(80\) 0 0
\(81\) 6.92928 + 5.74327i 0.769920 + 0.638141i
\(82\) −7.43696 1.99273i −0.821274 0.220060i
\(83\) 6.15680 + 6.15680i 0.675796 + 0.675796i 0.959046 0.283250i \(-0.0914125\pi\)
−0.283250 + 0.959046i \(0.591413\pi\)
\(84\) −0.174021 1.95501i −0.0189873 0.213309i
\(85\) 0 0
\(86\) 15.7068 1.69370
\(87\) 8.88680 10.6235i 0.952765 1.13896i
\(88\) 0.763529 0.204587i 0.0813924 0.0218090i
\(89\) −10.4966 6.06022i −1.11264 0.642382i −0.173126 0.984900i \(-0.555387\pi\)
−0.939511 + 0.342518i \(0.888720\pi\)
\(90\) 0 0
\(91\) 1.49943 + 0.149516i 0.157183 + 0.0156735i
\(92\) 11.1467 + 11.1467i 1.16212 + 1.16212i
\(93\) −0.920803 + 5.26873i −0.0954829 + 0.546342i
\(94\) −13.6991 7.90919i −1.41296 0.815771i
\(95\) 0 0
\(96\) 11.9131 + 5.53326i 1.21588 + 0.564735i
\(97\) 4.19510 15.6563i 0.425948 1.58966i −0.335895 0.941899i \(-0.609039\pi\)
0.761843 0.647761i \(-0.224295\pi\)
\(98\) −3.83439 + 14.3101i −0.387332 + 1.44554i
\(99\) −1.17340 + 0.990663i −0.117931 + 0.0995654i
\(100\) 0 0
\(101\) −7.56743 4.36906i −0.752987 0.434737i 0.0737851 0.997274i \(-0.476492\pi\)
−0.826772 + 0.562537i \(0.809825\pi\)
\(102\) 7.06082 + 1.23400i 0.699125 + 0.122184i
\(103\) 8.04055 + 8.04055i 0.792259 + 0.792259i 0.981861 0.189602i \(-0.0607197\pi\)
−0.189602 + 0.981861i \(0.560720\pi\)
\(104\) 3.24855 4.52177i 0.318547 0.443396i
\(105\) 0 0
\(106\) −19.0310 10.9876i −1.84846 1.06721i
\(107\) −11.6570 + 3.12349i −1.12693 + 0.301959i −0.773683 0.633572i \(-0.781588\pi\)
−0.353243 + 0.935531i \(0.614921\pi\)
\(108\) 14.0888 0.0639357i 1.35570 0.00615221i
\(109\) −14.0991 −1.35045 −0.675225 0.737612i \(-0.735953\pi\)
−0.675225 + 0.737612i \(0.735953\pi\)
\(110\) 0 0
\(111\) 12.8055 1.13986i 1.21545 0.108191i
\(112\) 0.612032 + 0.612032i 0.0578316 + 0.0578316i
\(113\) 3.25132 + 0.871189i 0.305859 + 0.0819545i 0.408484 0.912766i \(-0.366058\pi\)
−0.102625 + 0.994720i \(0.532724\pi\)
\(114\) 9.25582 6.50188i 0.866887 0.608957i
\(115\) 0 0
\(116\) 21.6820i 2.01312i
\(117\) −1.97509 + 10.6348i −0.182597 + 0.983188i
\(118\) −3.08889 3.08889i −0.284355 0.284355i
\(119\) 0.690059 + 0.398406i 0.0632576 + 0.0365218i
\(120\) 0 0
\(121\) 5.36898 + 9.29935i 0.488090 + 0.845396i
\(122\) 16.5643 16.5643i 1.49966 1.49966i
\(123\) 3.94202 4.71238i 0.355440 0.424901i
\(124\) 4.18645 + 7.25114i 0.375954 + 0.651172i
\(125\) 0 0
\(126\) 2.56014 + 0.923053i 0.228075 + 0.0822321i
\(127\) 4.58670 + 17.1178i 0.407003 + 1.51896i 0.800330 + 0.599559i \(0.204657\pi\)
−0.393327 + 0.919399i \(0.628676\pi\)
\(128\) 11.1778 2.99508i 0.987986 0.264730i
\(129\) −5.27968 + 11.3672i −0.464850 + 1.00082i
\(130\) 0 0
\(131\) 3.62886i 0.317055i 0.987355 + 0.158527i \(0.0506746\pi\)
−0.987355 + 0.158527i \(0.949325\pi\)
\(132\) −0.413869 + 2.36811i −0.0360226 + 0.206117i
\(133\) 1.21457 0.325443i 0.105317 0.0282195i
\(134\) 10.4885 + 18.1666i 0.906066 + 1.56935i
\(135\) 0 0
\(136\) 2.54969 1.47206i 0.218634 0.126228i
\(137\) 3.72458 + 0.997998i 0.318212 + 0.0852647i 0.414390 0.910099i \(-0.363995\pi\)
−0.0961776 + 0.995364i \(0.530662\pi\)
\(138\) −20.5280 + 7.50677i −1.74746 + 0.639019i
\(139\) 6.82507 3.94046i 0.578895 0.334225i −0.181799 0.983336i \(-0.558192\pi\)
0.760694 + 0.649110i \(0.224859\pi\)
\(140\) 0 0
\(141\) 10.3288 7.25562i 0.869843 0.611034i
\(142\) −9.01315 + 9.01315i −0.756367 + 0.756367i
\(143\) −1.72656 0.652221i −0.144382 0.0545414i
\(144\) −4.74738 + 4.00807i −0.395615 + 0.334005i
\(145\) 0 0
\(146\) 5.58811 + 3.22629i 0.462475 + 0.267010i
\(147\) −9.06753 7.58522i −0.747877 0.625618i
\(148\) 14.2309 14.2309i 1.16977 1.16977i
\(149\) −4.77688 + 2.75793i −0.391337 + 0.225938i −0.682739 0.730662i \(-0.739211\pi\)
0.291402 + 0.956601i \(0.405878\pi\)
\(150\) 0 0
\(151\) 3.50398i 0.285150i −0.989784 0.142575i \(-0.954462\pi\)
0.989784 0.142575i \(-0.0455382\pi\)
\(152\) 1.20247 4.48770i 0.0975336 0.364000i
\(153\) −3.26649 + 4.69520i −0.264080 + 0.379584i
\(154\) −0.232181 + 0.402149i −0.0187097 + 0.0324061i
\(155\) 0 0
\(156\) 8.31040 + 14.7533i 0.665365 + 1.18121i
\(157\) −1.27066 + 1.27066i −0.101409 + 0.101409i −0.755991 0.654582i \(-0.772845\pi\)
0.654582 + 0.755991i \(0.272845\pi\)
\(158\) −30.1859 + 8.08829i −2.40146 + 0.643470i
\(159\) 14.3489 10.0796i 1.13794 0.799365i
\(160\) 0 0
\(161\) −2.42979 −0.191494
\(162\) −8.14867 + 17.7546i −0.640220 + 1.39493i
\(163\) 7.53579 + 2.01921i 0.590249 + 0.158157i 0.541567 0.840658i \(-0.317831\pi\)
0.0486817 + 0.998814i \(0.484498\pi\)
\(164\) 9.61774i 0.751019i
\(165\) 0 0
\(166\) −9.44966 + 16.3673i −0.733436 + 1.27035i
\(167\) 0.590226 + 2.20275i 0.0456731 + 0.170454i 0.984995 0.172583i \(-0.0552111\pi\)
−0.939322 + 0.343037i \(0.888544\pi\)
\(168\) 1.04982 0.383904i 0.0809957 0.0296188i
\(169\) −12.3202 + 4.14887i −0.947706 + 0.319144i
\(170\) 0 0
\(171\) 1.59423 + 8.88410i 0.121914 + 0.679384i
\(172\) 5.07814 + 18.9519i 0.387204 + 1.44507i
\(173\) 21.8789 + 5.86243i 1.66342 + 0.445713i 0.963326 0.268335i \(-0.0864736\pi\)
0.700097 + 0.714048i \(0.253140\pi\)
\(174\) 27.2659 + 12.6641i 2.06702 + 0.960064i
\(175\) 0 0
\(176\) −0.530068 0.918104i −0.0399554 0.0692047i
\(177\) 3.27376 1.19716i 0.246071 0.0899844i
\(178\) 6.80911 25.4120i 0.510365 1.90471i
\(179\) 4.89863 8.48468i 0.366141 0.634175i −0.622818 0.782367i \(-0.714012\pi\)
0.988959 + 0.148192i \(0.0473454\pi\)
\(180\) 0 0
\(181\) 1.50768 0.112065 0.0560325 0.998429i \(-0.482155\pi\)
0.0560325 + 0.998429i \(0.482155\pi\)
\(182\) 0.528886 + 3.22774i 0.0392036 + 0.239256i
\(183\) 6.41986 + 17.5557i 0.474570 + 1.29776i
\(184\) −4.48890 + 7.77499i −0.330926 + 0.573180i
\(185\) 0 0
\(186\) −11.5638 + 1.02933i −0.847900 + 0.0754743i
\(187\) −0.690101 0.690101i −0.0504652 0.0504652i
\(188\) 5.11423 19.0865i 0.372993 1.39203i
\(189\) −1.52859 + 1.54253i −0.111189 + 0.112202i
\(190\) 0 0
\(191\) 3.89212 2.24712i 0.281624 0.162596i −0.352534 0.935799i \(-0.614680\pi\)
0.634158 + 0.773203i \(0.281347\pi\)
\(192\) −3.67339 + 21.0187i −0.265104 + 1.51689i
