Properties

Label 975.2.bn.d.218.11
Level $975$
Weight $2$
Character 975.218
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 218.11
Character \(\chi\) \(=\) 975.218
Dual form 975.2.bn.d.407.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.254998 - 0.0683265i) q^{2} +(-1.56121 - 0.750075i) q^{3} +(-1.67170 - 0.965154i) q^{4} +(0.346856 + 0.297940i) q^{6} +(-3.34011 + 0.894980i) q^{7} +(0.733676 + 0.733676i) q^{8} +(1.87477 + 2.34206i) q^{9} +(0.378689 + 0.655909i) q^{11} +(1.88593 + 2.76071i) q^{12} +(-3.19278 + 1.67516i) q^{13} +0.912873 q^{14} +(1.79335 + 3.10618i) q^{16} +(7.08724 - 1.89902i) q^{17} +(-0.318039 - 0.725316i) q^{18} +(-2.37830 + 4.11934i) q^{19} +(5.88593 + 1.10808i) q^{21} +(-0.0517490 - 0.193130i) q^{22} +(-1.15395 - 0.309199i) q^{23} +(-0.595113 - 1.69574i) q^{24} +(0.928610 - 0.209011i) q^{26} +(-1.17020 - 5.06267i) q^{27} +(6.44744 + 1.72759i) q^{28} +(-3.57287 - 6.18840i) q^{29} -3.75546i q^{31} +(-0.782155 - 2.91904i) q^{32} +(-0.0992334 - 1.30806i) q^{33} -1.93698 q^{34} +(-0.873607 - 5.72465i) q^{36} +(0.717836 - 2.67900i) q^{37} +(0.887922 - 0.887922i) q^{38} +(6.24111 - 0.220453i) q^{39} +(2.69593 + 4.66949i) q^{41} +(-1.42519 - 0.684723i) q^{42} +(-5.52432 + 1.48024i) q^{43} -1.46197i q^{44} +(0.273128 + 0.157690i) q^{46} +(2.28189 - 2.28189i) q^{47} +(-0.469938 - 6.19455i) q^{48} +(4.29318 - 2.47867i) q^{49} +(-12.4891 - 2.35119i) q^{51} +(6.95414 + 0.281170i) q^{52} +(5.30126 - 5.30126i) q^{53} +(-0.0475149 + 1.37093i) q^{54} +(-3.10719 - 1.79394i) q^{56} +(6.80285 - 4.64726i) q^{57} +(0.488244 + 1.82215i) q^{58} +(4.58287 + 2.64592i) q^{59} +(-1.28268 + 2.22167i) q^{61} +(-0.256597 + 0.957635i) q^{62} +(-8.35805 - 6.14484i) q^{63} -6.37561i q^{64} +(-0.0640708 + 0.340333i) q^{66} +(1.50179 - 5.60475i) q^{67} +(-13.6805 - 3.66569i) q^{68} +(1.56964 + 1.34827i) q^{69} +(-0.328162 + 0.568393i) q^{71} +(-0.342833 + 3.09379i) q^{72} +(8.39721 - 8.39721i) q^{73} +(-0.366094 + 0.634093i) q^{74} +(7.95159 - 4.59085i) q^{76} +(-1.85189 - 1.85189i) q^{77} +(-1.60653 - 0.370218i) q^{78} -6.35343i q^{79} +(-1.97045 + 8.78165i) q^{81} +(-0.368407 - 1.37491i) q^{82} +(2.33630 + 2.33630i) q^{83} +(-8.77001 - 7.53320i) q^{84} +1.50983 q^{86} +(0.936252 + 12.3413i) q^{87} +(-0.203390 + 0.759060i) q^{88} +(9.05197 - 5.22616i) q^{89} +(9.16501 - 8.45269i) q^{91} +(1.63062 + 1.63062i) q^{92} +(-2.81688 + 5.86307i) q^{93} +(-0.737790 + 0.425963i) q^{94} +(-0.968391 + 5.14392i) q^{96} +(-8.55305 + 2.29178i) q^{97} +(-1.26411 + 0.338717i) q^{98} +(-0.826218 + 2.11659i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.254998 0.0683265i −0.180311 0.0483141i 0.167534 0.985866i \(-0.446420\pi\)
−0.347845 + 0.937552i \(0.613086\pi\)
\(3\) −1.56121 0.750075i −0.901367 0.433056i
\(4\) −1.67170 0.965154i −0.835848 0.482577i
\(5\) 0 0
\(6\) 0.346856 + 0.297940i 0.141603 + 0.121634i
\(7\) −3.34011 + 0.894980i −1.26244 + 0.338271i −0.827131 0.562009i \(-0.810029\pi\)
−0.435312 + 0.900280i \(0.643362\pi\)
\(8\) 0.733676 + 0.733676i 0.259394 + 0.259394i
\(9\) 1.87477 + 2.34206i 0.624925 + 0.780685i
\(10\) 0 0
\(11\) 0.378689 + 0.655909i 0.114179 + 0.197764i 0.917451 0.397848i \(-0.130243\pi\)
−0.803272 + 0.595612i \(0.796910\pi\)
\(12\) 1.88593 + 2.76071i 0.544423 + 0.796948i
\(13\) −3.19278 + 1.67516i −0.885518 + 0.464605i
