Properties

Label 975.2.bn.d.218.4
Level $975$
Weight $2$
Character 975.218
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 218.4
Character \(\chi\) \(=\) 975.218
Dual form 975.2.bn.d.407.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.09662 - 0.561788i) q^{2} +(-0.298187 - 1.70619i) q^{3} +(2.34816 + 1.35571i) q^{4} +(-0.333332 + 3.74475i) q^{6} +(0.403690 - 0.108168i) q^{7} +(-1.09192 - 1.09192i) q^{8} +(-2.82217 + 1.01753i) q^{9} +(-0.255945 - 0.443309i) q^{11} +(1.61291 - 4.41067i) q^{12} +(3.55810 + 0.583017i) q^{13} -0.907153 q^{14} +(-1.03551 - 1.79356i) q^{16} +(-1.84160 + 0.493455i) q^{17} +(6.48865 - 0.547908i) q^{18} +(-1.50433 + 2.60558i) q^{19} +(-0.304931 - 0.656518i) q^{21} +(0.287573 + 1.07324i) q^{22} +(-5.61575 - 1.50474i) q^{23} +(-1.53743 + 2.18862i) q^{24} +(-7.13246 - 3.22126i) q^{26} +(2.57763 + 4.51174i) q^{27} +(1.09458 + 0.293291i) q^{28} +(3.99826 + 6.92519i) q^{29} +3.08801i q^{31} +(1.96282 + 7.32533i) q^{32} +(-0.680051 + 0.568879i) q^{33} +4.13835 q^{34} +(-8.00639 - 1.43673i) q^{36} +(-1.92109 + 7.16959i) q^{37} +(4.61780 - 4.61780i) q^{38} +(-0.0662412 - 6.24465i) q^{39} +(-1.77356 - 3.07189i) q^{41} +(0.270501 + 1.54778i) q^{42} +(-6.98963 + 1.87287i) q^{43} -1.38795i q^{44} +(10.9288 + 6.30972i) q^{46} +(-5.15313 + 5.15313i) q^{47} +(-2.75138 + 2.30160i) q^{48} +(-5.91091 + 3.41267i) q^{49} +(1.39107 + 2.99498i) q^{51} +(7.56460 + 6.19278i) q^{52} +(7.15880 - 7.15880i) q^{53} +(-2.86967 - 10.9075i) q^{54} +(-0.558908 - 0.322686i) q^{56} +(4.89419 + 1.78973i) q^{57} +(-4.49235 - 16.7657i) q^{58} +(1.74290 + 1.00626i) q^{59} +(-5.39613 + 9.34638i) q^{61} +(1.73481 - 6.47438i) q^{62} +(-1.02922 + 0.716035i) q^{63} -12.3191i q^{64} +(1.74540 - 0.810680i) q^{66} +(2.50128 - 9.33491i) q^{67} +(-4.99336 - 1.33797i) q^{68} +(-0.892822 + 10.0302i) q^{69} +(2.93620 - 5.08564i) q^{71} +(4.19264 + 1.97052i) q^{72} +(-2.10205 + 2.10205i) q^{73} +(8.05558 - 13.9527i) q^{74} +(-7.06484 + 4.07889i) q^{76} +(-0.151274 - 0.151274i) q^{77} +(-3.36928 + 13.1299i) q^{78} +14.3974i q^{79} +(6.92928 - 5.74327i) q^{81} +(1.99273 + 7.43696i) q^{82} +(6.15680 + 6.15680i) q^{83} +(0.174021 - 1.95501i) q^{84} +15.7068 q^{86} +(10.6235 - 8.88680i) q^{87} +(-0.204587 + 0.763529i) q^{88} +(10.4966 - 6.06022i) q^{89} +(1.49943 - 0.149516i) q^{91} +(-11.1467 - 11.1467i) q^{92} +(5.26873 - 0.920803i) q^{93} +(13.6991 - 7.90919i) q^{94} +(11.9131 - 5.53326i) q^{96} +(15.6563 - 4.19510i) q^{97} +(14.3101 - 3.83439i) q^{98} +(1.17340 + 0.990663i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.09662 0.561788i −1.48253 0.397244i −0.575326 0.817924i \(-0.695125\pi\)
−0.907209 + 0.420680i \(0.861791\pi\)
\(3\) −0.298187 1.70619i −0.172158 0.985069i
\(4\) 2.34816 + 1.35571i 1.17408 + 0.677856i
\(5\) 0 0
\(6\) −0.333332 + 3.74475i −0.136082 + 1.52879i
\(7\) 0.403690 0.108168i 0.152581 0.0408838i −0.181720 0.983350i \(-0.558167\pi\)
0.334301 + 0.942466i \(0.391500\pi\)
\(8\) −1.09192 1.09192i −0.386052 0.386052i
\(9\) −2.82217 + 1.01753i −0.940723 + 0.339176i
\(10\) 0 0
\(11\) −0.255945 0.443309i −0.0771702 0.133663i 0.824858 0.565340i \(-0.191255\pi\)
−0.902028 + 0.431678i \(0.857922\pi\)
\(12\) 1.61291 4.41067i 0.465608 1.27325i
\(13\) 3.55810 + 0.583017i 0.986840 + 0.161700i
\(14\) −0.907153 −0.242447
\(15\) 0 0
\(16\) −1.03551 1.79356i −0.258878 0.448390i
\(17\) −1.84160 + 0.493455i −0.446653 + 0.119680i −0.475133 0.879914i \(-0.657600\pi\)
0.0284797 + 0.999594i \(0.490933\pi\)
\(18\) 6.48865 0.547908i 1.52939 0.129143i
\(19\) −1.50433 + 2.60558i −0.345118 + 0.597762i −0.985375 0.170399i \(-0.945494\pi\)
0.640257 + 0.768161i \(0.278828\pi\)
\(20\) 0 0
\(21\) −0.304931 0.656518i −0.0665414 0.143264i
\(22\) 0.287573 + 1.07324i 0.0613108 + 0.228815i
\(23\) −5.61575 1.50474i −1.17097 0.313759i −0.379628 0.925139i \(-0.623948\pi\)
−0.791337 + 0.611380i \(0.790615\pi\)
\(24\) −1.53743 + 2.18862i −0.313826 + 0.446750i
\(25\) 0 0
\(26\) −7.13246 3.22126i −1.39879 0.631742i
\(27\) 2.57763 + 4.51174i 0.496065 + 0.868285i
\(28\) 1.09458 + 0.293291i 0.206855 + 0.0554267i
\(29\) 3.99826 + 6.92519i 0.742459 + 1.28598i 0.951373 + 0.308042i \(0.0996738\pi\)
−0.208914 + 0.977934i \(0.566993\pi\)
\(30\) 0 0
\(31\) 3.08801i 0.554622i 0.960780 + 0.277311i \(0.0894433\pi\)
−0.960780 + 0.277311i \(0.910557\pi\)
\(32\) 1.96282 + 7.32533i 0.346980 + 1.29495i
\(33\) −0.680051 + 0.568879i −0.118382 + 0.0990292i
\(34\) 4.13835 0.709722
\(35\) 0 0
\(36\) −8.00639 1.43673i −1.33440 0.239455i
\(37\) −1.92109 + 7.16959i −0.315825 + 1.17867i 0.607395 + 0.794400i \(0.292215\pi\)
−0.923219 + 0.384273i \(0.874452\pi\)
\(38\) 4.61780 4.61780i 0.749107 0.749107i
\(39\) −0.0662412 6.24465i −0.0106071 0.999944i
\(40\) 0 0
\(41\) −1.77356 3.07189i −0.276983 0.479749i 0.693650 0.720312i \(-0.256001\pi\)
−0.970634 + 0.240563i \(0.922668\pi\)
\(42\) 0.270501 + 1.54778i 0.0417392 + 0.238827i
\(43\) −6.98963 + 1.87287i −1.06591 + 0.285609i −0.748811 0.662783i \(-0.769375\pi\)
−0.317098 + 0.948393i \(0.602708\pi\)
\(44\) 1.38795i 0.209241i
\(45\) 0 0
\(46\) 10.9288 + 6.30972i 1.61136 + 0.930318i
\(47\) −5.15313 + 5.15313i −0.751661 + 0.751661i −0.974789 0.223128i \(-0.928373\pi\)
0.223128 + 0.974789i \(0.428373\pi\)
\(48\) −2.75138 + 2.30160i −0.397127 + 0.332207i
\(49\) −5.91091 + 3.41267i −0.844416 + 0.487524i
\(50\) 0 0
\(51\) 1.39107 + 2.99498i 0.194789 + 0.419381i
\(52\) 7.56460 + 6.19278i 1.04902 + 0.858785i
\(53\) 7.15880 7.15880i 0.983337 0.983337i −0.0165265 0.999863i \(-0.505261\pi\)
0.999863 + 0.0165265i \(0.00526079\pi\)
\(54\) −2.86967 10.9075i −0.390512 1.48432i
\(55\) 0 0
\(56\) −0.558908 0.322686i −0.0746872 0.0431207i
\(57\) 4.89419 + 1.78973i 0.648252 + 0.237055i
\(58\) −4.49235 16.7657i −0.589875 2.20144i
\(59\) 1.74290 + 1.00626i 0.226906 + 0.131004i 0.609144 0.793060i \(-0.291513\pi\)
−0.382238 + 0.924064i \(0.624847\pi\)
\(60\) 0 0
\(61\) −5.39613 + 9.34638i −0.690904 + 1.19668i 0.280638 + 0.959814i \(0.409454\pi\)
−0.971542 + 0.236867i \(0.923879\pi\)
\(62\) 1.73481 6.47438i 0.220320 0.822247i
\(63\) −1.02922 + 0.716035i −0.129669 + 0.0902120i
\(64\) 12.3191i 1.53988i
\(65\) 0 0
\(66\) 1.74540 0.810680i 0.214844 0.0997879i
\(67\) 2.50128 9.33491i 0.305580 1.14044i −0.626865 0.779128i \(-0.715662\pi\)
0.932445 0.361312i \(-0.117671\pi\)
\(68\) −4.99336 1.33797i −0.605534 0.162252i
\(69\) −0.892822 + 10.0302i −0.107483 + 1.20750i
\(70\) 0 0
\(71\) 2.93620 5.08564i 0.348463 0.603555i −0.637514 0.770439i \(-0.720037\pi\)
0.985977 + 0.166884i \(0.0533705\pi\)
\(72\) 4.19264 + 1.97052i 0.494107 + 0.232228i
\(73\) −2.10205 + 2.10205i −0.246026 + 0.246026i −0.819338 0.573311i \(-0.805659\pi\)
0.573311 + 0.819338i \(0.305659\pi\)
\(74\) 8.05558 13.9527i 0.936442 1.62196i
\(75\) 0 0
\(76\) −7.06484 + 4.07889i −0.810393 + 0.467881i
\(77\) −0.151274 0.151274i −0.0172393 0.0172393i