\(193\) 4.10026 + 15.3024i 0.295143 + 1.10149i 0.941104 + 0.338118i \(0.109790\pi\)
−0.645960 + 0.763371i \(0.723543\pi\)
\(194\) 35.1822 2.52593
\(195\) 0 0
\(196\) −18.5064 −1.32188
\(197\) 3.18600 + 11.8903i 0.226993 + 0.847150i 0.981596 + 0.190968i \(0.0611628\pi\)
−0.754603 + 0.656181i \(0.772171\pi\)
\(198\) −2.73625 1.90363i −0.194457 0.135285i
\(199\) 19.5208 11.2703i 1.38379 0.798933i 0.391187 0.920311i \(-0.372065\pi\)
0.992606 + 0.121378i \(0.0387313\pi\)
\(200\) 0 0
\(201\) −16.6730 + 1.48411i −1.17602 + 0.104681i
\(202\) 4.90897 18.3205i 0.345394 1.28903i
\(203\) 2.36315 + 2.36315i 0.165860 + 0.165860i
\(204\) 0.793871 + 8.91858i 0.0555821 + 0.624426i
\(205\) 0 0
\(206\) −12.3409 + 21.3751i −0.859832 + 1.48927i
\(207\) 1.46756 17.3797i 0.102002 1.20797i
\(208\) −6.98539 2.63878i −0.484349 0.182967i
\(209\) −1.54011 −0.106531
\(210\) 0 0
\(211\) 1.99042 3.44751i 0.137026 0.237336i −0.789344 0.613952i \(-0.789579\pi\)
0.926370 + 0.376616i \(0.122912\pi\)
\(212\) 7.10476 26.5153i 0.487957 1.82108i
\(213\) −3.49324 9.55261i −0.239353 0.654534i
\(214\) −13.0975 22.6856i −0.895330 1.55076i
\(215\) 0 0
\(216\) 2.11190 + 7.74102i 0.143696 + 0.526710i
\(217\) −1.24660 0.334025i −0.0846246 0.0226751i
\(218\) −7.92071 29.5605i −0.536458 2.00209i
\(219\) −4.21330 + 2.95969i −0.284708 + 0.199997i
\(220\) 0 0
\(221\) −6.84029 0.682079i −0.460128 0.0458816i
\(222\) 9.58384 + 26.2080i 0.643225 + 1.75896i
\(223\) −3.63175 13.5539i −0.243200 0.907635i −0.974280 0.225342i \(-0.927650\pi\)
0.731080 0.682292i \(-0.239017\pi\)
\(224\) −1.58474 + 2.74485i −0.105885 + 0.183398i
\(225\) 0 0
\(226\) 7.30621i 0.486002i
\(227\) −8.60297 2.30516i −0.570999 0.152999i −0.0382445 0.999268i \(-0.512177\pi\)
−0.532755 + 0.846270i \(0.678843\pi\)
\(228\) 10.8377 + 9.06600i 0.717744 + 0.600411i
\(229\) 13.9049 0.918865 0.459432 0.888213i \(-0.348053\pi\)
0.459432 + 0.888213i \(0.348053\pi\)
\(230\) 0 0
\(231\) −0.212995 0.303211i −0.0140140 0.0199498i
\(232\) 11.9275 3.19597i 0.783081 0.209826i
\(233\) 10.6874 10.6874i 0.700154 0.700154i −0.264289 0.964443i \(-0.585137\pi\)
0.964443 + 0.264289i \(0.0851374\pi\)
\(234\) −23.4067 + 1.83348i −1.53015 + 0.119859i
\(235\) 0 0
\(236\) 2.72840 4.72573i 0.177604 0.307619i
\(237\) 4.29312 24.5647i 0.278868 1.59565i
\(238\) −0.447639 + 1.67061i −0.0290161 + 0.108290i
\(239\) 2.14533i 0.138770i −0.997590 0.0693849i \(-0.977896\pi\)
0.997590 0.0693849i \(-0.0221036\pi\)
\(240\) 0 0
\(241\) 4.50245 2.59949i 0.290028 0.167448i −0.347926 0.937522i \(-0.613114\pi\)
0.637955 + 0.770074i \(0.279781\pi\)
\(242\) −16.4810 + 16.4810i −1.05944 + 1.05944i
\(243\) −10.1101 11.8653i −0.648563 0.761161i
\(244\) 25.3420 + 14.6312i 1.62236 + 0.936667i
\(245\) 0 0
\(246\) 12.0947 + 5.61757i 0.771127 + 0.358163i
\(247\) −8.39388 + 6.87167i −0.534090 + 0.437234i
\(248\) −3.37185 + 3.37185i −0.214113 + 0.214113i
\(249\) −8.66879 12.3405i −0.549362 0.782050i
\(250\) 0 0
\(251\) 3.01039 1.73805i 0.190014 0.109705i −0.401975 0.915651i \(-0.631676\pi\)
0.591989 + 0.805946i \(0.298343\pi\)
\(252\) −0.286045 + 3.38751i −0.0180191 + 0.213393i
\(253\) 2.87464 + 0.770259i 0.180727 + 0.0484257i
\(254\) −33.3128 + 19.2331i −2.09023 + 1.20679i
\(255\) 0 0
\(256\) 0.240005 + 0.415700i 0.0150003 + 0.0259813i
\(257\) 3.85254 1.03229i 0.240315 0.0643922i −0.136651 0.990619i \(-0.543634\pi\)
0.376966 + 0.926227i \(0.376967\pi\)
\(258\) −26.7987 4.68355i −1.66842 0.291585i
\(259\) 3.10209i 0.192755i
\(260\) 0 0
\(261\) −18.3303 + 15.4757i −1.13462 + 0.957924i
\(262\) −7.60834 + 2.03865i −0.470045 + 0.125948i
\(263\) −6.25119 23.3298i −0.385465 1.43857i −0.837433 0.546540i \(-0.815945\pi\)
0.451968 0.892034i \(-0.350722\pi\)
\(264\) −1.36373 + 0.121390i −0.0839318 + 0.00747103i
\(265\) 0 0
\(266\) 1.36466 + 2.36366i 0.0836727 + 0.144925i
\(267\) 16.1021 + 13.4698i 0.985434 + 0.824340i
\(268\) −18.5289 + 18.5289i −1.13183 + 1.13183i
\(269\) 12.4058 + 21.4875i 0.756397 + 1.31012i 0.944677 + 0.328003i \(0.106375\pi\)
−0.188280 + 0.982115i \(0.560291\pi\)
\(270\) 0 0
\(271\) 18.7408 + 10.8200i 1.13842 + 0.657270i 0.946040 0.324050i \(-0.105045\pi\)
0.192385 + 0.981320i \(0.438378\pi\)
\(272\) −2.79204 2.79204i −0.169292 0.169292i
\(273\) −2.51374 0.702215i −0.152138 0.0425000i
\(274\) 8.36970i 0.505632i
\(275\) 0 0
\(276\) −15.6946 22.3422i −0.944704 1.34484i
\(277\) −0.429778 0.115159i −0.0258228 0.00691921i 0.245885 0.969299i \(-0.420922\pi\)
−0.271707 + 0.962380i \(0.587588\pi\)
\(278\) 12.0959 + 12.0959i 0.725463 + 0.725463i
\(279\) 3.14213 8.71488i 0.188114 0.521746i
\(280\) 0 0
\(281\) −10.2114 −0.609162 −0.304581 0.952486i \(-0.598516\pi\)
−0.304581 + 0.952486i \(0.598516\pi\)
\(282\) 21.0149 + 17.5795i 1.25142 + 1.04684i
\(283\) −7.99290 + 2.14169i −0.475129 + 0.127310i −0.488433 0.872601i \(-0.662432\pi\)
0.0133048 + 0.999911i \(0.495765\pi\)
\(284\) −13.7893 7.96128i −0.818247 0.472415i
\(285\) 0 0
\(286\) 0.397499 3.98635i 0.0235046 0.235718i
\(287\) 1.04825 + 1.04825i 0.0618762 + 0.0618762i
\(288\) −18.6761 12.9931i −1.10050 0.765627i
\(289\) 11.5744 + 6.68251i 0.680850 + 0.393089i
\(290\) 0 0
\(291\) −11.8262 + 25.4618i −0.693262 + 1.49260i
\(292\) −2.08618 + 7.78573i −0.122084 + 0.455625i
\(293\) −4.58984 + 17.1295i −0.268141 + 1.00072i 0.692159 + 0.721745i \(0.256660\pi\)
−0.960300 + 0.278971i \(0.910007\pi\)
\(294\) 10.8093 23.2725i 0.630411 1.35728i
\(295\) 0 0
\(296\) 9.92628 + 5.73094i 0.576953 + 0.333104i
\(297\) 2.29744 1.34037i 0.133311 0.0777760i
\(298\) −8.46593 8.46593i −0.490418 0.490418i
\(299\) 19.1041 8.62808i 1.10482 0.498975i
\(300\) 0 0
\(301\) −2.61906 1.51212i −0.150960 0.0871569i
\(302\) 7.34652 1.96850i 0.422745 0.113274i
\(303\) 11.6087 + 9.71095i 0.666901 + 0.557879i
\(304\) −6.23102 −0.357374
\(305\) 0 0
\(306\) −11.6791 4.21089i −0.667651 0.240720i
\(307\) 18.0565 + 18.0565i 1.03054 + 1.03054i 0.999519 + 0.0310201i \(0.00987558\pi\)
0.0310201 + 0.999519i \(0.490124\pi\)
\(308\) −0.560302 0.150132i −0.0319262 0.00855459i