\(14\) 0.912873 0.243975
\(15\) 0 0
\(16\) 1.79335 + 3.10618i 0.448338 + 0.776544i
\(17\) 7.08724 1.89902i 1.71891 0.460580i 0.741327 0.671144i \(-0.234197\pi\)
0.977580 + 0.210564i \(0.0675299\pi\)
\(18\) −0.318039 0.725316i −0.0749625 0.170959i
\(19\) −2.37830 + 4.11934i −0.545620 + 0.945041i 0.452948 + 0.891537i \(0.350372\pi\)
−0.998568 + 0.0535042i \(0.982961\pi\)
\(20\) 0 0
\(21\) 5.88593 + 1.10808i 1.28442 + 0.241803i
\(22\) −0.0517490 0.193130i −0.0110329 0.0411754i
\(23\) −1.15395 0.309199i −0.240615 0.0644725i 0.136496 0.990641i \(-0.456416\pi\)
−0.377111 + 0.926168i \(0.623082\pi\)
\(24\) −0.595113 1.69574i −0.121477 0.346141i
\(25\) 0 0
\(26\) 0.928610 0.209011i 0.182115 0.0409903i
\(27\) −1.17020 5.06267i −0.225206 0.974311i
\(28\) 6.44744 + 1.72759i 1.21845 + 0.326483i
\(29\) −3.57287 6.18840i −0.663466 1.14916i −0.979699 0.200475i \(-0.935751\pi\)
0.316233 0.948682i \(-0.397582\pi\)
\(30\) 0 0
\(31\) 3.75546i 0.674500i −0.941415 0.337250i \(-0.890503\pi\)
0.941415 0.337250i \(-0.109497\pi\)
\(32\) −0.782155 2.91904i −0.138267 0.516019i
\(33\) −0.0992334 1.30806i −0.0172743 0.227704i
\(34\) −1.93698 −0.332190
\(35\) 0 0
\(36\) −0.873607 5.72465i −0.145601 0.954108i
\(37\) 0.717836 2.67900i 0.118012 0.440425i −0.881483 0.472216i \(-0.843454\pi\)
0.999495 + 0.0317906i \(0.0101210\pi\)
\(38\) 0.887922 0.887922i 0.144040 0.144040i
\(39\) 6.24111 0.220453i 0.999377 0.0353008i
\(40\) 0 0
\(41\) 2.69593 + 4.66949i 0.421033 + 0.729251i 0.996041 0.0888969i \(-0.0283342\pi\)
−0.575007 + 0.818148i \(0.695001\pi\)
\(42\) −1.42519 0.684723i −0.219911 0.105655i
\(43\) −5.52432 + 1.48024i −0.842451 + 0.225734i −0.654138 0.756375i \(-0.726968\pi\)
−0.188313 + 0.982109i \(0.560302\pi\)
\(44\) 1.46197i 0.220401i
\(45\) 0 0
\(46\) 0.273128 + 0.157690i 0.0402705 + 0.0232502i
\(47\) 2.28189 2.28189i 0.332847 0.332847i −0.520819 0.853667i \(-0.674374\pi\)
0.853667 + 0.520819i \(0.174374\pi\)
\(48\) −0.469938 6.19455i −0.0678297 0.894106i
\(49\) 4.29318 2.47867i 0.613311 0.354095i
\(50\) 0 0
\(51\) −12.4891 2.35119i −1.74882 0.329232i
\(52\) 6.95414 + 0.281170i 0.964366 + 0.0389912i
\(53\) 5.30126 5.30126i 0.728185 0.728185i −0.242073 0.970258i \(-0.577827\pi\)
0.970258 + 0.242073i \(0.0778275\pi\)
\(54\) −0.0475149 + 1.37093i −0.00646596 + 0.186559i
\(55\) 0 0
\(56\) −3.10719 1.79394i −0.415215 0.239725i
\(57\) 6.80285 4.64726i 0.901060 0.615545i
\(58\) 0.488244 + 1.82215i 0.0641096 + 0.239260i
\(59\) 4.58287 + 2.64592i 0.596639 + 0.344470i 0.767718 0.640787i \(-0.221392\pi\)
−0.171079 + 0.985257i \(0.554725\pi\)
\(60\) 0 0
\(61\) −1.28268 + 2.22167i −0.164231 + 0.284456i −0.936382 0.350983i \(-0.885847\pi\)
0.772151 + 0.635439i \(0.219181\pi\)
\(62\) −0.256597 + 0.957635i −0.0325879 + 0.121620i
\(63\) −8.35805 6.14484i −1.05301 0.774177i
\(64\) 6.37561i 0.796951i
\(65\) 0 0
\(66\) −0.0640708 + 0.340333i −0.00788657 + 0.0418921i
\(67\) 1.50179 5.60475i 0.183473 0.684729i −0.811480 0.584381i \(-0.801338\pi\)
0.994952 0.100349i \(-0.0319958\pi\)
\(68\) −13.6805 3.66569i −1.65901 0.444530i
\(69\) 1.56964 + 1.34827i 0.188962 + 0.162313i
\(70\) 0 0
\(71\) −0.328162 + 0.568393i −0.0389456 + 0.0674558i −0.884841 0.465893i \(-0.845733\pi\)
0.845896 + 0.533349i \(0.179067\pi\)
\(72\) −0.342833 + 3.09379i −0.0404033 + 0.364606i