\(78\) −3.36928 + 13.1299i −0.381496 + 1.48667i
\(79\) 14.3974i 1.61983i 0.586544 + 0.809917i \(0.300488\pi\)
−0.586544 + 0.809917i \(0.699512\pi\)
\(80\) 0 0
\(81\) 6.92928 5.74327i 0.769920 0.638141i
\(82\) 1.99273 + 7.43696i 0.220060 + 0.821274i
\(83\) 6.15680 + 6.15680i 0.675796 + 0.675796i 0.959046 0.283250i \(-0.0914125\pi\)
−0.283250 + 0.959046i \(0.591413\pi\)
\(84\) 0.174021 1.95501i 0.0189873 0.213309i
\(85\) 0 0
\(86\) 15.7068 1.69370
\(87\) 10.6235 8.88680i 1.13896 0.952765i
\(88\) −0.204587 + 0.763529i −0.0218090 + 0.0813924i
\(89\) 10.4966 6.06022i 1.11264 0.642382i 0.173126 0.984900i \(-0.444613\pi\)
0.939511 + 0.342518i \(0.111280\pi\)
\(90\) 0 0
\(91\) 1.49943 0.149516i 0.157183 0.0156735i
\(92\) −11.1467 11.1467i −1.16212 1.16212i
\(93\) 5.26873 0.920803i 0.546342 0.0954829i
\(94\) 13.6991 7.90919i 1.41296 0.815771i
\(95\) 0 0
\(96\) 11.9131 5.53326i 1.21588 0.564735i
\(97\) 15.6563 4.19510i 1.58966 0.425948i 0.647761 0.761843i \(-0.275705\pi\)
0.941899 + 0.335895i \(0.109039\pi\)
\(98\) 14.3101 3.83439i 1.44554 0.387332i
\(99\) 1.17340 + 0.990663i 0.117931 + 0.0995654i
\(100\) 0 0
\(101\) −7.56743 + 4.36906i −0.752987 + 0.434737i −0.826772 0.562537i \(-0.809825\pi\)
0.0737851 + 0.997274i \(0.476492\pi\)
\(102\) −1.23400 7.06082i −0.122184 0.699125i
\(103\) 8.04055 + 8.04055i 0.792259 + 0.792259i 0.981861 0.189602i \(-0.0607197\pi\)
−0.189602 + 0.981861i \(0.560720\pi\)
\(104\) −3.24855 4.52177i −0.318547 0.443396i
\(105\) 0 0
\(106\) −19.0310 + 10.9876i −1.84846 + 1.06721i
\(107\) −3.12349 + 11.6570i −0.301959 + 1.12693i 0.633572 + 0.773683i \(0.281588\pi\)
−0.935531 + 0.353243i \(0.885079\pi\)
\(108\) −0.0639357 + 14.0888i −0.00615221 + 1.35570i
\(109\) 14.0991 1.35045 0.675225 0.737612i \(-0.264047\pi\)
0.675225 + 0.737612i \(0.264047\pi\)
\(110\) 0 0
\(111\) 12.8055 + 1.13986i 1.21545 + 0.108191i
\(112\) −0.612032 0.612032i −0.0578316 0.0578316i
\(113\) 0.871189 + 3.25132i 0.0819545 + 0.305859i 0.994720 0.102625i \(-0.0327243\pi\)
−0.912766 + 0.408484i \(0.866058\pi\)
\(114\) −9.25582 6.50188i −0.866887 0.608957i
\(115\) 0 0
\(116\) 21.6820i 2.01312i
\(117\) −10.6348 + 1.97509i −0.983188 + 0.182597i
\(118\) −3.08889 3.08889i −0.284355 0.284355i
\(119\) −0.690059 + 0.398406i −0.0632576 + 0.0365218i
\(120\) 0 0
\(121\) 5.36898 9.29935i 0.488090 0.845396i
\(122\) 16.5643 16.5643i 1.49966 1.49966i
\(123\) −4.71238 + 3.94202i −0.424901 + 0.355440i
\(124\) −4.18645 + 7.25114i −0.375954 + 0.651172i
\(125\) 0 0
\(126\) 2.56014 0.923053i 0.228075 0.0822321i
\(127\) −17.1178 4.58670i −1.51896 0.407003i −0.599559 0.800330i \(-0.704657\pi\)
−0.919399 + 0.393327i \(0.871324\pi\)
\(128\) −2.99508 + 11.1778i −0.264730 + 0.987986i
\(129\) 5.27968 + 11.3672i 0.464850 + 1.00082i
\(130\) 0 0
\(131\) 3.62886i 0.317055i −0.987355 0.158527i \(-0.949325\pi\)
0.987355 0.158527i \(-0.0506746\pi\)
\(132\) −2.36811 + 0.413869i −0.206117 + 0.0360226i
\(133\) −0.325443 + 1.21457i −0.0282195 + 0.105317i
\(134\) −10.4885 + 18.1666i −0.906066 + 1.56935i
\(135\) 0 0
\(136\) 2.54969 + 1.47206i 0.218634 + 0.126228i
\(137\) −0.997998 3.72458i −0.0852647 0.318212i 0.910099 0.414390i \(-0.136005\pi\)
−0.995364 + 0.0961776i \(0.969338\pi\)
\(138\) 7.50677 20.5280i 0.639019 1.74746i
\(139\) −6.82507 3.94046i −0.578895 0.334225i 0.181799 0.983336i \(-0.441808\pi\)
−0.760694 + 0.649110i \(0.775141\pi\)
\(140\) 0 0
\(141\) 10.3288 + 7.25562i 0.869843 + 0.611034i
\(142\) −9.01315 + 9.01315i −0.756367 + 0.756367i
\(143\) −0.652221 1.72656i −0.0545414 0.144382i
\(144\) 4.74738 + 4.00807i 0.395615 + 0.334005i
\(145\) 0 0
\(146\) 5.58811 3.22629i 0.462475 0.267010i
\(147\) 7.58522 + 9.06753i 0.625618 + 0.747877i
\(148\) −14.2309 + 14.2309i −1.16977 + 1.16977i
\(149\) 4.77688 + 2.75793i 0.391337 + 0.225938i 0.682739 0.730662i \(-0.260789\pi\)
−0.291402 + 0.956601i \(0.594122\pi\)
\(150\) 0 0
\(151\) 3.50398i 0.285150i 0.989784 + 0.142575i \(0.0455382\pi\)
−0.989784 + 0.142575i \(0.954462\pi\)
\(152\) 4.48770 1.20247i 0.364000 0.0975336i
\(153\) 4.69520 3.26649i 0.379584 0.264080i
\(154\) 0.232181 + 0.402149i 0.0187097 + 0.0324061i
\(155\) 0 0
\(156\) 8.31040 14.7533i 0.665365 1.18121i
\(157\) −1.27066 + 1.27066i −0.101409 + 0.101409i −0.755991 0.654582i \(-0.772845\pi\)
0.654582 + 0.755991i \(0.272845\pi\)
\(158\) 8.08829 30.1859i 0.643470 2.40146i
\(159\) −14.3489 10.0796i −1.13794 0.799365i
\(160\) 0 0
\(161\) −2.42979 −0.191494
\(162\) −17.7546 + 8.14867i −1.39493 + 0.640220i
\(163\) 2.01921 + 7.53579i 0.158157 + 0.590249i 0.998814 + 0.0486817i \(0.0155020\pi\)
−0.840658 + 0.541567i \(0.817831\pi\)
\(164\) 9.61774i 0.751019i
\(165\) 0 0
\(166\) −9.44966 16.3673i −0.733436 1.27035i
\(167\) −2.20275 0.590226i −0.170454 0.0456731i 0.172583 0.984995i \(-0.444789\pi\)
−0.343037 + 0.939322i \(0.611456\pi\)
\(168\) −0.383904 + 1.04982i −0.0296188 + 0.0809957i
\(169\) 12.3202 + 4.14887i 0.947706 + 0.319144i
\(170\) 0 0
\(171\) 1.59423 8.88410i 0.121914 0.679384i
\(172\) −18.9519 5.07814i −1.44507 0.387204i
\(173\) 5.86243 + 21.8789i 0.445713 + 1.66342i 0.714048 + 0.700097i \(0.246860\pi\)
−0.268335 + 0.963326i \(0.586474\pi\)
\(174\) −27.2659 + 12.6641i −2.06702 + 0.960064i
\(175\) 0 0
\(176\) −0.530068 + 0.918104i −0.0399554 + 0.0692047i
\(177\) 1.19716 3.27376i 0.0899844 0.246071i
\(178\) −25.4120 + 6.80911i −1.90471 + 0.510365i
\(179\) −4.89863 8.48468i −0.366141 0.634175i 0.622818 0.782367i \(-0.285988\pi\)
−0.988959 + 0.148192i \(0.952655\pi\)
\(180\) 0 0
\(181\) 1.50768 0.112065 0.0560325 0.998429i \(-0.482155\pi\)
0.0560325 + 0.998429i \(0.482155\pi\)
\(182\) −3.22774 0.528886i −0.239256 0.0392036i
\(183\) 17.5557 + 6.41986i 1.29776 + 0.474570i
\(184\) 4.48890 + 7.77499i 0.330926 + 0.573180i
\(185\) 0 0
\(186\) −11.5638 1.02933i −0.847900 0.0754743i
\(187\) 0.690101 + 0.690101i 0.0504652 + 0.0504652i
\(188\) −19.0865 + 5.11423i −1.39203 + 0.372993i
\(189\) 1.52859 + 1.54253i 0.111189 + 0.112202i
\(190\) 0 0
\(191\) 3.89212 + 2.24712i 0.281624 + 0.162596i 0.634158 0.773203i \(-0.281347\pi\)
−0.352534 + 0.935799i \(0.614680\pi\)
\(192\) −21.0187 + 3.67339i −1.51689 + 0.265104i
\(193\) 15.3024 + 4.10026i 1.10149 + 0.295143i 0.763371 0.645960i \(-0.223543\pi\)
0.338118 + 0.941104i \(0.390210\pi\)
\(194\) −35.1822 −2.52593
\(195\) 0 0
\(196\) −18.5064 −1.32188
\(197\) −11.8903 3.18600i −0.847150 0.226993i −0.190968 0.981596i \(-0.561163\pi\)
−0.656181 + 0.754603i \(0.727829\pi\)
\(198\) −1.90363 2.73625i −0.135285 0.194457i
\(199\) −19.5208 11.2703i −1.38379 0.798933i −0.391187 0.920311i \(-0.627935\pi\)
−0.992606 + 0.121378i \(0.961269\pi\)
\(200\) 0 0
\(201\) −16.6730 1.48411i −1.17602 0.104681i
\(202\) 18.3205 4.90897i 1.28903 0.345394i
\(203\) 2.36315 + 2.36315i 0.165860 + 0.165860i
\(204\) −0.793871 + 8.91858i −0.0555821 + 0.624426i
\(205\) 0 0
\(206\) −12.3409 21.3751i −0.859832 1.48927i