\(309\) −11.3211 16.1163i −0.644036 0.916824i
\(310\) 0 0
\(311\) 25.9620i 1.47217i −0.676890 0.736084i \(-0.736673\pi\)
0.676890 0.736084i \(-0.263327\pi\)
\(312\) −6.89098 + 6.74632i −0.390125 + 0.381935i
\(313\) −1.24977 1.24977i −0.0706415 0.0706415i 0.670903 0.741545i \(-0.265907\pi\)
−0.741545 + 0.670903i \(0.765907\pi\)
\(314\) −3.37793 1.95025i −0.190627 0.110059i
\(315\) 0 0
\(316\) −19.5187 33.8075i −1.09802 1.90182i
\(317\) −12.6999 + 12.6999i −0.713299 + 0.713299i −0.967224 0.253925i \(-0.918278\pi\)
0.253925 + 0.967224i \(0.418278\pi\)
\(318\) 29.1942 + 24.4217i 1.63713 + 1.36950i
\(319\) −2.04667 3.54493i −0.114591 0.198478i
\(320\) 0 0
\(321\) 20.8205 1.85330i 1.16209 0.103441i
\(322\) −1.36503 5.09435i −0.0760699 0.283897i
\(323\) −5.54076 + 1.48464i −0.308296 + 0.0826077i
\(324\) −24.0573 4.09202i −1.33652 0.227334i
\(325\) 0 0
\(326\) 16.9341i 0.937891i
\(327\) 24.0558 + 4.20417i 1.33029 + 0.232491i
\(328\) 5.29084 1.41768i 0.292138 0.0782780i
\(329\) 1.52286 + 2.63767i 0.0839581 + 0.145420i
\(330\) 0 0
\(331\) −7.74634 + 4.47235i −0.425777 + 0.245823i −0.697546 0.716540i \(-0.745725\pi\)
0.271769 + 0.962363i \(0.412391\pi\)
\(332\) −22.8040 6.11032i −1.25153 0.335347i
\(333\) −22.1885 1.87362i −1.21592 0.102674i
\(334\) −4.28676 + 2.47496i −0.234561 + 0.135424i
\(335\) 0 0
\(336\) −0.861744 1.22674i −0.0470120 0.0669244i
\(337\) −1.08661 + 1.08661i −0.0591915 + 0.0591915i −0.736083 0.676891i \(-0.763327\pi\)
0.676891 + 0.736083i \(0.263327\pi\)
\(338\) −15.6199 23.5000i −0.849613 1.27823i
\(339\) −5.28759 2.45591i −0.287183 0.133387i
\(340\) 0 0
\(341\) 1.36894 + 0.790359i 0.0741324 + 0.0428004i
\(342\) −17.7310 + 8.33348i −0.958781 + 0.450623i
\(343\) 4.08569 4.08569i 0.220606 0.220606i
\(344\) −9.67713 + 5.58709i −0.521756 + 0.301236i
\(345\) 0 0
\(346\) 49.1652i 2.64314i
\(347\) 9.20824 34.3656i 0.494324 1.84484i −0.0394575 0.999221i \(-0.512563\pi\)
0.533782 0.845622i \(-0.320770\pi\)
\(348\) −6.46528 + 36.9936i −0.346576 + 1.98306i
\(349\) 0.580105 1.00477i 0.0310523 0.0537841i −0.850082 0.526651i \(-0.823447\pi\)
0.881134 + 0.472867i \(0.156781\pi\)
\(350\) 0 0
\(351\) 6.54104 17.5560i 0.349135 0.937072i
\(352\) 2.74501 2.74501i 0.146310 0.146310i
\(353\) 30.3425 8.13026i 1.61497 0.432730i 0.665452 0.746440i \(-0.268239\pi\)
0.949519 + 0.313710i \(0.101572\pi\)
\(354\) 4.34916 + 6.19129i 0.231155 + 0.329063i
\(355\) 0 0
\(356\) 32.8636 1.74177
\(357\) −1.05857 0.885523i −0.0560256 0.0468668i
\(358\) 20.5412 + 5.50399i 1.08563 + 0.290895i
\(359\) 18.5415i 0.978582i 0.872120 + 0.489291i \(0.162744\pi\)
−0.872120 + 0.489291i \(0.837256\pi\)
\(360\) 0 0
\(361\) 4.97396 8.61515i 0.261787 0.453429i
\(362\) 0.846997 + 3.16104i 0.0445172 + 0.166140i
\(363\) −6.38756 17.4674i −0.335260 0.916802i
\(364\) −3.72362 + 1.68171i −0.195171 + 0.0881458i
\(365\) 0 0
\(366\) −33.2012 + 23.3226i −1.73545 + 1.21909i
\(367\) 1.58445 + 5.91325i 0.0827076 + 0.308669i 0.994870 0.101159i \(-0.0322552\pi\)
−0.912163 + 0.409828i \(0.865589\pi\)
\(368\) 11.6304 + 3.11634i 0.606274 + 0.162451i
\(369\) −8.13101 + 6.86475i −0.423284 + 0.357365i
\(370\) 0 0
\(371\) 2.11558 + 3.66429i 0.109835 + 0.190241i
\(372\) −4.98068 13.6202i −0.258236 0.706173i
\(373\) −6.72356 + 25.0927i −0.348133 + 1.29925i 0.540776 + 0.841167i \(0.318131\pi\)
−0.888909 + 0.458083i \(0.848536\pi\)
\(374\) 1.05919 1.83457i 0.0547694 0.0948634i
\(375\) 0 0
\(376\) 11.2536 0.580360
\(377\) −26.9716 10.1887i −1.38911 0.524746i
\(378\) −4.09284 2.33830i −0.210513 0.120269i
\(379\) −10.9047 + 18.8876i −0.560139 + 0.970189i 0.437345 + 0.899294i \(0.355919\pi\)
−0.997484 + 0.0708954i \(0.977414\pi\)
\(380\) 0 0
\(381\) −2.72148 30.5739i −0.139425 1.56635i
\(382\) 6.89790 + 6.89790i 0.352927 + 0.352927i
\(383\) 3.07967 11.4935i 0.157364 0.587290i −0.841527 0.540215i \(-0.818343\pi\)
0.998891 0.0470758i \(-0.0149902\pi\)
\(384\) −19.9645 + 1.77710i −1.01881 + 0.0906874i
\(385\) 0 0
\(386\) −29.7798 + 17.1934i −1.51575 + 0.875120i
\(387\) 12.3977 17.8202i 0.630210 0.905853i
\(388\) 11.3747 + 42.4510i 0.577463 + 2.15512i
\(389\) 18.6519 0.945690 0.472845 0.881146i \(-0.343227\pi\)
0.472845 + 0.881146i \(0.343227\pi\)
\(390\) 0 0
\(391\) 11.0845 0.560566
\(392\) −2.72788 10.1806i −0.137779 0.514198i
\(393\) 1.08208 6.19152i 0.0545836 0.312321i
\(394\) −23.1396 + 13.3597i −1.16576 + 0.673050i
\(395\) 0 0
\(396\) 1.41228 3.91703i 0.0709696 0.196838i
\(397\) 4.50246 16.8034i 0.225972 0.843340i −0.756041 0.654525i \(-0.772869\pi\)
0.982013 0.188815i \(-0.0604646\pi\)
\(398\) 34.5962 + 34.5962i 1.73415 + 1.73415i
\(399\) −2.16933 + 0.193099i −0.108602 + 0.00966703i
\(400\) 0 0
\(401\) −2.63268 + 4.55994i −0.131470 + 0.227712i −0.924243 0.381804i \(-0.875303\pi\)
0.792774 + 0.609516i \(0.208636\pi\)
\(402\) −12.4783 34.1232i −0.622361 1.70191i
\(403\) 10.9874 1.80036i 0.547324 0.0896824i
\(404\) 23.6927 1.17876
\(405\) 0 0
\(406\) −3.62704 + 6.28221i −0.180007 + 0.311781i
\(407\) 0.983383 3.67004i 0.0487445 0.181917i
\(408\) −4.78921 + 1.75134i −0.237101 + 0.0867041i
\(409\) −4.97625 8.61911i −0.246060 0.426188i 0.716369 0.697721i \(-0.245803\pi\)
−0.962429 + 0.271534i \(0.912469\pi\)
\(410\) 0 0
\(411\) −6.05725 2.81340i −0.298782 0.138775i
\(412\) −29.7812 7.97985i −1.46721 0.393139i
\(413\) 0.217691 + 0.812435i 0.0107119 + 0.0399773i
\(414\) 37.2631 6.68679i 1.83138 0.328638i
\(415\) 0 0
\(416\) 2.71311 27.2086i 0.133021 1.33401i
\(417\) −12.8199 + 4.68802i −0.627791 + 0.229573i
\(418\) −0.865213 3.22902i −0.0423189 0.157936i
\(419\) 8.67323 15.0225i 0.423715 0.733896i −0.572584 0.819846i \(-0.694059\pi\)
0.996299 + 0.0859496i \(0.0273924\pi\)
\(420\) 0 0
\(421\) 9.95497i 0.485175i −0.970129 0.242588i \(-0.922004\pi\)
0.970129 0.242588i \(-0.0779962\pi\)
\(422\) 8.34631 + 2.23639i 0.406292 + 0.108866i
\(423\) −19.7864 + 9.29955i −0.962050 + 0.452160i
\(424\) 15.6337 0.759238
\(425\) 0 0
\(426\) 18.0657 12.6905i 0.875288 0.614859i
\(427\) −4.35673 + 1.16738i −0.210837 + 0.0564936i