\(73\) 8.39721 8.39721i 0.982819 0.982819i −0.0170357 0.999855i \(-0.505423\pi\)
0.999855 + 0.0170357i \(0.00542289\pi\)
\(74\) −0.366094 + 0.634093i −0.0425575 + 0.0737118i
\(75\) 0 0
\(76\) 7.95159 4.59085i 0.912110 0.526607i
\(77\) −1.85189 1.85189i −0.211042 0.211042i
\(78\) −1.60653 0.370218i −0.181904 0.0419189i
\(79\) 6.35343i 0.714816i −0.933948 0.357408i \(-0.883660\pi\)
0.933948 0.357408i \(-0.116340\pi\)
\(80\) 0 0
\(81\) −1.97045 + 8.78165i −0.218938 + 0.975739i
\(82\) −0.368407 1.37491i −0.0406837 0.151834i
\(83\) 2.33630 + 2.33630i 0.256442 + 0.256442i 0.823605 0.567163i \(-0.191959\pi\)
−0.567163 + 0.823605i \(0.691959\pi\)
\(84\) −8.77001 7.53320i −0.956887 0.821939i
\(85\) 0 0
\(86\) 1.50983 0.162809
\(87\) 0.936252 + 12.3413i 0.100377 + 1.32313i
\(88\) −0.203390 + 0.759060i −0.0216814 + 0.0809161i
\(89\) 9.05197 5.22616i 0.959507 0.553971i 0.0634855 0.997983i \(-0.479778\pi\)
0.896021 + 0.444011i \(0.146445\pi\)
\(90\) 0 0
\(91\) 9.16501 8.45269i 0.960754 0.886083i
\(92\) 1.63062 + 1.63062i 0.170004 + 0.170004i
\(93\) −2.81688 + 5.86307i −0.292097 + 0.607972i
\(94\) −0.737790 + 0.425963i −0.0760972 + 0.0439348i
\(95\) 0 0
\(96\) −0.968391 + 5.14392i −0.0988360 + 0.525000i
\(97\) −8.55305 + 2.29178i −0.868430 + 0.232695i −0.665409 0.746479i \(-0.731743\pi\)
−0.203022 + 0.979174i \(0.565076\pi\)
\(98\) −1.26411 + 0.338717i −0.127694 + 0.0342156i
\(99\) −0.826218 + 2.11659i −0.0830381 + 0.212725i
\(100\) 0 0
\(101\) 10.7112 6.18411i 1.06580 0.615342i 0.138772 0.990324i \(-0.455685\pi\)
0.927032 + 0.374983i \(0.122351\pi\)
\(102\) 3.02405 + 1.45288i 0.299425 + 0.143857i
\(103\) 11.9113 + 11.9113i 1.17365 + 1.17365i 0.981332 + 0.192322i \(0.0616018\pi\)
0.192322 + 0.981332i \(0.438398\pi\)
\(104\) −3.57149 1.11344i −0.350214 0.109182i
\(105\) 0 0
\(106\) −1.71403 + 0.989595i −0.166481 + 0.0961180i
\(107\) 0.496016 1.85116i 0.0479517 0.178958i −0.937797 0.347185i \(-0.887138\pi\)
0.985748 + 0.168227i \(0.0538042\pi\)
\(108\) −2.93003 + 9.59267i −0.281942 + 0.923055i
\(109\) 7.27602 0.696916 0.348458 0.937324i \(-0.386705\pi\)
0.348458 + 0.937324i \(0.386705\pi\)
\(110\) 0 0
\(111\) −3.13015 + 3.64406i −0.297101 + 0.345879i
\(112\) −8.76996 8.76996i −0.828683 0.828683i
\(113\) 0.759173 + 2.83327i 0.0714170 + 0.266532i 0.992397 0.123078i \(-0.0392765\pi\)
−0.920980 + 0.389610i \(0.872610\pi\)
\(114\) −2.05224 + 0.720227i −0.192210 + 0.0674555i
\(115\) 0 0
\(116\) 13.7935i 1.28069i
\(117\) −9.90905 4.33712i −0.916092 0.400967i
\(118\) −0.987837 0.987837i −0.0909378 0.0909378i
\(119\) −21.9726 + 12.6859i −2.01422 + 1.16291i
\(120\) 0 0
\(121\) 5.21319 9.02951i 0.473926 0.820864i
\(122\) 0.478880 0.478880i 0.0433558 0.0433558i
\(123\) −0.706454 9.31221i −0.0636988 0.839654i
\(124\) −3.62460 + 6.27798i −0.325498 + 0.563780i
\(125\) 0 0
\(126\) 1.71143 + 2.13800i 0.152466 + 0.190468i
\(127\) 12.3901 + 3.31991i 1.09944 + 0.294594i 0.762537 0.646945i \(-0.223954\pi\)
0.336904 + 0.941539i \(0.390620\pi\)
\(128\) −1.99993 + 7.46386i −0.176771 + 0.659718i
\(129\) 9.73493 + 1.83269i 0.857112 + 0.161359i
\(130\) 0 0
\(131\) 17.7409i 1.55003i −0.631943 0.775015i \(-0.717742\pi\)
0.631943 0.775015i \(-0.282258\pi\)
\(132\) −1.09659 + 2.28245i −0.0954459 + 0.198662i
\(133\) 4.25707 15.8876i 0.369134 1.37763i
\(134\) −0.765906 + 1.32659i −0.0661642 + 0.114600i