\(207\) 17.3797 1.46756i 1.20797 0.102002i
\(208\) −2.63878 6.98539i −0.182967 0.484349i
\(209\) 1.54011 0.106531
\(210\) 0 0
\(211\) 1.99042 + 3.44751i 0.137026 + 0.237336i 0.926370 0.376616i \(-0.122912\pi\)
−0.789344 + 0.613952i \(0.789579\pi\)
\(212\) 26.5153 7.10476i 1.82108 0.487957i
\(213\) −9.55261 3.49324i −0.654534 0.239353i
\(214\) 13.0975 22.6856i 0.895330 1.55076i
\(215\) 0 0
\(216\) 2.11190 7.74102i 0.143696 0.526710i
\(217\) 0.334025 + 1.24660i 0.0226751 + 0.0846246i
\(218\) −29.5605 7.92071i −2.00209 0.536458i
\(219\) 4.21330 + 2.95969i 0.284708 + 0.199997i
\(220\) 0 0
\(221\) −6.84029 + 0.682079i −0.460128 + 0.0458816i
\(222\) −26.2080 9.58384i −1.75896 0.643225i
\(223\) −13.5539 3.63175i −0.907635 0.243200i −0.225342 0.974280i \(-0.572350\pi\)
−0.682292 + 0.731080i \(0.739017\pi\)
\(224\) 1.58474 + 2.74485i 0.105885 + 0.183398i
\(225\) 0 0
\(226\) 7.30621i 0.486002i
\(227\) 2.30516 + 8.60297i 0.152999 + 0.570999i 0.999268 + 0.0382445i \(0.0121766\pi\)
−0.846270 + 0.532755i \(0.821157\pi\)
\(228\) 9.06600 + 10.8377i 0.600411 + 0.717744i
\(229\) −13.9049 −0.918865 −0.459432 0.888213i \(-0.651947\pi\)
−0.459432 + 0.888213i \(0.651947\pi\)
\(230\) 0 0
\(231\) −0.212995 + 0.303211i −0.0140140 + 0.0199498i
\(232\) 3.19597 11.9275i 0.209826 0.783081i
\(233\) −10.6874 + 10.6874i −0.700154 + 0.700154i −0.964443 0.264289i \(-0.914863\pi\)
0.264289 + 0.964443i \(0.414863\pi\)
\(234\) 23.4067 + 1.83348i 1.53015 + 0.119859i
\(235\) 0 0
\(236\) 2.72840 + 4.72573i 0.177604 + 0.307619i
\(237\) 24.5647 4.29312i 1.59565 0.278868i
\(238\) 1.67061 0.447639i 0.108290 0.0290161i
\(239\) 2.14533i 0.138770i −0.997590 0.0693849i \(-0.977896\pi\)
0.997590 0.0693849i \(-0.0221036\pi\)
\(240\) 0 0
\(241\) 4.50245 + 2.59949i 0.290028 + 0.167448i 0.637955 0.770074i \(-0.279781\pi\)
−0.347926 + 0.937522i \(0.613114\pi\)
\(242\) −16.4810 + 16.4810i −1.05944 + 1.05944i
\(243\) −11.8653 10.1101i −0.761161 0.648563i
\(244\) −25.3420 + 14.6312i −1.62236 + 0.936667i
\(245\) 0 0
\(246\) 12.0947 5.61757i 0.771127 0.358163i
\(247\) −6.87167 + 8.39388i −0.437234 + 0.534090i
\(248\) 3.37185 3.37185i 0.214113 0.214113i
\(249\) 8.66879 12.3405i 0.549362 0.782050i
\(250\) 0 0
\(251\) 3.01039 + 1.73805i 0.190014 + 0.109705i 0.591989 0.805946i \(-0.298343\pi\)
−0.401975 + 0.915651i \(0.631676\pi\)
\(252\) −3.38751 + 0.286045i −0.213393 + 0.0180191i
\(253\) 0.770259 + 2.87464i 0.0484257 + 0.180727i
\(254\) 33.3128 + 19.2331i 2.09023 + 1.20679i
\(255\) 0 0
\(256\) 0.240005 0.415700i 0.0150003 0.0259813i
\(257\) 1.03229 3.85254i 0.0643922 0.240315i −0.926227 0.376966i \(-0.876967\pi\)
0.990619 + 0.136651i \(0.0436339\pi\)
\(258\) −4.68355 26.7987i −0.291585 1.66842i
\(259\) 3.10209i 0.192755i
\(260\) 0 0
\(261\) −18.3303 15.4757i −1.13462 0.957924i
\(262\) −2.03865 + 7.60834i −0.125948 + 0.470045i
\(263\) −23.3298 6.25119i −1.43857 0.385465i −0.546540 0.837433i \(-0.684055\pi\)
−0.892034 + 0.451968i \(0.850722\pi\)
\(264\) 1.36373 + 0.121390i 0.0839318 + 0.00747103i
\(265\) 0 0
\(266\) 1.36466 2.36366i 0.0836727 0.144925i
\(267\) −13.4698 16.1021i −0.824340 0.985434i
\(268\) 18.5289 18.5289i 1.13183 1.13183i
\(269\) −12.4058 + 21.4875i −0.756397 + 1.31012i 0.188280 + 0.982115i \(0.439709\pi\)
−0.944677 + 0.328003i \(0.893625\pi\)
\(270\) 0 0
\(271\) 18.7408 10.8200i 1.13842 0.657270i 0.192385 0.981320i \(-0.438378\pi\)
0.946040 + 0.324050i \(0.105045\pi\)
\(272\) 2.79204 + 2.79204i 0.169292 + 0.169292i
\(273\) −0.702215 2.51374i −0.0425000 0.152138i
\(274\) 8.36970i 0.505632i
\(275\) 0 0
\(276\) −15.6946 + 22.3422i −0.944704 + 1.34484i
\(277\) 0.115159 + 0.429778i 0.00691921 + 0.0258228i 0.969299 0.245885i \(-0.0790784\pi\)
−0.962380 + 0.271707i \(0.912412\pi\)
\(278\) 12.0959 + 12.0959i 0.725463 + 0.725463i
\(279\) −3.14213 8.71488i −0.188114 0.521746i
\(280\) 0 0
\(281\) −10.2114 −0.609162 −0.304581 0.952486i \(-0.598516\pi\)
−0.304581 + 0.952486i \(0.598516\pi\)
\(282\) −17.5795 21.0149i −1.04684 1.25142i
\(283\) 2.14169 7.99290i 0.127310 0.475129i −0.872601 0.488433i \(-0.837568\pi\)
0.999911 + 0.0133048i \(0.00423516\pi\)
\(284\) 13.7893 7.96128i 0.818247 0.472415i
\(285\) 0 0
\(286\) 0.397499 + 3.98635i 0.0235046 + 0.235718i
\(287\) −1.04825 1.04825i −0.0618762 0.0618762i
\(288\) −12.9931 18.6761i −0.765627 1.10050i
\(289\) −11.5744 + 6.68251i −0.680850 + 0.393089i
\(290\) 0 0
\(291\) −11.8262 25.4618i −0.693262 1.49260i
\(292\) −7.78573 + 2.08618i −0.455625 + 0.122084i
\(293\) 17.1295 4.58984i 1.00072 0.268141i 0.278971 0.960300i \(-0.410007\pi\)
0.721745 + 0.692159i \(0.243340\pi\)
\(294\) −10.8093 23.2725i −0.630411 1.35728i
\(295\) 0 0
\(296\) 9.92628 5.73094i 0.576953 0.333104i
\(297\) 1.34037 2.29744i 0.0777760 0.133311i
\(298\) −8.46593 8.46593i −0.490418 0.490418i
\(299\) −19.1041 8.62808i −1.10482 0.498975i
\(300\) 0 0
\(301\) −2.61906 + 1.51212i −0.150960 + 0.0871569i
\(302\) 1.96850 7.34652i 0.113274 0.422745i
\(303\) 9.71095 + 11.6087i 0.557879 + 0.666901i
\(304\) 6.23102 0.357374
\(305\) 0 0
\(306\) −11.6791 + 4.21089i −0.667651 + 0.240720i
\(307\) −18.0565 18.0565i −1.03054 1.03054i −0.999519 0.0310201i \(-0.990124\pi\)
−0.0310201 0.999519i \(-0.509876\pi\)
\(308\) −0.150132 0.560302i −0.00855459 0.0319262i
\(309\) 11.3211 16.1163i 0.644036 0.916824i
\(310\) 0 0
\(311\) 25.9620i 1.47217i 0.676890 + 0.736084i \(0.263327\pi\)
−0.676890 + 0.736084i \(0.736673\pi\)
\(312\) −6.74632 + 6.89098i −0.381935 + 0.390125i
\(313\) −1.24977 1.24977i −0.0706415 0.0706415i 0.670903 0.741545i \(-0.265907\pi\)
−0.741545 + 0.670903i \(0.765907\pi\)
\(314\) 3.37793 1.95025i 0.190627 0.110059i
\(315\) 0 0
\(316\) −19.5187 + 33.8075i −1.09802 + 1.90182i
\(317\) −12.6999 + 12.6999i −0.713299 + 0.713299i −0.967224 0.253925i \(-0.918278\pi\)
0.253925 + 0.967224i \(0.418278\pi\)
\(318\) 24.4217 + 29.1942i 1.36950 + 1.63713i
\(319\) 2.04667 3.54493i 0.114591 0.198478i
\(320\) 0 0
\(321\) 20.8205 + 1.85330i 1.16209 + 0.103441i
\(322\) 5.09435 + 1.36503i 0.283897 + 0.0760699i
\(323\) 1.48464 5.54076i 0.0826077 0.308296i
\(324\) 24.0573 4.09202i 1.33652 0.227334i
\(325\) 0 0
\(326\) 16.9341i 0.937891i
\(327\) −4.20417 24.0558i −0.232491 1.33029i
\(328\) −1.41768 + 5.29084i −0.0782780 + 0.292138i
\(329\) −1.52286 + 2.63767i −0.0839581 + 0.145420i
\(330\) 0 0
\(331\) −7.74634 4.47235i −0.425777 0.245823i 0.271769 0.962363i \(-0.412391\pi\)
−0.697546 + 0.716540i \(0.745725\pi\)
\(332\) 6.11032 + 22.8040i 0.335347 + 1.25153i
\(333\) −1.87362 22.1885i −0.102674 1.21592i
\(334\) 4.28676 + 2.47496i 0.234561 + 0.135424i
\(335\) 0 0
\(336\) −0.861744 + 1.22674i −0.0470120 + 0.0669244i
\(337\) −1.08661 + 1.08661i −0.0591915 + 0.0591915i −0.736083 0.676891i \(-0.763327\pi\)
0.676891 + 0.736083i \(0.263327\pi\)
\(338\) −23.5000 15.6199i −1.27823 0.849613i
\(339\) 5.28759 2.45591i 0.287183 0.133387i
\(340\) 0 0
\(341\) 1.36894 0.790359i 0.0741324 0.0428004i