\(428\) 23.1380 23.1380i 1.11842 1.11842i
\(429\) 2.75136 + 1.62765i 0.132837 + 0.0785837i
\(430\) 0 0
\(431\) 6.30631 10.9229i 0.303764 0.526135i −0.673221 0.739441i \(-0.735090\pi\)
0.976985 + 0.213306i \(0.0684231\pi\)
\(432\) 9.29509 5.42291i 0.447210 0.260910i
\(433\) 5.85174 21.8390i 0.281217 1.04952i −0.670343 0.742052i \(-0.733853\pi\)
0.951560 0.307464i \(-0.0994804\pi\)
\(434\) 2.80129i 0.134466i
\(435\) 0 0
\(436\) 33.1070 19.1143i 1.58554 0.915411i
\(437\) 12.3687 12.3687i 0.591674 0.591674i
\(438\) −8.57233 7.17097i −0.409602 0.342642i
\(439\) −10.2958 5.94428i −0.491391 0.283705i 0.233760 0.972294i \(-0.424897\pi\)
−0.725152 + 0.688589i \(0.758230\pi\)
\(440\) 0 0
\(441\) 13.2091 + 15.6456i 0.629005 + 0.745030i
\(442\) −2.41273 14.7247i −0.114762 0.700382i
\(443\) −14.0199 + 14.0199i −0.666105 + 0.666105i −0.956812 0.290707i \(-0.906109\pi\)
0.290707 + 0.956812i \(0.406109\pi\)
\(444\) −28.5241 + 20.0372i −1.35370 + 0.950923i
\(445\) 0 0
\(446\) 26.3771 15.2288i 1.24899 0.721105i
\(447\) 8.97264 3.28115i 0.424391 0.155193i
\(448\) −4.97309 1.33254i −0.234956 0.0629564i
\(449\) 3.69387 2.13266i 0.174324 0.100646i −0.410299 0.911951i \(-0.634576\pi\)
0.584623 + 0.811305i \(0.301242\pi\)
\(450\) 0 0
\(451\) −0.907865 1.57247i −0.0427497 0.0740447i
\(452\) −8.81571 + 2.36216i −0.414656 + 0.111107i
\(453\) −1.04484 + 5.97846i −0.0490910 + 0.280893i
\(454\) 19.3322i 0.907304i
\(455\) 0 0
\(456\) −3.38982 + 7.29830i −0.158743 + 0.341774i
\(457\) −25.1569 + 6.74076i −1.17679 + 0.315320i −0.793652 0.608372i \(-0.791823\pi\)
−0.383137 + 0.923692i \(0.625156\pi\)
\(458\) 7.81163 + 29.1534i 0.365014 + 1.36225i
\(459\) 6.97330 7.03688i 0.325486 0.328453i
\(460\) 0 0
\(461\) −6.68465 11.5782i −0.311335 0.539249i 0.667316 0.744774i \(-0.267443\pi\)
−0.978652 + 0.205526i \(0.934110\pi\)
\(462\) 0.516061 0.616910i 0.0240093 0.0287012i
\(463\) 3.79477 3.79477i 0.176358 0.176358i −0.613408 0.789766i \(-0.710202\pi\)
0.789766 + 0.613408i \(0.210202\pi\)
\(464\) −8.28050 14.3422i −0.384412 0.665822i
\(465\) 0 0
\(466\) 28.4115 + 16.4034i 1.31614 + 0.759871i
\(467\) 15.8650 + 15.8650i 0.734143 + 0.734143i 0.971438 0.237294i \(-0.0762606\pi\)
−0.237294 + 0.971438i \(0.576261\pi\)
\(468\) −9.77990 27.6499i −0.452076 1.27812i
\(469\) 4.03897i 0.186502i
\(470\) 0 0
\(471\) 2.54688 1.78909i 0.117354 0.0824369i
\(472\) 3.00186 + 0.804345i 0.138172 + 0.0370230i
\(473\) 2.61922 + 2.61922i 0.120432 + 0.120432i
\(474\) 53.9147 4.79912i 2.47638 0.220431i
\(475\) 0 0
\(476\) −2.16050 −0.0990261
\(477\) −27.4876 + 12.9191i −1.25857 + 0.591524i
\(478\) 4.49794 1.20522i 0.205731 0.0551254i
\(479\) −17.3730 10.0303i −0.793793 0.458297i 0.0475029 0.998871i \(-0.484874\pi\)
−0.841296 + 0.540574i \(0.818207\pi\)
\(480\) 0 0
\(481\) −11.0154 24.3901i −0.502260 1.11209i
\(482\) 7.97957 + 7.97957i 0.363460 + 0.363460i
\(483\) 4.14568 + 0.724531i 0.188635 + 0.0329673i
\(484\) −25.2145 14.5576i −1.14611 0.661709i
\(485\) 0 0
\(486\) 19.1974 27.8628i 0.870810 1.26388i
\(487\) 7.39466 27.5972i 0.335084 1.25055i −0.568694 0.822549i \(-0.692551\pi\)
0.903778 0.428001i \(-0.140782\pi\)
\(488\) −4.31335 + 16.0976i −0.195256 + 0.728705i
\(489\) −12.2554 5.69223i −0.554208 0.257411i
\(490\) 0 0
\(491\) 25.1585 + 14.5253i 1.13539 + 0.655516i 0.945284 0.326248i \(-0.105785\pi\)
0.190103 + 0.981764i \(0.439118\pi\)
\(492\) −2.86788 + 16.4097i −0.129294 + 0.739806i
\(493\) −10.7805 10.7805i −0.485528 0.485528i
\(494\) −19.1229 13.7384i −0.860379 0.618118i
\(495\) 0 0
\(496\) 5.53852 + 3.19767i 0.248687 + 0.143580i
\(497\) 2.37063 0.635208i 0.106337 0.0284930i
\(498\) 21.0034 25.1079i 0.941186 1.12511i
\(499\) 20.0887 0.899294 0.449647 0.893206i \(-0.351550\pi\)
0.449647 + 0.893206i \(0.351550\pi\)
\(500\) 0 0
\(501\) −0.350205 3.93431i −0.0156460 0.175772i
\(502\) 5.33523 + 5.33523i 0.238123 + 0.238123i
\(503\) 9.17562 + 2.45860i 0.409121 + 0.109624i 0.457509 0.889205i \(-0.348742\pi\)
−0.0483882 + 0.998829i \(0.515408\pi\)
\(504\) −1.90567 + 0.341970i −0.0848855 + 0.0152325i
\(505\) 0 0
\(506\) 6.45976i 0.287171i
\(507\) 22.2577 3.40504i 0.988500 0.151223i
\(508\) −33.9771 33.9771i −1.50749 1.50749i
\(509\) 35.0026 + 20.2088i 1.55146 + 0.895738i 0.998023 + 0.0628499i \(0.0200189\pi\)
0.553441 + 0.832888i \(0.313314\pi\)
\(510\) 0 0
\(511\) −0.621201 1.07595i −0.0274803 0.0475973i
\(512\) 15.6287 15.6287i 0.690696 0.690696i
\(513\) −0.0709447 15.6333i −0.00313228 0.690229i
\(514\) 4.32863 + 7.49740i 0.190927 + 0.330696i
\(515\) 0 0
\(516\) −3.01307 33.8497i −0.132643 1.49015i
\(517\) −0.965514 3.60335i −0.0424632 0.158475i
\(518\) −6.50391 + 1.74272i −0.285766 + 0.0765707i
\(519\) −35.5815 16.5264i −1.56185 0.725430i
\(520\) 0 0
\(521\) 3.29710i 0.144448i 0.997388 + 0.0722242i \(0.0230097\pi\)
−0.997388 + 0.0722242i \(0.976990\pi\)
\(522\) −42.7445 29.7377i −1.87088 1.30158i
\(523\) 7.79663 2.08910i 0.340923 0.0913500i −0.0842956 0.996441i \(-0.526864\pi\)
0.425218 + 0.905091i \(0.360197\pi\)
\(524\) −4.91969 8.52115i −0.214918 0.372248i
\(525\) 0 0
\(526\) 45.4018 26.2127i 1.97961 1.14293i
\(527\) 5.68687 + 1.52379i 0.247724 + 0.0663774i
\(528\) 0.630630 + 1.72452i 0.0274446 + 0.0750501i
\(529\) −9.35384 + 5.40044i −0.406689 + 0.234802i
\(530\) 0 0
\(531\) −5.94264 + 1.06640i −0.257889 + 0.0462776i
\(532\) −2.41080 + 2.41080i −0.104521 + 0.104521i
\(533\) −11.9641 4.51953i −0.518224 0.195763i
\(534\) −19.1952 + 41.3272i −0.830655 + 1.78840i
\(535\) 0 0
\(536\) −12.9242 7.46177i −0.558239 0.322299i
\(537\) −10.8880 + 13.0158i −0.469853 + 0.561672i
\(538\) −38.0818 + 38.0818i −1.64182 + 1.64182i
\(539\) −3.02573 + 1.74691i −0.130328 + 0.0752447i
\(540\) 0 0
\(541\) 20.9027i 0.898677i 0.893362 + 0.449338i \(0.148340\pi\)
−0.893362 + 0.449338i \(0.851660\pi\)
\(542\) −12.1571 + 45.3710i −0.522193 + 1.94885i
\(543\) −2.57239 0.449571i −0.110392 0.0192929i
\(544\) 7.22944 12.5218i 0.309960 0.536866i
\(545\) 0 0
\(546\) 0.0600909 5.66485i 0.00257165 0.242433i