\(135\) 0 0
\(136\) 6.59301 + 3.80647i 0.565346 + 0.326402i
\(137\) 5.55583 + 20.7346i 0.474666 + 1.77148i 0.622663 + 0.782490i \(0.286051\pi\)
−0.147996 + 0.988988i \(0.547282\pi\)
\(138\) −0.308131 0.451055i −0.0262299 0.0383964i
\(139\) −8.79884 5.08001i −0.746308 0.430881i 0.0780503 0.996949i \(-0.475131\pi\)
−0.824358 + 0.566068i \(0.808464\pi\)
\(140\) 0 0
\(141\) −5.27410 + 1.85092i −0.444159 + 0.155876i
\(142\) 0.122517 0.122517i 0.0102814 0.0102814i
\(143\) −2.30782 1.45981i −0.192990 0.122075i
\(144\) −3.91271 + 10.0235i −0.326059 + 0.835292i
\(145\) 0 0
\(146\) −2.71502 + 1.56752i −0.224697 + 0.129729i
\(147\) −8.56175 + 0.649521i −0.706161 + 0.0535716i
\(148\) −3.78565 + 3.78565i −0.311179 + 0.311179i
\(149\) 11.4427 + 6.60643i 0.937420 + 0.541220i 0.889151 0.457615i \(-0.151296\pi\)
0.0482693 + 0.998834i \(0.484629\pi\)
\(150\) 0 0
\(151\) 7.62730i 0.620701i 0.950622 + 0.310350i \(0.100446\pi\)
−0.950622 + 0.310350i \(0.899554\pi\)
\(152\) −4.76717 + 1.27736i −0.386668 + 0.103607i
\(153\) 17.7346 + 13.0385i 1.43376 + 1.05410i
\(154\) 0.345695 + 0.598761i 0.0278569 + 0.0482496i
\(155\) 0 0
\(156\) −10.6460 5.65510i −0.852362 0.452770i
\(157\) 2.99534 2.99534i 0.239054 0.239054i −0.577404 0.816458i \(-0.695934\pi\)
0.816458 + 0.577404i \(0.195934\pi\)
\(158\) −0.434108 + 1.62011i −0.0345357 + 0.128889i
\(159\) −12.2528 + 4.30006i −0.971706 + 0.341017i
\(160\) 0 0
\(161\) 4.13104 0.325572
\(162\) 1.10248 2.10467i 0.0866190 0.165358i
\(163\) 4.23491 + 15.8049i 0.331704 + 1.23794i 0.907399 + 0.420271i \(0.138065\pi\)
−0.575695 + 0.817665i \(0.695268\pi\)
\(164\) 10.4079i 0.812724i
\(165\) 0 0
\(166\) −0.436121 0.755383i −0.0338495 0.0586291i
\(167\) −7.96743 2.13487i −0.616538 0.165201i −0.0629845 0.998015i \(-0.520062\pi\)
−0.553553 + 0.832814i \(0.686729\pi\)
\(168\) 3.50539 + 5.13134i 0.270447 + 0.395891i
\(169\) 7.38769 10.6968i 0.568284 0.822833i
\(170\) 0 0
\(171\) −14.1065 + 2.15272i −1.07875 + 0.164622i
\(172\) 10.6636 + 2.85731i 0.813094 + 0.217868i
\(173\) −3.14446 11.7353i −0.239069 0.892217i −0.976272 0.216546i \(-0.930521\pi\)
0.737204 0.675671i \(-0.236146\pi\)
\(174\) 0.604498 3.21099i 0.0458269 0.243424i
\(175\) 0 0
\(176\) −1.35825 + 2.35255i −0.102382 + 0.177330i
\(177\) −5.17020 7.56835i −0.388616 0.568872i
\(178\) −2.66532 + 0.714170i −0.199774 + 0.0535293i
\(179\) 6.88190 + 11.9198i 0.514377 + 0.890927i 0.999861 + 0.0166817i \(0.00531018\pi\)
−0.485484 + 0.874246i \(0.661356\pi\)
\(180\) 0 0
\(181\) −5.09406 −0.378639 −0.189319 0.981916i \(-0.560628\pi\)
−0.189319 + 0.981916i \(0.560628\pi\)
\(182\) −2.91460 + 1.52921i −0.216045 + 0.113352i
\(183\) 3.66896 2.50639i 0.271217 0.185278i
\(184\) −0.619772 1.07348i −0.0456902 0.0791378i
\(185\) 0 0
\(186\) 1.11890 1.30260i 0.0820419 0.0955116i
\(187\) 3.92944 + 3.92944i 0.287349 + 0.287349i
\(188\) −6.01699 + 1.61225i −0.438834 + 0.117585i
\(189\) 8.43960 + 15.8626i 0.613891 + 1.15383i
\(190\) 0 0
\(191\) −7.24923 4.18535i −0.524536 0.302841i 0.214252 0.976778i \(-0.431268\pi\)
−0.738789 + 0.673937i \(0.764602\pi\)
\(192\) −4.78219 + 9.95369i −0.345125 + 0.718346i
\(193\) 7.26170 + 1.94577i 0.522708 + 0.140059i 0.510519 0.859866i \(-0.329453\pi\)
0.0121893 + 0.999926i \(0.496120\pi\)
\(194\) 2.33760 0.167830
\(195\) 0 0