\(342\) −8.33348 + 17.7310i −0.450623 + 0.958781i
\(343\) −4.08569 + 4.08569i −0.220606 + 0.220606i
\(344\) 9.67713 + 5.58709i 0.521756 + 0.301236i
\(345\) 0 0
\(346\) 49.1652i 2.64314i
\(347\) 34.3656 9.20824i 1.84484 0.494324i 0.845622 0.533782i \(-0.179230\pi\)
0.999221 + 0.0394575i \(0.0125630\pi\)
\(348\) 36.9936 6.46528i 1.98306 0.346576i
\(349\) −0.580105 1.00477i −0.0310523 0.0537841i 0.850082 0.526651i \(-0.176553\pi\)
−0.881134 + 0.472867i \(0.843219\pi\)
\(350\) 0 0
\(351\) 6.54104 + 17.5560i 0.349135 + 0.937072i
\(352\) 2.74501 2.74501i 0.146310 0.146310i
\(353\) −8.13026 + 30.3425i −0.432730 + 1.61497i 0.313710 + 0.949519i \(0.398428\pi\)
−0.746440 + 0.665452i \(0.768239\pi\)
\(354\) −4.34916 + 6.19129i −0.231155 + 0.329063i
\(355\) 0 0
\(356\) 32.8636 1.74177
\(357\) 0.885523 + 1.05857i 0.0468668 + 0.0560256i
\(358\) 5.50399 + 20.5412i 0.290895 + 1.08563i
\(359\) 18.5415i 0.978582i 0.872120 + 0.489291i \(0.162744\pi\)
−0.872120 + 0.489291i \(0.837256\pi\)
\(360\) 0 0
\(361\) 4.97396 + 8.61515i 0.261787 + 0.453429i
\(362\) −3.16104 0.846997i −0.166140 0.0445172i
\(363\) −17.4674 6.38756i −0.916802 0.335260i
\(364\) 3.72362 + 1.68171i 0.195171 + 0.0881458i
\(365\) 0 0
\(366\) −33.2012 23.3226i −1.73545 1.21909i
\(367\) −5.91325 1.58445i −0.308669 0.0827076i 0.101159 0.994870i \(-0.467745\pi\)
−0.409828 + 0.912163i \(0.634411\pi\)
\(368\) 3.11634 + 11.6304i 0.162451 + 0.606274i
\(369\) 8.13101 + 6.86475i 0.423284 + 0.357365i
\(370\) 0 0
\(371\) 2.11558 3.66429i 0.109835 0.190241i
\(372\) 13.6202 + 4.98068i 0.706173 + 0.258236i
\(373\) 25.0927 6.72356i 1.29925 0.348133i 0.458083 0.888909i \(-0.348536\pi\)
0.841167 + 0.540776i \(0.181869\pi\)
\(374\) −1.05919 1.83457i −0.0547694 0.0948634i
\(375\) 0 0
\(376\) 11.2536 0.580360
\(377\) 10.1887 + 26.9716i 0.524746 + 1.38911i
\(378\) −2.33830 4.09284i −0.120269 0.210513i
\(379\) 10.9047 + 18.8876i 0.560139 + 0.970189i 0.997484 + 0.0708954i \(0.0225857\pi\)
−0.437345 + 0.899294i \(0.644081\pi\)
\(380\) 0 0
\(381\) −2.72148 + 30.5739i −0.139425 + 1.56635i
\(382\) −6.89790 6.89790i −0.352927 0.352927i
\(383\) −11.4935 + 3.07967i −0.587290 + 0.157364i −0.540215 0.841527i \(-0.681657\pi\)
−0.0470758 + 0.998891i \(0.514990\pi\)
\(384\) 19.9645 + 1.77710i 1.01881 + 0.0906874i
\(385\) 0 0
\(386\) −29.7798 17.1934i −1.51575 0.875120i
\(387\) 17.8202 12.3977i 0.905853 0.630210i
\(388\) 42.4510 + 11.3747i 2.15512 + 0.577463i
\(389\) −18.6519 −0.945690 −0.472845 0.881146i \(-0.656773\pi\)
−0.472845 + 0.881146i \(0.656773\pi\)
\(390\) 0 0
\(391\) 11.0845 0.560566
\(392\) 10.1806 + 2.72788i 0.514198 + 0.137779i
\(393\) −6.19152 + 1.08208i −0.312321 + 0.0545836i
\(394\) 23.1396 + 13.3597i 1.16576 + 0.673050i
\(395\) 0 0
\(396\) 1.41228 + 3.91703i 0.0709696 + 0.196838i
\(397\) 16.8034 4.50246i 0.843340 0.225972i 0.188815 0.982013i \(-0.439535\pi\)
0.654525 + 0.756041i \(0.272869\pi\)
\(398\) 34.5962 + 34.5962i 1.73415 + 1.73415i
\(399\) 2.16933 + 0.193099i 0.108602 + 0.00966703i
\(400\) 0 0
\(401\) −2.63268 4.55994i −0.131470 0.227712i 0.792774 0.609516i \(-0.208636\pi\)
−0.924243 + 0.381804i \(0.875303\pi\)
\(402\) 34.1232 + 12.4783i 1.70191 + 0.622361i
\(403\) −1.80036 + 10.9874i −0.0896824 + 0.547324i
\(404\) −23.6927 −1.17876
\(405\) 0 0
\(406\) −3.62704 6.28221i −0.180007 0.311781i
\(407\) 3.67004 0.983383i 0.181917 0.0487445i
\(408\) 1.75134 4.78921i 0.0867041 0.237101i
\(409\) 4.97625 8.61911i 0.246060 0.426188i −0.716369 0.697721i \(-0.754197\pi\)
0.962429 + 0.271534i \(0.0875308\pi\)
\(410\) 0 0
\(411\) −6.05725 + 2.81340i −0.298782 + 0.138775i
\(412\) 7.97985 + 29.7812i 0.393139 + 1.46721i
\(413\) 0.812435 + 0.217691i 0.0399773 + 0.0107119i
\(414\) −37.2631 6.68679i −1.83138 0.328638i
\(415\) 0 0
\(416\) 2.71311 + 27.2086i 0.133021 + 1.33401i
\(417\) −4.68802 + 12.8199i −0.229573 + 0.627791i
\(418\) −3.22902 0.865213i −0.157936 0.0423189i
\(419\) −8.67323 15.0225i −0.423715 0.733896i 0.572584 0.819846i \(-0.305941\pi\)
−0.996299 + 0.0859496i \(0.972608\pi\)
\(420\) 0 0
\(421\) 9.95497i 0.485175i 0.970129 + 0.242588i \(0.0779962\pi\)
−0.970129 + 0.242588i \(0.922004\pi\)
\(422\) −2.23639 8.34631i −0.108866 0.406292i
\(423\) 9.29955 19.7864i 0.452160 0.962050i
\(424\) −15.6337 −0.759238
\(425\) 0 0
\(426\) 18.0657 + 12.6905i 0.875288 + 0.614859i
\(427\) −1.16738 + 4.35673i −0.0564936 + 0.210837i
\(428\) −23.1380 + 23.1380i −1.11842 + 1.11842i
\(429\) −2.75136 + 1.62765i −0.132837 + 0.0785837i
\(430\) 0 0
\(431\) 6.30631 + 10.9229i 0.303764 + 0.526135i 0.976985 0.213306i \(-0.0684231\pi\)
−0.673221 + 0.739441i \(0.735090\pi\)
\(432\) 5.42291 9.29509i 0.260910 0.447210i
\(433\) −21.8390 + 5.85174i −1.04952 + 0.281217i −0.742052 0.670343i \(-0.766147\pi\)
−0.307464 + 0.951560i \(0.599480\pi\)
\(434\) 2.80129i 0.134466i
\(435\) 0 0
\(436\) 33.1070 + 19.1143i 1.58554 + 0.915411i
\(437\) 12.3687 12.3687i 0.591674 0.591674i
\(438\) −7.17097 8.57233i −0.342642 0.409602i
\(439\) 10.2958 5.94428i 0.491391 0.283705i −0.233760 0.972294i \(-0.575103\pi\)
0.725152 + 0.688589i \(0.241770\pi\)
\(440\) 0 0
\(441\) 13.2091 15.6456i 0.629005 0.745030i
\(442\) 14.7247 + 2.41273i 0.700382 + 0.114762i
\(443\) 14.0199 14.0199i 0.666105 0.666105i −0.290707 0.956812i \(-0.593891\pi\)
0.956812 + 0.290707i \(0.0938906\pi\)
\(444\) 28.5241 + 20.0372i 1.35370 + 0.950923i
\(445\) 0 0
\(446\) 26.3771 + 15.2288i 1.24899 + 0.721105i
\(447\) 3.28115 8.97264i 0.155193 0.424391i
\(448\) −1.33254 4.97309i −0.0629564 0.234956i
\(449\) −3.69387 2.13266i −0.174324 0.100646i 0.410299 0.911951i \(-0.365424\pi\)
−0.584623 + 0.811305i \(0.698758\pi\)
\(450\) 0 0
\(451\) −0.907865 + 1.57247i −0.0427497 + 0.0740447i
\(452\) −2.36216 + 8.81571i −0.111107 + 0.414656i
\(453\) 5.97846 1.04484i 0.280893 0.0490910i
\(454\) 19.3322i 0.907304i
\(455\) 0 0
\(456\) −3.38982 7.29830i −0.158743 0.341774i
\(457\) −6.74076 + 25.1569i −0.315320 + 1.17679i 0.608372 + 0.793652i \(0.291823\pi\)
−0.923692 + 0.383137i \(0.874844\pi\)
\(458\) 29.1534 + 7.81163i 1.36225 + 0.365014i
\(459\) −6.97330 7.03688i −0.325486 0.328453i
\(460\) 0 0
\(461\) −6.68465 + 11.5782i −0.311335 + 0.539249i −0.978652 0.205526i \(-0.934110\pi\)
0.667316 + 0.744774i \(0.267443\pi\)
\(462\) 0.616910 0.516061i 0.0287012 0.0240093i
\(463\) −3.79477 + 3.79477i −0.176358 + 0.176358i −0.789766 0.613408i \(-0.789798\pi\)
0.613408 + 0.789766i \(0.289798\pi\)
\(464\) 8.28050 14.3422i 0.384412 0.665822i
\(465\) 0 0
\(466\) 28.4115 16.4034i 1.31614 0.759871i
\(467\) −15.8650 15.8650i −0.734143 0.734143i 0.237294 0.971438i \(-0.423739\pi\)
−0.971438 + 0.237294i \(0.923739\pi\)
\(468\) −27.6499 9.77990i −1.27812 0.452076i
\(469\) 4.03897i 0.186502i
\(470\) 0 0
\(471\) 2.54688 + 1.78909i 0.117354 + 0.0824369i
\(472\) −0.804345 3.00186i −0.0370230 0.138172i
\(473\) 2.61922 + 2.61922i 0.120432 + 0.120432i