\(547\) 4.29605 4.29605i 0.183686 0.183686i −0.609274 0.792960i \(-0.708539\pi\)
0.792960 + 0.609274i \(0.208539\pi\)
\(548\) −10.0989 + 2.70600i −0.431404 + 0.115594i
\(549\) −5.71861 31.8678i −0.244064 1.36008i
\(550\) 0 0
\(551\) −24.0589 −1.02494
\(552\) 9.97731 11.9271i 0.424663 0.507651i
\(553\) 5.81209 + 1.55735i 0.247155 + 0.0662251i
\(554\) 0.965776i 0.0410319i
\(555\) 0 0
\(556\) −10.6843 + 18.5057i −0.453113 + 0.784815i
\(557\) 5.01972 + 18.7339i 0.212692 + 0.793779i 0.986966 + 0.160928i \(0.0514487\pi\)
−0.774274 + 0.632851i \(0.781885\pi\)
\(558\) 20.0370 + 1.69194i 0.848234 + 0.0716257i
\(559\) 25.9617 + 2.58877i 1.09806 + 0.109493i
\(560\) 0 0
\(561\) 0.971664 + 1.38322i 0.0410237 + 0.0583997i
\(562\) −5.73665 21.4095i −0.241986 0.903104i
\(563\) −40.0016 10.7184i −1.68587 0.451727i −0.716550 0.697536i \(-0.754280\pi\)
−0.969318 + 0.245809i \(0.920946\pi\)
\(564\) −14.4172 + 31.0403i −0.607074 + 1.30703i
\(565\) 0 0
\(566\) −8.98063 15.5549i −0.377484 0.653822i
\(567\) 3.06803 2.17604i 0.128845 0.0913851i
\(568\) 2.34702 8.75920i 0.0984788 0.367528i
\(569\) 8.79437 15.2323i 0.368679 0.638571i −0.620680 0.784064i \(-0.713143\pi\)
0.989359 + 0.145493i \(0.0464767\pi\)
\(570\) 0 0
\(571\) −28.6479 −1.19888 −0.599439 0.800420i \(-0.704610\pi\)
−0.599439 + 0.800420i \(0.704610\pi\)
\(572\) 4.93847 0.809199i 0.206488 0.0338343i
\(573\) −7.31076 + 2.67343i −0.305411 + 0.111684i
\(574\) −1.60889 + 2.78668i −0.0671537 + 0.116314i
\(575\) 0 0
\(576\) 12.5350 34.7665i 0.522292 1.44861i
\(577\) −7.73617 7.73617i −0.322061 0.322061i 0.527496 0.849557i \(-0.323131\pi\)
−0.849557 + 0.527496i \(0.823131\pi\)
\(578\) −7.50830 + 28.0214i −0.312304 + 1.16554i
\(579\) −2.43285 27.3314i −0.101106 1.13585i
\(580\) 0 0
\(581\) 3.15141 1.81947i 0.130743 0.0754842i
\(582\) −60.0275 10.4909i −2.48822 0.434860i
\(583\) −1.34131 5.00582i −0.0555512 0.207320i
\(584\) −4.59053 −0.189958
\(585\) 0 0
\(586\) −38.4926 −1.59011
\(587\) 7.40419 + 27.6328i 0.305604 + 1.14053i 0.932425 + 0.361365i \(0.117689\pi\)
−0.626821 + 0.779163i \(0.715644\pi\)
\(588\) 31.5754 + 5.51836i 1.30215 + 0.227573i
\(589\) 8.04606 4.64539i 0.331532 0.191410i
\(590\) 0 0
\(591\) −1.89039 21.2372i −0.0777601 0.873580i
\(592\) 3.97861 14.8484i 0.163520 0.610265i
\(593\) −0.767325 0.767325i −0.0315103 0.0315103i 0.691176 0.722686i \(-0.257093\pi\)
−0.722686 + 0.691176i \(0.757093\pi\)
\(594\) 4.10092 + 4.06387i 0.168263 + 0.166742i
\(595\) 0 0
\(596\) 7.47792 12.9521i 0.306308 0.530540i
\(597\) −36.6669 + 13.4085i −1.50068 + 0.548773i
\(598\) 28.8223 + 35.2070i 1.17863 + 1.43972i
\(599\) −28.3284 −1.15747 −0.578734 0.815516i \(-0.696453\pi\)
−0.578734 + 0.815516i \(0.696453\pi\)
\(600\) 0 0
\(601\) 8.57196 14.8471i 0.349658 0.605625i −0.636531 0.771251i \(-0.719631\pi\)
0.986189 + 0.165626i \(0.0529646\pi\)
\(602\) 1.69898 6.34067i 0.0692451 0.258426i
\(603\) 28.8898 + 2.43948i 1.17648 + 0.0993435i
\(604\) 4.75039 + 8.22792i 0.193291 + 0.334789i
\(605\) 0 0
\(606\) −13.8386 + 29.7945i −0.562153 + 1.21032i
\(607\) 7.65942 + 2.05233i 0.310886 + 0.0833017i 0.410889 0.911685i \(-0.365218\pi\)
−0.100003 + 0.994987i \(0.531885\pi\)
\(608\) −5.90546 22.0395i −0.239498 0.893819i
\(609\) −3.32732 4.73664i −0.134830 0.191938i
\(610\) 0 0
\(611\) −21.3397 15.3310i −0.863313 0.620226i
\(612\) 1.30491 15.4535i 0.0527479 0.624671i
\(613\) 9.80387 + 36.5885i 0.395975 + 1.47780i 0.820114 + 0.572200i \(0.193910\pi\)
−0.424139 + 0.905597i \(0.639423\pi\)
\(614\) −27.7137 + 48.0016i −1.11843 + 1.93719i
\(615\) 0 0
\(616\) 0.330359i 0.0133105i
\(617\) 2.01292 + 0.539359i 0.0810369 + 0.0217138i 0.299110 0.954219i \(-0.403310\pi\)
−0.218073 + 0.975933i \(0.569977\pi\)
\(618\) 27.4297 32.7900i 1.10338 1.31901i
\(619\) 30.7890 1.23751 0.618757 0.785583i \(-0.287637\pi\)
0.618757 + 0.785583i \(0.287637\pi\)
\(620\) 0 0
\(621\) −7.68634 + 29.2155i −0.308442 + 1.17238i
\(622\) 54.4324 14.5851i 2.18254 0.584810i
\(623\) −3.58185 + 3.58185i −0.143504 + 0.143504i
\(624\) 11.1315 + 6.58521i 0.445619 + 0.263620i
\(625\) 0 0
\(626\) 1.91820 3.32241i 0.0766665 0.132790i
\(627\) 2.62771 + 0.459239i 0.104941 + 0.0183403i
\(628\) 1.26106 4.70636i 0.0503219 0.187804i
\(629\) 14.1515i 0.564256i
\(630\) 0 0
\(631\) −25.0094 + 14.4392i −0.995608 + 0.574815i −0.906946 0.421247i \(-0.861593\pi\)
−0.0886624 + 0.996062i \(0.528259\pi\)
\(632\) 15.7208 15.7208i 0.625340 0.625340i
\(633\) −4.42403 + 5.28858i −0.175840 + 0.210202i
\(634\) −33.7616 19.4923i −1.34084 0.774137i
\(635\) 0 0
\(636\) −20.0286 + 43.1216i −0.794185 + 1.70988i
\(637\) −8.69645 + 23.0213i −0.344566 + 0.912136i
\(638\) 6.28259 6.28259i 0.248730 0.248730i
\(639\) 3.11167 + 17.3402i 0.123096 + 0.685968i
\(640\) 0 0
\(641\) −36.8548 + 21.2782i −1.45568 + 0.840437i −0.998794 0.0490894i \(-0.984368\pi\)
−0.456885 + 0.889526i \(0.651035\pi\)
\(642\) 15.5824 + 42.6115i 0.614986 + 1.68174i
\(643\) −41.1282 11.0203i −1.62194 0.434597i −0.670368 0.742029i \(-0.733864\pi\)
−0.951570 + 0.307432i \(0.900530\pi\)
\(644\) 5.70554 3.29409i 0.224830 0.129806i
\(645\) 0 0
\(646\) −6.22546 10.7828i −0.244938 0.424244i
\(647\) 2.11488 0.566681i 0.0831446 0.0222785i −0.217007 0.976170i \(-0.569629\pi\)
0.300152 + 0.953892i \(0.402963\pi\)
\(648\) −1.29503 13.8374i −0.0508735 0.543584i
\(649\) 1.03019i 0.0404385i
\(650\) 0 0
\(651\) 2.02733 + 0.941629i 0.0794574 + 0.0369054i
\(652\) −20.4327 + 5.47493i −0.800207 + 0.214415i
\(653\) 5.38119 + 20.0829i 0.210582 + 0.785904i 0.987675 + 0.156518i \(0.0500268\pi\)
−0.777093 + 0.629386i \(0.783306\pi\)
\(654\) 4.69969 + 52.7977i 0.183772 + 2.06455i
\(655\) 0 0
\(656\) −3.67308 6.36196i −0.143410 0.248393i
\(657\) 8.07123 3.79345i 0.314889 0.147996i
\(658\) −4.67468 + 4.67468i −0.182238 + 0.182238i
\(659\) 6.20566 + 10.7485i 0.241738 + 0.418703i 0.961210 0.275819i \(-0.0889491\pi\)
−0.719471 + 0.694522i \(0.755616\pi\)
\(660\) 0 0
\(661\) 6.32611 + 3.65238i 0.246057 + 0.142061i 0.617957 0.786212i \(-0.287960\pi\)