\(196\) −9.56918 −0.683513
\(197\) −18.0324 4.83176i −1.28475 0.344249i −0.449089 0.893487i \(-0.648251\pi\)
−0.835666 + 0.549238i \(0.814918\pi\)
\(198\) 0.355303 0.483274i 0.0252503 0.0343448i
\(199\) −0.308520 0.178124i −0.0218704 0.0126269i 0.489025 0.872270i \(-0.337353\pi\)
−0.510895 + 0.859643i \(0.670686\pi\)
\(200\) 0 0
\(201\) −6.54860 + 7.62376i −0.461902 + 0.537738i
\(202\) −3.15387 + 0.845077i −0.221906 + 0.0594594i
\(203\) 17.4723 + 17.4723i 1.22631 + 1.22631i
\(204\) 18.6087 + 15.9844i 1.30287 + 1.11913i
\(205\) 0 0
\(206\) −2.22350 3.85121i −0.154918 0.268327i
\(207\) −1.43923 3.28229i −0.100033 0.228135i
\(208\) −10.9291 6.91319i −0.757797 0.479343i
\(209\) −3.60255 −0.249193
\(210\) 0 0
\(211\) 4.03683 + 6.99199i 0.277907 + 0.481349i 0.970864 0.239630i \(-0.0770260\pi\)
−0.692958 + 0.720978i \(0.743693\pi\)
\(212\) −13.9786 + 3.74556i −0.960056 + 0.257246i
\(213\) 0.938668 0.641236i 0.0643165 0.0439368i
\(214\) −0.252966 + 0.438150i −0.0172924 + 0.0299513i
\(215\) 0 0
\(216\) 2.85581 4.57291i 0.194313 0.311147i
\(217\) 3.36106 + 12.5437i 0.228164 + 0.851519i
\(218\) −1.85537 0.497145i −0.125662 0.0336709i
\(219\) −19.4084 + 6.81130i −1.31150 + 0.460265i
\(220\) 0 0
\(221\) −19.4468 + 17.9354i −1.30814 + 1.20647i
\(222\) 1.04717 0.715356i 0.0702813 0.0480116i
\(223\) −5.60827 1.50273i −0.375557 0.100630i 0.0661025 0.997813i \(-0.478944\pi\)
−0.441660 + 0.897183i \(0.645610\pi\)
\(224\) 5.22497 + 9.04992i 0.349108 + 0.604673i
\(225\) 0 0
\(226\) 0.774351i 0.0515091i
\(227\) 1.34293 + 5.01188i 0.0891333 + 0.332650i 0.996065 0.0886282i \(-0.0282483\pi\)
−0.906931 + 0.421278i \(0.861582\pi\)
\(228\) −15.8576 + 1.20301i −1.05020 + 0.0796712i
\(229\) −16.0682 −1.06182 −0.530908 0.847429i \(-0.678149\pi\)
−0.530908 + 0.847429i \(0.678149\pi\)
\(230\) 0 0
\(231\) 1.50214 + 4.28025i 0.0988334 + 0.281620i
\(232\) 1.91895 7.16161i 0.125985 0.470183i
\(233\) 5.72175 5.72175i 0.374844 0.374844i −0.494394 0.869238i \(-0.664610\pi\)
0.869238 + 0.494394i \(0.164610\pi\)
\(234\) 2.23045 + 1.78301i 0.145809 + 0.116559i
\(235\) 0 0
\(236\) −5.10745 8.84636i −0.332466 0.575849i
\(237\) −4.76555 + 9.91906i −0.309556 + 0.644312i
\(238\) 6.46975 1.73356i 0.419371 0.112370i
\(239\) 14.1799i 0.917222i −0.888637 0.458611i \(-0.848347\pi\)
0.888637 0.458611i \(-0.151653\pi\)
\(240\) 0 0
\(241\) −1.38091 0.797270i −0.0889523 0.0513567i 0.454864 0.890561i \(-0.349688\pi\)
−0.543816 + 0.839204i \(0.683021\pi\)
\(242\) −1.94631 + 1.94631i −0.125113 + 0.125113i
\(243\) 9.66318 12.2320i 0.619894 0.784686i
\(244\) 4.28851 2.47597i 0.274543 0.158508i
\(245\) 0 0
\(246\) −0.456127 + 2.42287i −0.0290816 + 0.154476i
\(247\) 0.692849 17.1362i 0.0440849 1.09035i
\(248\) 2.75529 2.75529i 0.174961 0.174961i
\(249\) −1.89506 5.39987i −0.120095 0.342203i
\(250\) 0 0
\(251\) −10.7131 6.18523i −0.676207 0.390408i 0.122217 0.992503i \(-0.461000\pi\)
−0.798424 + 0.602095i \(0.794333\pi\)
\(252\) 8.04139 + 18.3391i 0.506560 + 1.15525i
\(253\) −0.234181 0.873975i −0.0147228 0.0549463i
\(254\) −2.93260 1.69314i −0.184008 0.106237i
\(255\) 0 0
\(256\) −5.35565 + 9.27626i −0.334728 + 0.579766i
\(257\) 4.49358 16.7703i 0.280302 1.04610i −0.671903 0.740639i \(-0.734523\pi\)
0.952205 0.305461i \(-0.0988105\pi\)
\(258\) −2.35717 1.13249i −0.146751 0.0705055i
\(259\) 9.59061i 0.595932i