\(474\) −53.9147 4.79912i −2.47638 0.220431i
\(475\) 0 0
\(476\) −2.16050 −0.0990261
\(477\) −12.9191 + 27.4876i −0.591524 + 1.25857i
\(478\) −1.20522 + 4.49794i −0.0551254 + 0.205731i
\(479\) 17.3730 10.0303i 0.793793 0.458297i −0.0475029 0.998871i \(-0.515126\pi\)
0.841296 + 0.540574i \(0.181793\pi\)
\(480\) 0 0
\(481\) −11.0154 + 24.3901i −0.502260 + 1.11209i
\(482\) −7.97957 7.97957i −0.363460 0.363460i
\(483\) 0.724531 + 4.14568i 0.0329673 + 0.188635i
\(484\) 25.2145 14.5576i 1.14611 0.661709i
\(485\) 0 0
\(486\) 19.1974 + 27.8628i 0.870810 + 1.26388i
\(487\) 27.5972 7.39466i 1.25055 0.335084i 0.428001 0.903778i \(-0.359218\pi\)
0.822549 + 0.568694i \(0.192551\pi\)
\(488\) 16.0976 4.31335i 0.728705 0.195256i
\(489\) 12.2554 5.69223i 0.554208 0.257411i
\(490\) 0 0
\(491\) 25.1585 14.5253i 1.13539 0.655516i 0.190103 0.981764i \(-0.439118\pi\)
0.945284 + 0.326248i \(0.105785\pi\)
\(492\) −16.4097 + 2.86788i −0.739806 + 0.129294i
\(493\) −10.7805 10.7805i −0.485528 0.485528i
\(494\) 19.1229 13.7384i 0.860379 0.618118i
\(495\) 0 0
\(496\) 5.53852 3.19767i 0.248687 0.143580i
\(497\) 0.635208 2.37063i 0.0284930 0.106337i
\(498\) −25.1079 + 21.0034i −1.12511 + 0.941186i
\(499\) −20.0887 −0.899294 −0.449647 0.893206i \(-0.648450\pi\)
−0.449647 + 0.893206i \(0.648450\pi\)
\(500\) 0 0
\(501\) −0.350205 + 3.93431i −0.0156460 + 0.175772i
\(502\) −5.33523 5.33523i −0.238123 0.238123i
\(503\) 2.45860 + 9.17562i 0.109624 + 0.409121i 0.998829 0.0483882i \(-0.0154085\pi\)
−0.889205 + 0.457509i \(0.848742\pi\)
\(504\) 1.90567 + 0.341970i 0.0848855 + 0.0152325i
\(505\) 0 0
\(506\) 6.45976i 0.287171i
\(507\) 3.40504 22.2577i 0.151223 0.988500i
\(508\) −33.9771 33.9771i −1.50749 1.50749i
\(509\) −35.0026 + 20.2088i −1.55146 + 0.895738i −0.553441 + 0.832888i \(0.686686\pi\)
−0.998023 + 0.0628499i \(0.979981\pi\)
\(510\) 0 0
\(511\) −0.621201 + 1.07595i −0.0274803 + 0.0475973i
\(512\) 15.6287 15.6287i 0.690696 0.690696i
\(513\) −15.6333 0.0709447i −0.690229 0.00313228i
\(514\) −4.32863 + 7.49740i −0.190927 + 0.330696i
\(515\) 0 0
\(516\) −3.01307 + 33.8497i −0.132643 + 1.49015i
\(517\) 3.60335 + 0.965514i 0.158475 + 0.0424632i
\(518\) 1.74272 6.50391i 0.0765707 0.285766i
\(519\) 35.5815 16.5264i 1.56185 0.725430i
\(520\) 0 0
\(521\) 3.29710i 0.144448i −0.997388 0.0722242i \(-0.976990\pi\)
0.997388 0.0722242i \(-0.0230097\pi\)
\(522\) 29.7377 + 42.7445i 1.30158 + 1.87088i
\(523\) −2.08910 + 7.79663i −0.0913500 + 0.340923i −0.996441 0.0842956i \(-0.973136\pi\)
0.905091 + 0.425218i \(0.139803\pi\)
\(524\) 4.91969 8.52115i 0.214918 0.372248i
\(525\) 0 0
\(526\) 45.4018 + 26.2127i 1.97961 + 1.14293i
\(527\) −1.52379 5.68687i −0.0663774 0.247724i
\(528\) 1.72452 + 0.630630i 0.0750501 + 0.0274446i
\(529\) 9.35384 + 5.40044i 0.406689 + 0.234802i
\(530\) 0 0
\(531\) −5.94264 1.06640i −0.257889 0.0462776i
\(532\) −2.41080 + 2.41080i −0.104521 + 0.104521i
\(533\) −4.51953 11.9641i −0.195763 0.518224i
\(534\) 19.1952 + 41.3272i 0.830655 + 1.78840i
\(535\) 0 0
\(536\) −12.9242 + 7.46177i −0.558239 + 0.322299i
\(537\) −13.0158 + 10.8880i −0.561672 + 0.469853i
\(538\) 38.0818 38.0818i 1.64182 1.64182i
\(539\) 3.02573 + 1.74691i 0.130328 + 0.0752447i
\(540\) 0 0
\(541\) 20.9027i 0.898677i −0.893362 0.449338i \(-0.851660\pi\)
0.893362 0.449338i \(-0.148340\pi\)
\(542\) −45.3710 + 12.1571i −1.94885 + 0.522193i
\(543\) −0.449571 2.57239i −0.0192929 0.110392i
\(544\) −7.22944 12.5218i −0.309960 0.536866i
\(545\) 0 0
\(546\) 0.0600909 + 5.66485i 0.00257165 + 0.242433i
\(547\) 4.29605 4.29605i 0.183686 0.183686i −0.609274 0.792960i \(-0.708539\pi\)
0.792960 + 0.609274i \(0.208539\pi\)
\(548\) 2.70600 10.0989i 0.115594 0.431404i
\(549\) 5.71861 31.8678i 0.244064 1.36008i
\(550\) 0 0
\(551\) −24.0589 −1.02494
\(552\) 11.9271 9.97731i 0.507651 0.424663i
\(553\) 1.55735 + 5.81209i 0.0662251 + 0.247155i
\(554\) 0.965776i 0.0410319i
\(555\) 0 0
\(556\) −10.6843 18.5057i −0.453113 0.784815i
\(557\) −18.7339 5.01972i −0.793779 0.212692i −0.160928 0.986966i \(-0.551449\pi\)
−0.632851 + 0.774274i \(0.718115\pi\)
\(558\) 1.69194 + 20.0370i 0.0716257 + 0.848234i
\(559\) −25.9617 + 2.58877i −1.09806 + 0.109493i
\(560\) 0 0
\(561\) 0.971664 1.38322i 0.0410237 0.0583997i
\(562\) 21.4095 + 5.73665i 0.903104 + 0.241986i
\(563\) −10.7184 40.0016i −0.451727 1.68587i −0.697536 0.716550i \(-0.745720\pi\)
0.245809 0.969318i \(-0.420946\pi\)
\(564\) 14.4172 + 31.0403i 0.607074 + 1.30703i
\(565\) 0 0
\(566\) −8.98063 + 15.5549i −0.377484 + 0.653822i
\(567\) 2.17604 3.06803i 0.0913851 0.128845i
\(568\) −8.75920 + 2.34702i −0.367528 + 0.0984788i
\(569\) −8.79437 15.2323i −0.368679 0.638571i 0.620680 0.784064i \(-0.286857\pi\)
−0.989359 + 0.145493i \(0.953523\pi\)
\(570\) 0 0
\(571\) −28.6479 −1.19888 −0.599439 0.800420i \(-0.704610\pi\)
−0.599439 + 0.800420i \(0.704610\pi\)
\(572\) 0.809199 4.93847i 0.0338343 0.206488i
\(573\) 2.67343 7.31076i 0.111684 0.305411i
\(574\) 1.60889 + 2.78668i 0.0671537 + 0.116314i
\(575\) 0 0
\(576\) 12.5350 + 34.7665i 0.522292 + 1.44861i
\(577\) 7.73617 + 7.73617i 0.322061 + 0.322061i 0.849557 0.527496i \(-0.176869\pi\)
−0.527496 + 0.849557i \(0.676869\pi\)
\(578\) 28.0214 7.50830i 1.16554 0.312304i
\(579\) 2.43285 27.3314i 0.101106 1.13585i
\(580\) 0 0
\(581\) 3.15141 + 1.81947i 0.130743 + 0.0754842i
\(582\) 10.4909 + 60.0275i 0.434860 + 2.48822i
\(583\) −5.00582 1.34131i −0.207320 0.0555512i
\(584\) 4.59053 0.189958
\(585\) 0 0
\(586\) −38.4926 −1.59011
\(587\) −27.6328 7.40419i −1.14053 0.305604i −0.361365 0.932425i \(-0.617689\pi\)
−0.779163 + 0.626821i \(0.784356\pi\)
\(588\) 5.51836 + 31.5754i 0.227573 + 1.30215i
\(589\) −8.04606 4.64539i −0.331532 0.191410i
\(590\) 0 0
\(591\) −1.89039 + 21.2372i −0.0777601 + 0.873580i
\(592\) 14.8484 3.97861i 0.610265 0.163520i
\(593\) −0.767325 0.767325i −0.0315103 0.0315103i 0.691176 0.722686i \(-0.257093\pi\)
−0.722686 + 0.691176i \(0.757093\pi\)
\(594\) −4.10092 + 4.06387i −0.168263 + 0.166742i
\(595\) 0 0
\(596\) 7.47792 + 12.9521i 0.306308 + 0.530540i
\(597\) −13.4085 + 36.6669i −0.548773 + 1.50068i
\(598\) 35.2070 + 28.8223i 1.43972 + 1.17863i
\(599\) 28.3284 1.15747 0.578734 0.815516i \(-0.303547\pi\)
0.578734 + 0.815516i \(0.303547\pi\)
\(600\) 0 0
\(601\) 8.57196 + 14.8471i 0.349658 + 0.605625i 0.986189 0.165626i \(-0.0529646\pi\)
−0.636531 + 0.771251i \(0.719631\pi\)
\(602\) 6.34067 1.69898i 0.258426 0.0692451i
\(603\) 2.43948 + 28.8898i 0.0993435 + 1.17648i
\(604\) −4.75039 + 8.22792i −0.193291 + 0.334789i
\(605\) 0 0
\(606\) −13.8386 29.7945i −0.562153 1.21032i
\(607\) −2.05233 7.65942i −0.0833017 0.310886i 0.911685 0.410889i \(-0.134782\pi\)
−0.994987 + 0.100003i \(0.968115\pi\)
\(608\) −22.0395 5.90546i −0.893819 0.239498i
\(609\) 3.32732 4.73664i 0.134830 0.191938i
\(610\) 0 0
\(611\) −21.3397 + 15.3310i −0.863313 + 0.620226i
\(612\) 15.4535 1.30491i 0.624671 0.0527479i