−0.371900 + 0.928273i \(0.621294\pi\)
\(662\) −13.7286 13.7286i −0.533578 0.533578i
\(663\) 11.4674 + 3.20344i 0.445359 + 0.124411i
\(664\) 13.4454i 0.521785i
\(665\) 0 0
\(666\) −8.53698 47.5736i −0.330801 1.84344i
\(667\) 44.9065 + 12.0327i 1.73879 + 0.465906i
\(668\) −4.37225 4.37225i −0.169167 0.169167i
\(669\) 2.15487 + 24.2084i 0.0833120 + 0.935952i
\(670\) 0 0
\(671\) 5.52445 0.213269
\(672\) 3.52234 4.21069i 0.135877 0.162431i
\(673\) −1.42986 + 0.383129i −0.0551169 + 0.0147685i −0.286272 0.958148i \(-0.592416\pi\)
0.231155 + 0.972917i \(0.425749\pi\)
\(674\) −2.88866 1.66777i −0.111267 0.0642400i
\(675\) 0 0
\(676\) 23.3051 26.4448i 0.896351 1.01711i
\(677\) −13.3487 13.3487i −0.513033 0.513033i 0.402421 0.915455i \(-0.368169\pi\)
−0.915455 + 0.402421i \(0.868169\pi\)
\(678\) 2.17862 12.4658i 0.0836693 0.478746i
\(679\) −5.86653 3.38704i −0.225137 0.129983i
\(680\) 0 0
\(681\) 13.9909 + 6.49834i 0.536134 + 0.249017i
\(682\) −0.888028 + 3.31417i −0.0340044 + 0.126906i
\(683\) −2.86868 + 10.7061i −0.109767 + 0.409656i −0.998842 0.0481050i \(-0.984682\pi\)
0.889075 + 0.457761i \(0.151348\pi\)
\(684\) −15.7878 18.7000i −0.603662 0.715012i
\(685\) 0 0
\(686\) 10.8614 + 6.27085i 0.414691 + 0.239422i
\(687\) −23.7245 4.14627i −0.905145 0.158190i
\(688\) 10.5969 + 10.5969i 0.404005 + 0.404005i
\(689\) −29.6454 21.2980i −1.12940 0.811391i
\(690\) 0 0
\(691\) 7.29352 + 4.21092i 0.277459 + 0.160191i 0.632272 0.774746i \(-0.282122\pi\)
−0.354814 + 0.934937i \(0.615456\pi\)
\(692\) −59.3230 + 15.8956i −2.25512 + 0.604258i
\(693\) 0.272996 + 0.580848i 0.0103703 + 0.0220646i
\(694\) 77.2248 2.93141
\(695\) 0 0
\(696\) −21.3036 + 1.89630i −0.807512 + 0.0718792i
\(697\) −4.78202 4.78202i −0.181132 0.181132i
\(698\) 2.43252 + 0.651792i 0.0920722 + 0.0246707i
\(699\) −21.4216 + 15.0479i −0.810238 + 0.569163i
\(700\) 0 0
\(701\) 9.61731i 0.363241i 0.983369 + 0.181620i \(0.0581342\pi\)
−0.983369 + 0.181620i \(0.941866\pi\)
\(702\) 40.4831 + 3.85131i 1.52793 + 0.145358i
\(703\) −15.7910 15.7910i −0.595569 0.595569i
\(704\) 5.46116 + 3.15300i 0.205825 + 0.118833i
\(705\) 0 0
\(706\) 34.0922 + 59.0493i 1.28308 + 2.22235i
\(707\) −2.58230 + 2.58230i −0.0971174 + 0.0971174i
\(708\) −6.06432 + 7.24942i −0.227911 + 0.272450i
\(709\) −15.7072 27.2057i −0.589896 1.02173i −0.994246 0.107125i \(-0.965835\pi\)
0.404349 0.914605i \(-0.367498\pi\)
\(710\) 0 0
\(711\) −14.6498 + 40.6319i −0.549409 + 1.52382i
\(712\) 4.84417 + 18.0787i 0.181543 + 0.677528i
\(713\) −17.3415 + 4.64664i −0.649443 + 0.174018i
\(714\) 1.26191 2.71690i 0.0472259 0.101677i
\(715\) 0 0
\(716\) 26.5646i 0.992764i
\(717\) −0.639709 + 3.66034i −0.0238904 + 0.136698i
\(718\) −38.8745 + 10.4164i −1.45078 + 0.388736i
\(719\) 6.02748 + 10.4399i 0.224787 + 0.389342i 0.956256 0.292533i \(-0.0944980\pi\)
−0.731469 + 0.681875i \(0.761165\pi\)
\(720\) 0 0
\(721\) 4.11563 2.37616i 0.153274 0.0884927i
\(722\) 20.8570 + 5.58862i 0.776218 + 0.207987i
\(723\) −8.45717 + 3.09265i −0.314526 + 0.115017i
\(724\) −3.54028 + 2.04398i −0.131573 + 0.0759640i
\(725\) 0 0
\(726\) 33.0341 23.2053i 1.22601 0.861229i
\(727\) 1.96600 1.96600i 0.0729151 0.0729151i −0.669709 0.742624i \(-0.733581\pi\)
0.742624 + 0.669709i \(0.233581\pi\)
\(728\) −1.47400 1.80052i −0.0546301 0.0667317i
\(729\) 13.7117 + 23.2592i 0.507839 + 0.861452i
\(730\) 0 0
\(731\) 11.9479 + 6.89814i 0.441910 + 0.255137i
\(732\) −38.8754 32.5203i −1.43688 1.20198i
\(733\) −29.6853 + 29.6853i −1.09645 + 1.09645i −0.101628 + 0.994822i \(0.532405\pi\)
−0.994822 + 0.101628i \(0.967595\pi\)
\(734\) −11.5077 + 6.64398i −0.424757 + 0.245234i
\(735\) 0 0
\(736\) 44.0907i 1.62521i
\(737\) −1.28038 + 4.77844i −0.0471634 + 0.176016i
\(738\) −18.9607 13.1911i −0.697953 0.485572i
\(739\) −16.6414 + 28.8238i −0.612164 + 1.06030i 0.378711 + 0.925515i \(0.376367\pi\)
−0.990875 + 0.134784i \(0.956966\pi\)
\(740\) 0 0
\(741\) 16.3706 9.22144i 0.601389 0.338758i
\(742\) −6.49413 + 6.49413i −0.238407 + 0.238407i
\(743\) 0.966155 0.258881i 0.0354448 0.00949741i −0.241053 0.970512i \(-0.577493\pi\)
0.276498 + 0.961015i \(0.410826\pi\)
\(744\) 6.75847 4.74758i 0.247777 0.174055i
\(745\) 0 0
\(746\) −56.3871 −2.06448
\(747\) 11.1108 + 23.6402i 0.406524 + 0.864951i
\(748\) 2.55605 + 0.684891i 0.0934584 + 0.0250421i
\(749\) 5.04369i 0.184292i
\(750\) 0 0
\(751\) −8.71518 + 15.0951i −0.318022 + 0.550829i −0.980075 0.198627i \(-0.936352\pi\)
0.662054 + 0.749456i \(0.269685\pi\)
\(752\) −3.90632 14.5786i −0.142449 0.531626i
\(753\) −5.65456 + 2.06778i −0.206063 + 0.0753542i
\(754\) 6.20956 62.2731i 0.226139 2.26785i
\(755\) 0 0
\(756\) 1.49816 5.69444i 0.0544874 0.207105i
\(757\) 4.20419 + 15.6903i 0.152804 + 0.570272i 0.999283 + 0.0378509i \(0.0120512\pi\)
−0.846479 + 0.532422i \(0.821282\pi\)
\(758\) −45.7262 12.2523i −1.66085 0.445024i
\(759\) −4.67501 2.17139i −0.169692 0.0788164i
\(760\) 0 0
\(761\) 7.90134 + 13.6855i 0.286423 + 0.496100i 0.972953 0.231002i \(-0.0742003\pi\)
−0.686530 + 0.727101i \(0.740867\pi\)
\(762\) 62.5730 22.8819i 2.26678 0.828925i
\(763\) −1.52508 + 5.69167i −0.0552116 + 0.206052i
\(764\) −6.09289 + 10.5532i −0.220433 + 0.381801i
\(765\) 0 0
\(766\) 25.8276 0.933190
\(767\) −4.59652 5.61473i −0.165971 0.202736i
\(768\) −0.285537 0.780830i −0.0103034 0.0281758i
\(769\) −8.96855 + 15.5340i −0.323414 + 0.560170i −0.981190 0.193044i \(-0.938164\pi\)
0.657776 + 0.753214i \(0.271497\pi\)
\(770\) 0 0
\(771\) −6.88099 + 0.612498i −0.247813 + 0.0220586i
\(772\) −30.3737 30.3737i −1.09317 1.09317i
\(773\) −4.22347 + 15.7622i −0.151908 + 0.566927i 0.847443 + 0.530887i \(0.178141\pi\)
−0.999350 + 0.0360399i \(0.988526\pi\)
\(774\) 44.3271 + 15.9821i 1.59331 + 0.574463i
\(775\) 0 0
\(776\) −21.6762 + 12.5147i −0.778129 + 0.449253i
\(777\) 0.925004 5.29276i 0.0331843 0.189877i
\(778\) 10.4784 + 39.1060i 0.375670 + 1.40202i
\(779\) −10.6721 −0.382367
\(780\) 0 0
\(781\) −3.00602 −0.107564
\(782\) 6.22713 + 23.2400i 0.222682 + 0.831059i