\(260\) 0 0
\(261\) 7.79524 19.9697i 0.482513 1.23609i
\(262\) −1.21217 + 4.52390i −0.0748884 + 0.279487i
\(263\) 16.9287 + 4.53603i 1.04387 + 0.279704i 0.739716 0.672920i \(-0.234960\pi\)
0.304153 + 0.952623i \(0.401627\pi\)
\(264\) 0.886887 1.03250i 0.0545841 0.0635458i
\(265\) 0 0
\(266\) −2.17109 + 3.76043i −0.133118 + 0.230567i
\(267\) −18.0521 + 1.36949i −1.10477 + 0.0838112i
\(268\) −7.91998 + 7.91998i −0.483790 + 0.483790i
\(269\) −2.88285 + 4.99325i −0.175771 + 0.304444i −0.940428 0.339994i \(-0.889575\pi\)
0.764657 + 0.644437i \(0.222908\pi\)
\(270\) 0 0
\(271\) 18.2632 10.5443i 1.10941 0.640518i 0.170733 0.985317i \(-0.445386\pi\)
0.938676 + 0.344800i \(0.112053\pi\)
\(272\) 18.6086 + 18.6086i 1.12831 + 1.12831i
\(273\) −20.6487 + 6.32201i −1.24972 + 0.382625i
\(274\) 5.66690i 0.342350i
\(275\) 0 0
\(276\) −1.32266 3.76884i −0.0796149 0.226858i
\(277\) 1.43776 + 5.36578i 0.0863865 + 0.322399i 0.995573 0.0939901i \(-0.0299622\pi\)
−0.909187 + 0.416389i \(0.863296\pi\)
\(278\) 1.89659 + 1.89659i 0.113750 + 0.113750i
\(279\) 8.79549 7.04064i 0.526572 0.421512i
\(280\) 0 0
\(281\) 13.3268 0.795013 0.397506 0.917599i \(-0.369876\pi\)
0.397506 + 0.917599i \(0.369876\pi\)
\(282\) 1.47135 0.111621i 0.0876177 0.00664696i
\(283\) 3.60372 13.4493i 0.214219 0.799475i −0.772221 0.635354i \(-0.780854\pi\)
0.986440 0.164122i \(-0.0524789\pi\)
\(284\) 1.09717 0.633453i 0.0651052 0.0375885i
\(285\) 0 0
\(286\) 0.488746 + 0.529934i 0.0289002 + 0.0313356i
\(287\) −13.1838 13.1838i −0.778215 0.778215i
\(288\) 5.37020 7.30440i 0.316442 0.430416i
\(289\) 31.9002 18.4176i 1.87648 1.08339i
\(290\) 0 0
\(291\) 15.0721 + 2.83747i 0.883545 + 0.166335i
\(292\) −22.1422 + 5.93298i −1.29577 + 0.347201i
\(293\) 14.4405 3.86933i 0.843626 0.226049i 0.188976 0.981982i \(-0.439483\pi\)
0.654649 + 0.755933i \(0.272816\pi\)
\(294\) 2.22761 + 0.419368i 0.129917 + 0.0244580i
\(295\) 0 0
\(296\) 2.49218 1.43886i 0.144855 0.0836321i
\(297\) 2.87751 2.68472i 0.166970 0.155784i
\(298\) −2.46646 2.46646i −0.142878 0.142878i
\(299\) 4.20226 0.945840i 0.243023 0.0546993i
\(300\) 0 0
\(301\) 17.1271 9.88831i 0.987187 0.569953i
\(302\) 0.521147 1.94495i 0.0299886 0.111919i
\(303\) −21.3610 + 1.62051i −1.22716 + 0.0930960i
\(304\) −17.0605 −0.978488
\(305\) 0 0
\(306\) −3.63141 4.53653i −0.207594 0.259336i
\(307\) 7.71849 + 7.71849i 0.440517 + 0.440517i 0.892186 0.451668i \(-0.149171\pi\)
−0.451668 + 0.892186i \(0.649171\pi\)
\(308\) 1.30844 + 4.88315i 0.0745551 + 0.278243i
\(309\) −9.66170 27.5304i −0.549635 1.56615i
\(310\) 0 0
\(311\) 4.84533i 0.274753i −0.990519 0.137377i \(-0.956133\pi\)
0.990519 0.137377i \(-0.0438671\pi\)
\(312\) 4.74069 + 4.41721i 0.268389 + 0.250075i
\(313\) 1.11868 + 1.11868i 0.0632313 + 0.0632313i 0.738015 0.674784i \(-0.235763\pi\)
−0.674784 + 0.738015i \(0.735763\pi\)
\(314\) −0.968466 + 0.559144i −0.0546537 + 0.0315543i
\(315\) 0 0
\(316\) −6.13203 + 10.6210i −0.344954 + 0.597478i
\(317\) 3.06846 3.06846i 0.172342 0.172342i −0.615666 0.788007i \(-0.711113\pi\)
0.788007 + 0.615666i \(0.211113\pi\)
\(318\) 3.41824 0.259318i 0.191685 0.0145418i
\(319\) 2.70602 4.68696i 0.151508 0.262419i
\(320\) 0 0
\(321\) −2.16289 + 2.51800i −0.120721 + 0.140541i
\(322\) −1.05341 0.282260i −0.0587041 0.0157297i
\(323\) −9.03288 + 33.7112i −0.502603 + 1.87574i