\(613\) 36.5885 + 9.80387i 1.47780 + 0.395975i 0.905597 0.424139i \(-0.139423\pi\)
0.572200 + 0.820114i \(0.306090\pi\)
\(614\) 27.7137 + 48.0016i 1.11843 + 1.93719i
\(615\) 0 0
\(616\) 0.330359i 0.0133105i
\(617\) −0.539359 2.01292i −0.0217138 0.0810369i 0.954219 0.299110i \(-0.0966896\pi\)
−0.975933 + 0.218073i \(0.930023\pi\)
\(618\) −32.7900 + 27.4297i −1.31901 + 1.10338i
\(619\) −30.7890 −1.23751 −0.618757 0.785583i \(-0.712363\pi\)
−0.618757 + 0.785583i \(0.712363\pi\)
\(620\) 0 0
\(621\) −7.68634 29.2155i −0.308442 1.17238i
\(622\) 14.5851 54.4324i 0.584810 2.18254i
\(623\) 3.58185 3.58185i 0.143504 0.143504i
\(624\) −11.1315 + 6.58521i −0.445619 + 0.263620i
\(625\) 0 0
\(626\) 1.91820 + 3.32241i 0.0766665 + 0.132790i
\(627\) −0.459239 2.62771i −0.0183403 0.104941i
\(628\) −4.70636 + 1.26106i −0.187804 + 0.0503219i
\(629\) 14.1515i 0.564256i
\(630\) 0 0
\(631\) −25.0094 14.4392i −0.995608 0.574815i −0.0886624 0.996062i \(-0.528259\pi\)
−0.906946 + 0.421247i \(0.861593\pi\)
\(632\) 15.7208 15.7208i 0.625340 0.625340i
\(633\) 5.28858 4.42403i 0.210202 0.175840i
\(634\) 33.7616 19.4923i 1.34084 0.774137i
\(635\) 0 0
\(636\) −20.0286 43.1216i −0.794185 1.70988i
\(637\) −23.0213 + 8.69645i −0.912136 + 0.344566i
\(638\) −6.28259 + 6.28259i −0.248730 + 0.248730i
\(639\) −3.11167 + 17.3402i −0.123096 + 0.685968i
\(640\) 0 0
\(641\) −36.8548 21.2782i −1.45568 0.840437i −0.456885 0.889526i \(-0.651035\pi\)
−0.998794 + 0.0490894i \(0.984368\pi\)
\(642\) −42.6115 15.5824i −1.68174 0.614986i
\(643\) −11.0203 41.1282i −0.434597 1.62194i −0.742029 0.670368i \(-0.766136\pi\)
0.307432 0.951570i \(-0.400530\pi\)
\(644\) −5.70554 3.29409i −0.224830 0.129806i
\(645\) 0 0
\(646\) −6.22546 + 10.7828i −0.244938 + 0.424244i
\(647\) 0.566681 2.11488i 0.0222785 0.0831446i −0.953892 0.300152i \(-0.902963\pi\)
0.976170 + 0.217007i \(0.0696294\pi\)
\(648\) −13.8374 1.29503i −0.543584 0.0508735i
\(649\) 1.03019i 0.0404385i
\(650\) 0 0
\(651\) 2.02733 0.941629i 0.0794574 0.0369054i
\(652\) −5.47493 + 20.4327i −0.214415 + 0.800207i
\(653\) 20.0829 + 5.38119i 0.785904 + 0.210582i 0.629386 0.777093i \(-0.283306\pi\)
0.156518 + 0.987675i \(0.449973\pi\)
\(654\) −4.69969 + 52.7977i −0.183772 + 2.06455i
\(655\) 0 0
\(656\) −3.67308 + 6.36196i −0.143410 + 0.248393i
\(657\) 3.79345 8.07123i 0.147996 0.314889i
\(658\) 4.67468 4.67468i 0.182238 0.182238i
\(659\) −6.20566 + 10.7485i −0.241738 + 0.418703i −0.961210 0.275819i \(-0.911051\pi\)
0.719471 + 0.694522i \(0.244384\pi\)
\(660\) 0 0
\(661\) 6.32611 3.65238i 0.246057 0.142061i −0.371900 0.928273i \(-0.621294\pi\)
0.617957 + 0.786212i \(0.287960\pi\)
\(662\) 13.7286 + 13.7286i 0.533578 + 0.533578i
\(663\) 3.20344 + 11.4674i 0.124411 + 0.445359i
\(664\) 13.4454i 0.521785i
\(665\) 0 0
\(666\) −8.53698 + 47.5736i −0.330801 + 1.84344i
\(667\) −12.0327 44.9065i −0.465906 1.73879i
\(668\) −4.37225 4.37225i −0.169167 0.169167i
\(669\) −2.15487 + 24.2084i −0.0833120 + 0.935952i
\(670\) 0 0
\(671\) 5.52445 0.213269
\(672\) 4.21069 3.52234i 0.162431 0.135877i
\(673\) 0.383129 1.42986i 0.0147685 0.0551169i −0.958148 0.286272i \(-0.907584\pi\)
0.972917 + 0.231155i \(0.0742505\pi\)
\(674\) 2.88866 1.66777i 0.111267 0.0642400i
\(675\) 0 0
\(676\) 23.3051 + 26.4448i 0.896351 + 1.01711i
\(677\) 13.3487 + 13.3487i 0.513033 + 0.513033i 0.915455 0.402421i \(-0.131831\pi\)
−0.402421 + 0.915455i \(0.631831\pi\)
\(678\) −12.4658 + 2.17862i −0.478746 + 0.0836693i
\(679\) 5.86653 3.38704i 0.225137 0.129983i
\(680\) 0 0
\(681\) 13.9909 6.49834i 0.536134 0.249017i
\(682\) −3.31417 + 0.888028i −0.126906 + 0.0340044i
\(683\) 10.7061 2.86868i 0.409656 0.109767i −0.0481050 0.998842i \(-0.515318\pi\)
0.457761 + 0.889075i \(0.348652\pi\)
\(684\) 15.7878 18.7000i 0.603662 0.715012i
\(685\) 0 0
\(686\) 10.8614 6.27085i 0.414691 0.239422i
\(687\) 4.14627 + 23.7245i 0.158190 + 0.905145i
\(688\) 10.5969 + 10.5969i 0.404005 + 0.404005i
\(689\) 29.6454 21.2980i 1.12940 0.811391i
\(690\) 0 0
\(691\) 7.29352 4.21092i 0.277459 0.160191i −0.354814 0.934937i \(-0.615456\pi\)
0.632272 + 0.774746i \(0.282122\pi\)
\(692\) −15.8956 + 59.3230i −0.604258 + 2.25512i
\(693\) 0.580848 + 0.272996i 0.0220646 + 0.0103703i
\(694\) −77.2248 −2.93141
\(695\) 0 0
\(696\) −21.3036 1.89630i −0.807512 0.0718792i
\(697\) 4.78202 + 4.78202i 0.181132 + 0.181132i
\(698\) 0.651792 + 2.43252i 0.0246707 + 0.0920722i
\(699\) 21.4216 + 15.0479i 0.810238 + 0.569163i
\(700\) 0 0
\(701\) 9.61731i 0.363241i −0.983369 0.181620i \(-0.941866\pi\)
0.983369 0.181620i \(-0.0581342\pi\)
\(702\) −3.85131 40.4831i −0.145358 1.52793i
\(703\) −15.7910 15.7910i −0.595569 0.595569i
\(704\) −5.46116 + 3.15300i −0.205825 + 0.118833i
\(705\) 0 0
\(706\) 34.0922 59.0493i 1.28308 2.22235i
\(707\) −2.58230 + 2.58230i −0.0971174 + 0.0971174i
\(708\) 7.24942 6.06432i 0.272450 0.227911i
\(709\) 15.7072 27.2057i 0.589896 1.02173i −0.404349 0.914605i \(-0.632502\pi\)
0.994246 0.107125i \(-0.0341647\pi\)
\(710\) 0 0
\(711\) −14.6498 40.6319i −0.549409 1.52382i
\(712\) −18.0787 4.84417i −0.677528 0.181543i
\(713\) 4.64664 17.3415i 0.174018 0.649443i
\(714\) −1.26191 2.71690i −0.0472259 0.101677i
\(715\) 0 0
\(716\) 26.5646i 0.992764i
\(717\) −3.66034 + 0.639709i −0.136698 + 0.0238904i
\(718\) 10.4164 38.8745i 0.388736 1.45078i
\(719\) −6.02748 + 10.4399i −0.224787 + 0.389342i −0.956256 0.292533i \(-0.905502\pi\)
0.731469 + 0.681875i \(0.238835\pi\)
\(720\) 0 0
\(721\) 4.11563 + 2.37616i 0.153274 + 0.0884927i
\(722\) −5.58862 20.8570i −0.207987 0.776218i
\(723\) 3.09265 8.45717i 0.115017 0.314526i
\(724\) 3.54028 + 2.04398i 0.131573 + 0.0759640i
\(725\) 0 0
\(726\) 33.0341 + 23.2053i 1.22601 + 0.861229i
\(727\) 1.96600 1.96600i 0.0729151 0.0729151i −0.669709 0.742624i \(-0.733581\pi\)
0.742624 + 0.669709i \(0.233581\pi\)
\(728\) −1.80052 1.47400i −0.0667317 0.0546301i
\(729\) −13.7117 + 23.2592i −0.507839 + 0.861452i
\(730\) 0 0
\(731\) 11.9479 6.89814i 0.441910 0.255137i
\(732\) 32.5203 + 38.8754i 1.20198 + 1.43688i
\(733\) 29.6853 29.6853i 1.09645 1.09645i 0.101628 0.994822i \(-0.467595\pi\)
0.994822 0.101628i \(-0.0324051\pi\)
\(734\) 11.5077 + 6.64398i 0.424757 + 0.245234i
\(735\) 0 0
\(736\) 44.0907i 1.62521i
\(737\) −4.77844 + 1.28038i −0.176016 + 0.0471634i
\(738\) −13.1911 18.9607i −0.485572 0.697953i
\(739\) 16.6414 + 28.8238i 0.612164 + 1.06030i 0.990875 + 0.134784i \(0.0430340\pi\)
−0.378711 + 0.925515i \(0.623633\pi\)
\(740\) 0 0
\(741\) 16.3706 + 9.22144i 0.601389 + 0.338758i
\(742\) −6.49413 + 6.49413i −0.238407 + 0.238407i
\(743\) −0.258881 + 0.966155i −0.00949741 + 0.0354448i −0.970512 0.241053i \(-0.922507\pi\)
0.961015 + 0.276498i \(0.0891739\pi\)
\(744\) −6.75847 4.74758i −0.247777 0.174055i
\(745\) 0 0
\(746\) −56.3871 −2.06448
\(747\) −23.6402 11.1108i −0.864951 0.406524i
\(748\) 0.684891 + 2.55605i 0.0250421 + 0.0934584i