\(783\) 35.8897 20.9387i 1.28259 0.748287i
\(784\) −12.2416 + 7.06771i −0.437201 + 0.252418i
\(785\) 0 0
\(786\) 13.5892 1.20961i 0.484710 0.0431455i
\(787\) 2.04854 7.64525i 0.0730225 0.272524i −0.919755 0.392493i \(-0.871613\pi\)
0.992778 + 0.119969i \(0.0382795\pi\)
\(788\) −23.6011 23.6011i −0.840754 0.840754i
\(789\) 3.70909 + 41.6690i 0.132047 + 1.48346i
\(790\) 0 0
\(791\) 0.703381 1.21829i 0.0250093 0.0433174i
\(792\) 2.36298 + 0.199532i 0.0839648 + 0.00709007i
\(793\) 30.1093 24.6491i 1.06921 0.875315i
\(794\) 37.7598 1.34005
\(795\) 0 0
\(796\) −30.5587 + 52.9292i −1.08312 + 1.87603i
\(797\) 1.67742 6.26020i 0.0594171 0.221748i −0.929833 0.367982i \(-0.880049\pi\)
0.989250 + 0.146234i \(0.0467154\pi\)
\(798\) −1.62356 4.43978i −0.0574733 0.157167i
\(799\) −6.94716 12.0328i −0.245773 0.425691i
\(800\) 0 0
\(801\) −23.4568 27.7835i −0.828804 0.981683i
\(802\) −11.0395 2.95802i −0.389817 0.104451i
\(803\) 0.393850 + 1.46987i 0.0138986 + 0.0518705i
\(804\) 37.1388 26.0887i 1.30979 0.920078i
\(805\) 0 0
\(806\) 9.94729 + 22.0251i 0.350378 + 0.775801i
\(807\) −14.7594 40.3611i −0.519556 1.42078i
\(808\) 3.49236 + 13.0337i 0.122861 + 0.458523i
\(809\) −7.98528 + 13.8309i −0.280748 + 0.486269i −0.971569 0.236756i \(-0.923916\pi\)
0.690821 + 0.723025i \(0.257249\pi\)
\(810\) 0 0
\(811\) 8.00665i 0.281151i −0.990070 0.140576i \(-0.955105\pi\)
0.990070 0.140576i \(-0.0448953\pi\)
\(812\) −8.75280 2.34531i −0.307163 0.0823041i
\(813\) −28.7490 24.0493i −1.00827 0.843445i
\(814\) 8.24713 0.289062
\(815\) 0 0
\(816\) 3.93120 + 5.59630i 0.137619 + 0.195910i
\(817\) 21.0295 5.63483i 0.735728 0.197138i
\(818\) 15.2754 15.2754i 0.534092 0.534092i
\(819\) 4.07952 + 1.94768i 0.142550 + 0.0680573i
\(820\) 0 0
\(821\) −25.1045 + 43.4822i −0.876152 + 1.51754i −0.0206220 + 0.999787i \(0.506565\pi\)
−0.855530 + 0.517753i \(0.826769\pi\)
\(822\) 2.49573 14.2803i 0.0870487 0.498082i
\(823\) 12.6315 47.1413i 0.440306 1.64324i −0.287735 0.957710i \(-0.592902\pi\)
0.728041 0.685534i \(-0.240431\pi\)
\(824\) 17.5593i 0.611706i
\(825\) 0 0
\(826\) −1.58107 + 0.912833i −0.0550126 + 0.0317615i
\(827\) −30.0940 + 30.0940i −1.04647 + 1.04647i −0.0476050 + 0.998866i \(0.515159\pi\)
−0.998866 + 0.0476050i \(0.984841\pi\)
\(828\) 20.1158 + 42.8000i 0.699073 + 1.48740i
\(829\) −9.32181 5.38195i −0.323760 0.186923i 0.329307 0.944223i \(-0.393185\pi\)
−0.653067 + 0.757300i \(0.726518\pi\)
\(830\) 0 0
\(831\) 0.698944 + 0.324637i 0.0242461 + 0.0112615i
\(832\) 43.8325 7.18224i 1.51962 0.248999i
\(833\) −9.20153 + 9.20153i −0.318814 + 0.318814i
\(834\) −17.0310 24.2447i −0.589737 0.839526i
\(835\) 0 0
\(836\) 3.61642 2.08794i 0.125076 0.0722129i
\(837\) −7.95974 + 13.9323i −0.275129 + 0.481571i
\(838\) 36.3690 + 9.74504i 1.25635 + 0.336637i
\(839\) −24.9640 + 14.4130i −0.861854 + 0.497592i −0.864633 0.502405i \(-0.832449\pi\)
0.00277877 + 0.999996i \(0.499115\pi\)
\(840\) 0 0
\(841\) −17.4722 30.2628i −0.602490 1.04354i
\(842\) 20.8718 5.59258i 0.719289 0.192733i
\(843\) 17.4226 + 3.04491i 0.600067 + 0.104872i
\(844\) 10.7937i 0.371536i
\(845\) 0 0
\(846\) −30.6134 36.2603i −1.05251 1.24666i
\(847\) 4.33481 1.16151i 0.148946 0.0399099i
\(848\) −5.42671 20.2528i −0.186354 0.695482i
\(849\) 14.2760 1.27075i 0.489952 0.0436122i
\(850\) 0 0
\(851\) 21.5767 + 37.3719i 0.739639 + 1.28109i
\(852\) 21.1533 + 17.6953i 0.724700 + 0.606230i
\(853\) 18.6086 18.6086i 0.637146 0.637146i −0.312704 0.949851i \(-0.601235\pi\)
0.949851 + 0.312704i \(0.101235\pi\)
\(854\) −4.89512 8.47859i −0.167507 0.290131i
\(855\) 0 0
\(856\) 16.1391 + 9.31793i 0.551624 + 0.318480i
\(857\) 4.26135 + 4.26135i 0.145565 + 0.145565i 0.776134 0.630569i \(-0.217178\pi\)
−0.630569 + 0.776134i \(0.717178\pi\)
\(858\) −1.86689 + 6.68294i −0.0637345 + 0.228152i
\(859\) 29.4002i 1.00312i −0.865122 0.501561i \(-0.832759\pi\)
0.865122 0.501561i \(-0.167241\pi\)
\(860\) 0 0
\(861\) −1.47594 2.10109i −0.0502999 0.0716049i
\(862\) 26.4439 + 7.08562i 0.900683 + 0.241337i
\(863\) −23.1832 23.1832i −0.789164 0.789164i 0.192193 0.981357i \(-0.438440\pi\)
−0.981357 + 0.192193i \(0.938440\pi\)
\(864\) 27.9906 + 27.7377i 0.952260 + 0.943656i
\(865\) 0 0
\(866\) 49.0756 1.66766
\(867\) −17.7556 14.8530i −0.603011 0.504433i
\(868\) 3.38006 0.905684i 0.114727 0.0307409i
\(869\) −6.38250 3.68494i −0.216512 0.125003i
\(870\) 0 0
\(871\) 14.3422 + 31.7563i 0.485968 + 1.07602i
\(872\) 15.3951 + 15.3951i 0.521343 + 0.521343i
\(873\) 27.7700 39.9162i 0.939874 1.35096i
\(874\) 32.8810 + 18.9839i 1.11222 + 0.642139i
\(875\) 0 0
\(876\) 5.88102 12.6619i 0.198701 0.427805i
\(877\) −11.6836 + 43.6039i −0.394529 + 1.47240i 0.428053 + 0.903754i \(0.359200\pi\)
−0.822582 + 0.568647i \(0.807467\pi\)
\(878\) 6.67885 24.9258i 0.225400 0.841205i
\(879\) 12.9389 27.8576i 0.436419 0.939612i
\(880\) 0 0
\(881\) −12.6778 7.31952i −0.427125 0.246601i 0.270996 0.962580i \(-0.412647\pi\)
−0.698121 + 0.715980i \(0.745980\pi\)
\(882\) −25.3823 + 36.4840i −0.854665 + 1.22848i
\(883\) −8.31854 8.31854i −0.279941 0.279941i 0.553144 0.833086i \(-0.313428\pi\)
−0.833086 + 0.553144i \(0.813428\pi\)
\(884\) 16.9868 7.67183i 0.571329 0.258032i
\(885\) 0 0
\(886\) −37.2706 21.5182i −1.25213 0.722917i
\(887\) 51.2751 13.7391i 1.72165 0.461314i 0.743416 0.668829i \(-0.233204\pi\)
0.978232 + 0.207515i \(0.0665375\pi\)
\(888\) −15.2272 12.7380i −0.510992 0.427458i
\(889\) 7.40642 0.248403
\(890\) 0 0
\(891\) −4.31956 + 1.60185i −0.144711 + 0.0536641i
\(892\) 26.9031 + 26.9031i 0.900782 + 0.900782i
\(893\) −21.1789 5.67488i −0.708726 0.189903i
\(894\) 11.9201 + 16.9689i 0.398666 + 0.567525i
\(895\) 0 0
\(896\) 4.83633i 0.161571i
\(897\) −35.1681 + 9.02455i −1.17423 + 0.301321i
\(898\) 6.54654 + 6.54654i 0.218461 + 0.218461i
\(899\) 21.3850 + 12.3467i 0.713231 + 0.411784i
\(900\) 0 0
\(901\) −9.65110 16.7162i −0.321525 0.556897i
\(902\) 2.78684 2.78684i 0.0927918 0.0927918i
\(903\) 4.01772 + 3.36093i 0.133701 + 0.111845i
\(904\) −2.59891 4.50145i −0.0864385 0.149716i