\(324\) 11.7696 12.7785i 0.653868 0.709914i
\(325\) 0 0
\(326\) 4.31958i 0.239239i
\(327\) −11.3594 5.45756i −0.628177 0.301804i
\(328\) −1.44795 + 5.40383i −0.0799498 + 0.298377i
\(329\) −5.57951 + 9.66400i −0.307608 + 0.532794i
\(330\) 0 0
\(331\) −13.7926 7.96315i −0.758109 0.437694i 0.0705077 0.997511i \(-0.477538\pi\)
−0.828616 + 0.559817i \(0.810871\pi\)
\(332\) −1.65069 6.16047i −0.0905936 0.338100i
\(333\) 7.62015 3.34131i 0.417582 0.183103i
\(334\) 1.88581 + 1.08877i 0.103187 + 0.0595750i
\(335\) 0 0
\(336\) 7.11364 + 20.2699i 0.388081 + 1.10581i
\(337\) −5.75666 + 5.75666i −0.313585 + 0.313585i −0.846297 0.532712i \(-0.821173\pi\)
0.532712 + 0.846297i \(0.321173\pi\)
\(338\) −2.61472 + 2.22289i −0.142222 + 0.120909i
\(339\) 0.939937 4.99278i 0.0510504 0.271171i
\(340\) 0 0
\(341\) 2.46324 1.42215i 0.133392 0.0770138i
\(342\) 3.74422 + 0.414910i 0.202464 + 0.0224357i
\(343\) 4.99459 4.99459i 0.269682 0.269682i
\(344\) −5.13908 2.96705i −0.277080 0.159972i
\(345\) 0 0
\(346\) 3.20732i 0.172427i
\(347\) −2.62597 + 0.703627i −0.140970 + 0.0377727i −0.328614 0.944464i \(-0.606581\pi\)
0.187644 + 0.982237i \(0.439915\pi\)
\(348\) 10.3462 21.5346i 0.554612 1.15437i
\(349\) 10.1053 + 17.5028i 0.540922 + 0.936905i 0.998851 + 0.0479160i \(0.0152580\pi\)
−0.457929 + 0.888989i \(0.651409\pi\)
\(350\) 0 0
\(351\) 12.2170 + 14.2037i 0.652094 + 0.758138i
\(352\) 1.61843 1.61843i 0.0862627 0.0862627i
\(353\) 7.55673 28.2021i 0.402204 1.50105i −0.406951 0.913450i \(-0.633408\pi\)
0.809155 0.587596i \(-0.199925\pi\)
\(354\) 0.801272 + 2.28318i 0.0425871 + 0.121349i
\(355\) 0 0
\(356\) −20.1762 −1.06934
\(357\) 43.8192 3.32426i 2.31916 0.175939i
\(358\) −0.940432 3.50974i −0.0497034 0.185496i
\(359\) 29.4575i 1.55471i −0.629063 0.777355i \(-0.716561\pi\)
0.629063 0.777355i \(-0.283439\pi\)
\(360\) 0 0
\(361\) −1.81264 3.13958i −0.0954020 0.165241i
\(362\) 1.29898 + 0.348060i 0.0682727 + 0.0182936i
\(363\) −14.9117 + 10.1867i −0.782662 + 0.534663i
\(364\) −23.4792 + 5.28468i −1.23065 + 0.276993i
\(365\) 0 0
\(366\) −1.10683 + 0.388438i −0.0578549 + 0.0203040i
\(367\) −6.21790 1.66608i −0.324572 0.0869688i 0.0928540 0.995680i \(-0.470401\pi\)
−0.417426 + 0.908711i \(0.637068\pi\)
\(368\) −1.10901 4.13887i −0.0578109 0.215753i
\(369\) −5.88194 + 15.0682i −0.306201 + 0.784422i
\(370\) 0 0
\(371\) −12.9623 + 22.4513i −0.672968 + 1.16562i
\(372\) 10.3677 7.08255i 0.537542 0.367213i
\(373\) −9.33338 + 2.50087i −0.483264 + 0.129490i −0.492222 0.870470i \(-0.663815\pi\)
0.00895787 + 0.999960i \(0.497149\pi\)
\(374\) −0.733515 1.27049i −0.0379292 0.0656952i
\(375\) 0 0
\(376\) 3.34833 0.172677
\(377\) 21.7739 + 13.7731i 1.12142 + 0.709349i
\(378\) −1.06825 4.62157i −0.0549447 0.237708i
\(379\) 7.67284 + 13.2897i 0.394127 + 0.682649i 0.992989 0.118204i \(-0.0377136\pi\)
−0.598862 + 0.800852i \(0.704380\pi\)
\(380\) 0 0
\(381\) −16.8534 14.4766i −0.863423 0.741657i
\(382\) 1.56257 + 1.56257i 0.0799481 + 0.0799481i
\(383\) −21.8543 + 5.85583i −1.11670 + 0.299219i −0.769548 0.638589i \(-0.779518\pi\)
−0.347153 + 0.937808i \(0.612852\pi\)
\(384\) 8.72078 10.1526i 0.445030 0.518096i
\(385\) 0 0
\(386\) −1.71877 0.992333i −0.0874832 0.0505084i
\(387\) −13.8236 10.1631i −0.702695 0.516622i
\(388\) 16.5100 + 4.42384i 0.838169 + 0.224587i