\(749\) 5.04369i 0.184292i
\(750\) 0 0
\(751\) −8.71518 15.0951i −0.318022 0.550829i 0.662054 0.749456i \(-0.269685\pi\)
−0.980075 + 0.198627i \(0.936352\pi\)
\(752\) 14.5786 + 3.90632i 0.531626 + 0.142449i
\(753\) 2.06778 5.65456i 0.0753542 0.206063i
\(754\) −6.20956 62.2731i −0.226139 2.26785i
\(755\) 0 0
\(756\) 1.49816 + 5.69444i 0.0544874 + 0.207105i
\(757\) −15.6903 4.20419i −0.570272 0.152804i −0.0378509 0.999283i \(-0.512051\pi\)
−0.532422 + 0.846479i \(0.678718\pi\)
\(758\) −12.2523 45.7262i −0.445024 1.66085i
\(759\) 4.67501 2.17139i 0.169692 0.0788164i
\(760\) 0 0
\(761\) 7.90134 13.6855i 0.286423 0.496100i −0.686530 0.727101i \(-0.740867\pi\)
0.972953 + 0.231002i \(0.0742003\pi\)
\(762\) 22.8819 62.5730i 0.828925 2.26678i
\(763\) 5.69167 1.52508i 0.206052 0.0552116i
\(764\) 6.09289 + 10.5532i 0.220433 + 0.381801i
\(765\) 0 0
\(766\) 25.8276 0.933190
\(767\) 5.61473 + 4.59652i 0.202736 + 0.165971i
\(768\) −0.780830 0.285537i −0.0281758 0.0103034i
\(769\) 8.96855 + 15.5340i 0.323414 + 0.560170i 0.981190 0.193044i \(-0.0618360\pi\)
−0.657776 + 0.753214i \(0.728503\pi\)
\(770\) 0 0
\(771\) −6.88099 0.612498i −0.247813 0.0220586i
\(772\) 30.3737 + 30.3737i 1.09317 + 1.09317i
\(773\) 15.7622 4.22347i 0.566927 0.151908i 0.0360399 0.999350i \(-0.488526\pi\)
0.530887 + 0.847443i \(0.321859\pi\)
\(774\) −44.3271 + 15.9821i −1.59331 + 0.574463i
\(775\) 0 0
\(776\) −21.6762 12.5147i −0.778129 0.449253i
\(777\) 5.29276 0.925004i 0.189877 0.0331843i
\(778\) 39.1060 + 10.4784i 1.40202 + 0.375670i
\(779\) 10.6721 0.382367
\(780\) 0 0
\(781\) −3.00602 −0.107564
\(782\) −23.2400 6.22713i −0.831059 0.222682i
\(783\) −20.9387 + 35.8897i −0.748287 + 1.28259i
\(784\) 12.2416 + 7.06771i 0.437201 + 0.252418i
\(785\) 0 0
\(786\) 13.5892 + 1.20961i 0.484710 + 0.0431455i
\(787\) 7.64525 2.04854i 0.272524 0.0730225i −0.119969 0.992778i \(-0.538280\pi\)
0.392493 + 0.919755i \(0.371613\pi\)
\(788\) −23.6011 23.6011i −0.840754 0.840754i
\(789\) −3.70909 + 41.6690i −0.132047 + 1.48346i
\(790\) 0 0
\(791\) 0.703381 + 1.21829i 0.0250093 + 0.0433174i
\(792\) −0.199532 2.36298i −0.00709007 0.0839648i
\(793\) −24.6491 + 30.1093i −0.875315 + 1.06921i
\(794\) −37.7598 −1.34005
\(795\) 0 0
\(796\) −30.5587 52.9292i −1.08312 1.87603i
\(797\) 6.26020 1.67742i 0.221748 0.0594171i −0.146234 0.989250i \(-0.546715\pi\)
0.367982 + 0.929833i \(0.380049\pi\)
\(798\) −4.43978 1.62356i −0.157167 0.0574733i
\(799\) 6.94716 12.0328i 0.245773 0.425691i
\(800\) 0 0
\(801\) −23.4568 + 27.7835i −0.828804 + 0.981683i
\(802\) 2.95802 + 11.0395i 0.104451 + 0.389817i
\(803\) 1.46987 + 0.393850i 0.0518705 + 0.0138986i
\(804\) −37.1388 26.0887i −1.30979 0.920078i
\(805\) 0 0
\(806\) 9.94729 22.0251i 0.350378 0.775801i
\(807\) 40.3611 + 14.7594i 1.42078 + 0.519556i
\(808\) 13.0337 + 3.49236i 0.458523 + 0.122861i
\(809\) 7.98528 + 13.8309i 0.280748 + 0.486269i 0.971569 0.236756i \(-0.0760843\pi\)
−0.690821 + 0.723025i \(0.742751\pi\)
\(810\) 0 0
\(811\) 8.00665i 0.281151i 0.990070 + 0.140576i \(0.0448953\pi\)
−0.990070 + 0.140576i \(0.955105\pi\)
\(812\) 2.34531 + 8.75280i 0.0823041 + 0.307163i
\(813\) −24.0493 28.7490i −0.843445 1.00827i
\(814\) −8.24713 −0.289062
\(815\) 0 0
\(816\) 3.93120 5.59630i 0.137619 0.195910i
\(817\) 5.63483 21.0295i 0.197138 0.735728i
\(818\) −15.2754 + 15.2754i −0.534092 + 0.534092i
\(819\) −4.07952 + 1.94768i −0.142550 + 0.0680573i
\(820\) 0 0
\(821\) −25.1045 43.4822i −0.876152 1.51754i −0.855530 0.517753i \(-0.826769\pi\)
−0.0206220 0.999787i \(-0.506565\pi\)
\(822\) 14.2803 2.49573i 0.498082 0.0870487i
\(823\) −47.1413 + 12.6315i −1.64324 + 0.440306i −0.957710 0.287735i \(-0.907098\pi\)
−0.685534 + 0.728041i \(0.740431\pi\)
\(824\) 17.5593i 0.611706i
\(825\) 0 0
\(826\) −1.58107 0.912833i −0.0550126 0.0317615i
\(827\) −30.0940 + 30.0940i −1.04647 + 1.04647i −0.0476050 + 0.998866i \(0.515159\pi\)
−0.998866 + 0.0476050i \(0.984841\pi\)
\(828\) 42.8000 + 20.1158i 1.48740 + 0.699073i
\(829\) 9.32181 5.38195i 0.323760 0.186923i −0.329307 0.944223i \(-0.606815\pi\)
0.653067 + 0.757300i \(0.273482\pi\)
\(830\) 0 0
\(831\) 0.698944 0.324637i 0.0242461 0.0112615i
\(832\) 7.18224 43.8325i 0.248999 1.51962i
\(833\) 9.20153 9.20153i 0.318814 0.318814i
\(834\) 17.0310 24.2447i 0.589737 0.839526i
\(835\) 0 0
\(836\) 3.61642 + 2.08794i 0.125076 + 0.0722129i
\(837\) −13.9323 + 7.95974i −0.481571 + 0.275129i
\(838\) 9.74504 + 36.3690i 0.336637 + 1.25635i
\(839\) 24.9640 + 14.4130i 0.861854 + 0.497592i 0.864633 0.502405i \(-0.167551\pi\)
−0.00277877 + 0.999996i \(0.500885\pi\)
\(840\) 0 0
\(841\) −17.4722 + 30.2628i −0.602490 + 1.04354i
\(842\) 5.59258 20.8718i 0.192733 0.719289i
\(843\) 3.04491 + 17.4226i 0.104872 + 0.600067i
\(844\) 10.7937i 0.371536i
\(845\) 0 0
\(846\) −30.6134 + 36.2603i −1.05251 + 1.24666i
\(847\) 1.16151 4.33481i 0.0399099 0.148946i
\(848\) −20.2528 5.42671i −0.695482 0.186354i
\(849\) −14.2760 1.27075i −0.489952 0.0436122i
\(850\) 0 0
\(851\) 21.5767 37.3719i 0.739639 1.28109i
\(852\) −17.6953 21.1533i −0.606230 0.724700i
\(853\) −18.6086 + 18.6086i −0.637146 + 0.637146i −0.949851 0.312704i \(-0.898765\pi\)
0.312704 + 0.949851i \(0.398765\pi\)
\(854\) 4.89512 8.47859i 0.167507 0.290131i
\(855\) 0 0
\(856\) 16.1391 9.31793i 0.551624 0.318480i
\(857\) −4.26135 4.26135i −0.145565 0.145565i 0.630569 0.776134i \(-0.282822\pi\)
−0.776134 + 0.630569i \(0.782822\pi\)
\(858\) 6.68294 1.86689i 0.228152 0.0637345i
\(859\) 29.4002i 1.00312i −0.865122 0.501561i \(-0.832759\pi\)
0.865122 0.501561i \(-0.167241\pi\)
\(860\) 0 0
\(861\) −1.47594 + 2.10109i −0.0502999 + 0.0716049i
\(862\) −7.08562 26.4439i −0.241337 0.900683i
\(863\) −23.1832 23.1832i −0.789164 0.789164i 0.192193 0.981357i \(-0.438440\pi\)
−0.981357 + 0.192193i \(0.938440\pi\)
\(864\) −27.9906 + 27.7377i −0.952260 + 0.943656i
\(865\) 0 0
\(866\) 49.0756 1.66766
\(867\) 14.8530 + 17.7556i 0.504433 + 0.603011i
\(868\) −0.905684 + 3.38006i −0.0307409 + 0.114727i
\(869\) 6.38250 3.68494i 0.216512 0.125003i
\(870\) 0 0
\(871\) 14.3422 31.7563i 0.485968 1.07602i
\(872\) −15.3951 15.3951i −0.521343 0.521343i
\(873\) −39.9162 + 27.7700i −1.35096 + 0.939874i
\(874\) −32.8810 + 18.9839i −1.11222 + 0.642139i
\(875\) 0 0
\(876\) 5.88102 + 12.6619i 0.198701 + 0.427805i
\(877\) −43.6039 + 11.6836i −1.47240 + 0.394529i −0.903754 0.428053i \(-0.859200\pi\)
−0.568647 + 0.822582i \(0.692533\pi\)
\(878\) −24.9258 + 6.67885i −0.841205 + 0.225400i
\(879\) −12.9389 27.8576i −0.436419 0.939612i
\(880\) 0 0
\(881\) −12.6778 + 7.31952i −0.427125 + 0.246601i −0.698121 0.715980i \(-0.745980\pi\)
0.270996 + 0.962580i \(0.412647\pi\)
\(882\) −36.4840 + 25.3823i −1.22848 + 0.854665i
\(883\) −8.31854 8.31854i −0.279941 0.279941i 0.553144 0.833086i \(-0.313428\pi\)
−0.833086 + 0.553144i \(0.813428\pi\)
\(884\) −16.9868 7.67183i −0.571329 0.258032i