\(905\) 0 0
\(906\) −13.1215 + 1.16799i −0.435934 + 0.0388039i
\(907\) 4.37099 + 16.3128i 0.145136 + 0.541657i 0.999749 + 0.0223908i \(0.00712782\pi\)
−0.854613 + 0.519266i \(0.826206\pi\)
\(908\) 23.3263 6.25027i 0.774111 0.207422i
\(909\) −16.9109 20.0303i −0.560900 0.664362i
\(910\) 0 0
\(911\) 52.3968i 1.73598i −0.496579 0.867992i \(-0.665411\pi\)
0.496579 0.867992i \(-0.334589\pi\)
\(912\) 10.6313 + 1.85801i 0.352038 + 0.0615248i
\(913\) −4.30517 + 1.15357i −0.142480 + 0.0381775i
\(914\) −28.2656 48.9575i −0.934945 1.61937i
\(915\) 0 0
\(916\) −32.6511 + 18.8511i −1.07882 + 0.622858i
\(917\) 1.46493 + 0.392528i 0.0483764 + 0.0129624i
\(918\) 18.6712 + 10.6671i 0.616241 + 0.352068i
\(919\) −12.0636 + 6.96489i −0.397940 + 0.229751i −0.685595 0.727983i \(-0.740458\pi\)
0.287655 + 0.957734i \(0.407124\pi\)
\(920\) 0 0
\(921\) −25.4236 36.1920i −0.837736 1.19257i
\(922\) 20.5197 20.5197i 0.675779 0.675779i
\(923\) −16.3834 + 13.4123i −0.539266 + 0.441472i
\(924\) 0.911214 + 0.423229i 0.0299767 + 0.0139232i
\(925\) 0 0
\(926\) 10.0880 + 5.82433i 0.331514 + 0.191400i
\(927\) 14.5103 + 30.8733i 0.476581 + 1.01401i
\(928\) 42.8815 42.8815i 1.40765 1.40765i
\(929\) −0.125289 + 0.0723356i −0.00411060 + 0.00237325i −0.502054 0.864836i \(-0.667422\pi\)
0.497943 + 0.867210i \(0.334089\pi\)
\(930\) 0 0
\(931\) 20.5352i 0.673013i
\(932\) −10.6067 + 39.5848i −0.347434 + 1.29664i
\(933\) −7.74152 + 44.2961i −0.253446 + 1.45019i
\(934\) −24.3501 + 42.1756i −0.796759 + 1.38003i
\(935\) 0 0
\(936\) 13.7690 9.45570i 0.450053 0.309069i
\(937\) −35.9634 + 35.9634i −1.17487 + 1.17487i −0.193841 + 0.981033i \(0.562095\pi\)
−0.981033 + 0.193841i \(0.937905\pi\)
\(938\) 8.46819 2.26904i 0.276496 0.0740869i
\(939\) 1.75969 + 2.50502i 0.0574252 + 0.0817482i
\(940\) 0 0
\(941\) 28.4119 0.926201 0.463101 0.886306i \(-0.346737\pi\)
0.463101 + 0.886306i \(0.346737\pi\)
\(942\) 5.18185 + 4.33474i 0.168834 + 0.141234i
\(943\) 19.9197 + 5.33747i 0.648675 + 0.173812i
\(944\) 4.16798i 0.135656i
\(945\) 0 0
\(946\) −4.02006 + 6.96295i −0.130704 + 0.226385i
\(947\) −13.2241 49.3529i −0.429725 1.60375i −0.753384 0.657581i \(-0.771580\pi\)
0.323659 0.946174i \(-0.395087\pi\)
\(948\) 23.2217 + 63.5022i 0.754207 + 2.06246i
\(949\) 8.70484 + 6.25377i 0.282571 + 0.203006i
\(950\) 0 0
\(951\) 25.4554 17.8815i 0.825449 0.579849i
\(952\) −0.318462 1.18852i −0.0103214 0.0385200i
\(953\) 12.7834 + 3.42531i 0.414095 + 0.110957i 0.459851 0.887996i \(-0.347903\pi\)
−0.0457555 + 0.998953i \(0.514570\pi\)
\(954\) −42.5286 50.3733i −1.37691 1.63090i
\(955\) 0 0
\(956\) 2.90845 + 5.03758i 0.0940659 + 0.162927i
\(957\) 2.43495 + 6.65862i 0.0787108 + 0.215243i
\(958\) 11.2698 42.0595i 0.364111 1.35888i
\(959\) 0.805764 1.39562i 0.0260195 0.0450671i
\(960\) 0 0
\(961\) 21.4642 0.692394
\(962\) 44.9485 36.7972i 1.44920 1.18639i
\(963\) −36.0763 3.04632i −1.16254 0.0981663i
\(964\) −7.04833 + 12.2081i −0.227011 + 0.393195i
\(965\) 0 0
\(966\) 0.809926 + 9.09895i 0.0260589 + 0.292754i
\(967\) −11.1974 11.1974i −0.360084 0.360084i 0.503760 0.863844i \(-0.331950\pi\)
−0.863844 + 0.503760i \(0.831950\pi\)
\(968\) 4.29165 16.0166i 0.137939 0.514794i
\(969\) 9.89629 0.880900i 0.317915 0.0282986i
\(970\) 0 0
\(971\) 28.5582 16.4881i 0.916478 0.529129i 0.0339681 0.999423i \(-0.489186\pi\)
0.882510 + 0.470294i \(0.155852\pi\)
\(972\) 39.8261 + 14.1553i 1.27742 + 0.454033i
\(973\) −0.852466 3.18145i −0.0273288 0.101993i
\(974\) 62.0152 1.98710
\(975\) 0 0
\(976\) 22.3510 0.715439
\(977\) 5.03105 + 18.7761i 0.160957 + 0.600701i 0.998521 + 0.0543619i \(0.0173125\pi\)
−0.837564 + 0.546339i \(0.816021\pi\)
\(978\) 5.04952 28.8927i 0.161466 0.923887i
\(979\) 5.37310 3.10216i 0.171725 0.0991455i
\(980\) 0 0
\(981\) −39.7901 14.3462i −1.27040 0.458040i
\(982\) −16.3202 + 60.9079i −0.520799 + 1.94365i
\(983\) 33.5020 + 33.5020i 1.06855 + 1.06855i 0.997471 + 0.0710772i \(0.0226437\pi\)
0.0710772 + 0.997471i \(0.477356\pi\)
\(984\) −9.44991 + 0.841166i −0.301252 + 0.0268154i
\(985\) 0 0
\(986\) 16.5462 28.6589i 0.526939 0.912685i
\(987\) −1.81177 4.95447i −0.0576693 0.157702i
\(988\) 10.3942 27.5155i 0.330683 0.875385i
\(989\) −42.0702 −1.33775
\(990\) 0 0
\(991\) 27.1809 47.0787i 0.863431 1.49551i −0.00516644 0.999987i \(-0.501645\pi\)
0.868597 0.495519i \(-0.165022\pi\)
\(992\) −6.06119 + 22.6207i −0.192443 + 0.718207i
\(993\) 14.5503 5.32082i 0.461741 0.168851i
\(994\) 2.66358 + 4.61346i 0.0844837 + 0.146330i
\(995\) 0 0
\(996\) 37.0860 + 17.2252i 1.17511 + 0.545802i
\(997\) −15.1389 4.05645i −0.479453 0.128469i 0.0109949 0.999940i \(-0.496500\pi\)
−0.490448 + 0.871471i \(0.663167\pi\)
\(998\) 11.2856 + 42.1184i 0.357239 + 1.33323i
\(999\) 37.2992 + 9.81309i 1.18009 + 0.310472i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.368.21 96
3.2 odd 2 inner 975.2.bn.d.368.4 96
5.2 odd 4 inner 975.2.bn.d.407.4 96
5.3 odd 4 195.2.bf.a.17.21 yes 96
5.4 even 2 195.2.bf.a.173.4 yes 96
13.10 even 6 inner 975.2.bn.d.218.21 96
15.2 even 4 inner 975.2.bn.d.407.21 96
15.8 even 4 195.2.bf.a.17.4 96
15.14 odd 2 195.2.bf.a.173.21 yes 96
39.23 odd 6 inner 975.2.bn.d.218.4 96
65.23 odd 12 195.2.bf.a.62.21 yes 96
65.49 even 6 195.2.bf.a.23.4 yes 96
65.62 odd 12 inner 975.2.bn.d.257.4 96
195.23 even 12 195.2.bf.a.62.4 yes 96
195.62 even 12 inner 975.2.bn.d.257.21 96
195.179 odd 6 195.2.bf.a.23.21 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.4 96 15.8 even 4
195.2.bf.a.17.21 yes 96 5.3 odd 4
195.2.bf.a.23.4 yes 96 65.49 even 6
195.2.bf.a.23.21 yes 96 195.179 odd 6
195.2.bf.a.62.4 yes 96 195.23 even 12
195.2.bf.a.62.21 yes 96 65.23 odd 12
195.2.bf.a.173.4 yes 96 5.4 even 2
195.2.bf.a.173.21 yes 96 15.14 odd 2
975.2.bn.d.218.4 96 39.23 odd 6 inner
975.2.bn.d.218.21 96 13.10 even 6 inner
975.2.bn.d.257.4 96 65.62 odd 12 inner
975.2.bn.d.257.21 96 195.62 even 12 inner
975.2.bn.d.368.4 96 3.2 odd 2 inner
975.2.bn.d.368.21 96 1.1 even 1 trivial
975.2.bn.d.407.4 96 5.2 odd 4 inner
975.2.bn.d.407.21 96 15.2 even 4 inner