\(885\) 0 0
\(886\) −37.2706 + 21.5182i −1.25213 + 0.722917i
\(887\) 13.7391 51.2751i 0.461314 1.72165i −0.207515 0.978232i \(-0.566538\pi\)
0.668829 0.743416i \(-0.266796\pi\)
\(888\) −12.7380 15.2272i −0.427458 0.510992i
\(889\) −7.40642 −0.248403
\(890\) 0 0
\(891\) −4.31956 1.60185i −0.144711 0.0536641i
\(892\) −26.9031 26.9031i −0.900782 0.900782i
\(893\) −5.67488 21.1789i −0.189903 0.708726i
\(894\) −11.9201 + 16.9689i −0.398666 + 0.567525i
\(895\) 0 0
\(896\) 4.83633i 0.161571i
\(897\) −9.02455 + 35.1681i −0.301321 + 1.17423i
\(898\) 6.54654 + 6.54654i 0.218461 + 0.218461i
\(899\) −21.3850 + 12.3467i −0.713231 + 0.411784i
\(900\) 0 0
\(901\) −9.65110 + 16.7162i −0.321525 + 0.556897i
\(902\) 2.78684 2.78684i 0.0927918 0.0927918i
\(903\) 3.36093 + 4.01772i 0.111845 + 0.133701i
\(904\) 2.59891 4.50145i 0.0864385 0.149716i
\(905\) 0 0
\(906\) −13.1215 1.16799i −0.435934 0.0388039i
\(907\) −16.3128 4.37099i −0.541657 0.145136i −0.0223908 0.999749i \(-0.507128\pi\)
−0.519266 + 0.854613i \(0.673794\pi\)
\(908\) −6.25027 + 23.3263i −0.207422 + 0.774111i
\(909\) 16.9109 20.0303i 0.560900 0.664362i
\(910\) 0 0
\(911\) 52.3968i 1.73598i 0.496579 + 0.867992i \(0.334589\pi\)
−0.496579 + 0.867992i \(0.665411\pi\)
\(912\) −1.85801 10.6313i −0.0615248 0.352038i
\(913\) 1.15357 4.30517i 0.0381775 0.142480i
\(914\) 28.2656 48.9575i 0.934945 1.61937i
\(915\) 0 0
\(916\) −32.6511 18.8511i −1.07882 0.622858i
\(917\) −0.392528 1.46493i −0.0129624 0.0483764i
\(918\) 10.6671 + 18.6712i 0.352068 + 0.616241i
\(919\) 12.0636 + 6.96489i 0.397940 + 0.229751i 0.685595 0.727983i \(-0.259542\pi\)
−0.287655 + 0.957734i \(0.592876\pi\)
\(920\) 0 0
\(921\) −25.4236 + 36.1920i −0.837736 + 1.19257i
\(922\) 20.5197 20.5197i 0.675779 0.675779i
\(923\) 13.4123 16.3834i 0.441472 0.539266i
\(924\) −0.911214 + 0.423229i −0.0299767 + 0.0139232i
\(925\) 0 0
\(926\) 10.0880 5.82433i 0.331514 0.191400i
\(927\) −30.8733 14.5103i −1.01401 0.476581i
\(928\) −42.8815 + 42.8815i −1.40765 + 1.40765i
\(929\) 0.125289 + 0.0723356i 0.00411060 + 0.00237325i 0.502054 0.864836i \(-0.332578\pi\)
−0.497943 + 0.867210i \(0.665911\pi\)
\(930\) 0 0
\(931\) 20.5352i 0.673013i
\(932\) −39.5848 + 10.6067i −1.29664 + 0.347434i
\(933\) 44.2961 7.74152i 1.45019 0.253446i
\(934\) 24.3501 + 42.1756i 0.796759 + 1.38003i
\(935\) 0 0
\(936\) 13.7690 + 9.45570i 0.450053 + 0.309069i
\(937\) −35.9634 + 35.9634i −1.17487 + 1.17487i −0.193841 + 0.981033i \(0.562095\pi\)
−0.981033 + 0.193841i \(0.937905\pi\)
\(938\) −2.26904 + 8.46819i −0.0740869 + 0.276496i
\(939\) −1.75969 + 2.50502i −0.0574252 + 0.0817482i
\(940\) 0 0
\(941\) 28.4119 0.926201 0.463101 0.886306i \(-0.346737\pi\)
0.463101 + 0.886306i \(0.346737\pi\)
\(942\) −4.33474 5.18185i −0.141234 0.168834i
\(943\) 5.33747 + 19.9197i 0.173812 + 0.648675i
\(944\) 4.16798i 0.135656i
\(945\) 0 0
\(946\) −4.02006 6.96295i −0.130704 0.226385i
\(947\) 49.3529 + 13.2241i 1.60375 + 0.429725i 0.946174 0.323659i \(-0.104913\pi\)
0.657581 + 0.753384i \(0.271580\pi\)
\(948\) 63.5022 + 23.2217i 2.06246 + 0.754207i
\(949\) −8.70484 + 6.25377i −0.282571 + 0.203006i
\(950\) 0 0
\(951\) 25.4554 + 17.8815i 0.825449 + 0.579849i
\(952\) 1.18852 + 0.318462i 0.0385200 + 0.0103214i
\(953\) 3.42531 + 12.7834i 0.110957 + 0.414095i 0.998953 0.0457555i \(-0.0145695\pi\)
−0.887996 + 0.459851i \(0.847903\pi\)
\(954\) 42.5286 50.3733i 1.37691 1.63090i
\(955\) 0 0
\(956\) 2.90845 5.03758i 0.0940659 0.162927i
\(957\) −6.65862 2.43495i −0.215243 0.0787108i
\(958\) −42.0595 + 11.2698i −1.35888 + 0.364111i
\(959\) −0.805764 1.39562i −0.0260195 0.0450671i
\(960\) 0 0
\(961\) 21.4642 0.692394
\(962\) 36.7972 44.9485i 1.18639 1.44920i
\(963\) −3.04632 36.0763i −0.0981663 1.16254i
\(964\) 7.04833 + 12.2081i 0.227011 + 0.393195i
\(965\) 0 0
\(966\) 0.809926 9.09895i 0.0260589 0.292754i
\(967\) 11.1974 + 11.1974i 0.360084 + 0.360084i 0.863844 0.503760i \(-0.168050\pi\)
−0.503760 + 0.863844i \(0.668050\pi\)
\(968\) −16.0166 + 4.29165i −0.514794 + 0.137939i
\(969\) −9.89629 0.880900i −0.317915 0.0282986i
\(970\) 0 0
\(971\) 28.5582 + 16.4881i 0.916478 + 0.529129i 0.882510 0.470294i \(-0.155852\pi\)
0.0339681 + 0.999423i \(0.489186\pi\)
\(972\) −14.1553 39.8261i −0.454033 1.27742i
\(973\) −3.18145 0.852466i −0.101993 0.0273288i
\(974\) −62.0152 −1.98710
\(975\) 0 0
\(976\) 22.3510 0.715439
\(977\) −18.7761 5.03105i −0.600701 0.160957i −0.0543619 0.998521i \(-0.517312\pi\)
−0.546339 + 0.837564i \(0.683979\pi\)
\(978\) −28.8927 + 5.04952i −0.923887 + 0.161466i
\(979\) −5.37310 3.10216i −0.171725 0.0991455i
\(980\) 0 0
\(981\) −39.7901 + 14.3462i −1.27040 + 0.458040i
\(982\) −60.9079 + 16.3202i −1.94365 + 0.520799i
\(983\) 33.5020 + 33.5020i 1.06855 + 1.06855i 0.997471 + 0.0710772i \(0.0226437\pi\)
0.0710772 + 0.997471i \(0.477356\pi\)
\(984\) 9.44991 + 0.841166i 0.301252 + 0.0268154i
\(985\) 0 0
\(986\) 16.5462 + 28.6589i 0.526939 + 0.912685i
\(987\) 4.95447 + 1.81177i 0.157702 + 0.0576693i
\(988\) −27.5155 + 10.3942i −0.875385 + 0.330683i
\(989\) 42.0702 1.33775
\(990\) 0 0
\(991\) 27.1809 + 47.0787i 0.863431 + 1.49551i 0.868597 + 0.495519i \(0.165022\pi\)
−0.00516644 + 0.999987i \(0.501645\pi\)
\(992\) −22.6207 + 6.06119i −0.718207 + 0.192443i
\(993\) −5.32082 + 14.5503i −0.168851 + 0.461741i
\(994\) −2.66358 + 4.61346i −0.0844837 + 0.146330i
\(995\) 0 0
\(996\) 37.0860 17.2252i 1.17511 0.545802i
\(997\) 4.05645 + 15.1389i 0.128469 + 0.479453i 0.999940 0.0109949i \(-0.00349985\pi\)
−0.871471 + 0.490448i \(0.836833\pi\)
\(998\) 42.1184 + 11.2856i 1.33323 + 0.357239i
\(999\) −37.2992 + 9.81309i −1.18009 + 0.310472i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.218.4 96
3.2 odd 2 inner 975.2.bn.d.218.21 96
5.2 odd 4 inner 975.2.bn.d.257.21 96
5.3 odd 4 195.2.bf.a.62.4 yes 96
5.4 even 2 195.2.bf.a.23.21 yes 96
13.4 even 6 inner 975.2.bn.d.368.4 96
15.2 even 4 inner 975.2.bn.d.257.4 96
15.8 even 4 195.2.bf.a.62.21 yes 96
15.14 odd 2 195.2.bf.a.23.4 yes 96
39.17 odd 6 inner 975.2.bn.d.368.21 96
65.4 even 6 195.2.bf.a.173.21 yes 96
65.17 odd 12 inner 975.2.bn.d.407.21 96
65.43 odd 12 195.2.bf.a.17.4 96
195.17 even 12 inner 975.2.bn.d.407.4 96
195.134 odd 6 195.2.bf.a.173.4 yes 96
195.173 even 12 195.2.bf.a.17.21 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.4 96 65.43 odd 12
195.2.bf.a.17.21 yes 96 195.173 even 12
195.2.bf.a.23.4 yes 96 15.14 odd 2
195.2.bf.a.23.21 yes 96 5.4 even 2
195.2.bf.a.62.4 yes 96 5.3 odd 4
195.2.bf.a.62.21 yes 96 15.8 even 4
195.2.bf.a.173.4 yes 96 195.134 odd 6
195.2.bf.a.173.21 yes 96 65.4 even 6
975.2.bn.d.218.4 96 1.1 even 1 trivial
975.2.bn.d.218.21 96 3.2 odd 2 inner
975.2.bn.d.257.4 96 15.2 even 4 inner
975.2.bn.d.257.21 96 5.2 odd 4 inner
975.2.bn.d.368.4 96 13.4 even 6 inner
975.2.bn.d.368.21 96 39.17 odd 6 inner
975.2.bn.d.407.4 96 195.17 even 12 inner
975.2.bn.d.407.21 96 65.17 odd 12 inner