\(389\) −11.0104 −0.558251 −0.279126 0.960255i \(-0.590045\pi\)
−0.279126 + 0.960255i \(0.590045\pi\)
\(390\) 0 0
\(391\) −8.76548 −0.443289
\(392\) 4.96834 + 1.33126i 0.250939 + 0.0672390i
\(393\) −13.3070 + 27.6973i −0.671250 + 1.39715i
\(394\) 4.26809 + 2.46418i 0.215023 + 0.124144i
\(395\) 0 0
\(396\) 3.42402 2.74087i 0.172064 0.137734i
\(397\) 7.77969 2.08456i 0.390451 0.104621i −0.0582519 0.998302i \(-0.518553\pi\)
0.448703 + 0.893681i \(0.351886\pi\)
\(398\) 0.0665015 + 0.0665015i 0.00333342 + 0.00333342i
\(399\) −18.5631 + 21.6108i −0.929316 + 1.08189i
\(400\) 0 0
\(401\) 18.6776 + 32.3506i 0.932716 + 1.61551i 0.778656 + 0.627451i \(0.215902\pi\)
0.154060 + 0.988061i \(0.450765\pi\)
\(402\) 2.19078 1.49660i 0.109266 0.0746436i
\(403\) 6.29099 + 11.9904i 0.313376 + 0.597282i
\(404\) −23.8745 −1.18780
\(405\) 0 0
\(406\) −3.26158 5.64922i −0.161869 0.280366i
\(407\) 2.02902 0.543674i 0.100575 0.0269489i
\(408\) −7.43795 10.8880i −0.368233 0.539035i
\(409\) −6.94769 + 12.0338i −0.343541 + 0.595031i −0.985088 0.172053i \(-0.944960\pi\)
0.641546 + 0.767084i \(0.278293\pi\)
\(410\) 0 0
\(411\) 6.87870 36.5385i 0.339301 1.80231i
\(412\) −8.41582 31.4083i −0.414618 1.54737i
\(413\) −17.6754 4.73610i −0.869748 0.233048i
\(414\) 0.142733 + 0.935315i 0.00701496 + 0.0459682i
\(415\) 0 0
\(416\) 7.38711 + 8.00963i 0.362183 + 0.392704i
\(417\) 9.92648 + 14.5308i 0.486102 + 0.711575i
\(418\) 0.918643 + 0.246150i 0.0449323 + 0.0120396i
\(419\) 16.7332 + 28.9828i 0.817472 + 1.41590i 0.907539 + 0.419967i \(0.137958\pi\)
−0.0900677 + 0.995936i \(0.528708\pi\)
\(420\) 0 0
\(421\) 16.6235i 0.810182i 0.914276 + 0.405091i \(0.132760\pi\)
−0.914276 + 0.405091i \(0.867240\pi\)
\(422\) −0.551645 2.05877i −0.0268537 0.100219i
\(423\) 9.62233 + 1.06628i 0.467854 + 0.0518445i
\(424\) 7.77882 0.377773
\(425\) 0 0
\(426\) −0.283172 + 0.0993781i −0.0137197 + 0.00481489i
\(427\) 2.29595 8.56860i 0.111109 0.414664i
\(428\) −2.61584 + 2.61584i −0.126441 + 0.126441i
\(429\) 2.50804 + 4.01011i 0.121089 + 0.193610i
\(430\) 0 0
\(431\) −17.3517 30.0540i −0.835801 1.44765i −0.893377 0.449309i \(-0.851670\pi\)
0.0575757 0.998341i \(-0.481663\pi\)
\(432\) 13.6270 12.7140i 0.655627 0.611703i
\(433\) 20.4894 5.49011i 0.984656 0.263838i 0.269652 0.962958i \(-0.413091\pi\)
0.715004 + 0.699120i \(0.246425\pi\)
\(434\) 3.42826i 0.164562i
\(435\) 0 0
\(436\) −12.1633 7.02248i −0.582516 0.336316i
\(437\) 4.01813 4.01813i 0.192213 0.192213i
\(438\) 5.41449 0.410760i 0.258714 0.0196269i
\(439\) −15.3686 + 8.87309i −0.733505 + 0.423489i −0.819703 0.572789i \(-0.805862\pi\)
0.0861981 + 0.996278i \(0.472528\pi\)
\(440\) 0 0
\(441\) 13.8539 + 5.40792i 0.659710 + 0.257520i
\(442\) 6.18437 3.24476i 0.294160 0.154337i
\(443\) 12.3374 12.3374i 0.586169 0.586169i −0.350422 0.936592i \(-0.613962\pi\)
0.936592 + 0.350422i \(0.113962\pi\)
\(444\) 8.74973 3.07069i 0.415244 0.145728i
\(445\) 0 0
\(446\) 1.32742 + 0.766387i 0.0628552 + 0.0362895i
\(447\) −12.9091 18.8969i −0.610581 0.893793i
\(448\) 5.70605 + 21.2953i 0.269585 + 1.00611i
\(449\) 11.9704 + 6.91114i 0.564920 + 0.326157i 0.755118 0.655589i \(-0.227580\pi\)
−0.190198 + 0.981746i \(0.560913\pi\)
\(450\) 0 0
\(451\) −2.04184 + 3.53657i −0.0961464 + 0.166530i
\(452\) 1.46544 5.46909i 0.0689284 0.257244i
\(453\) 5.72105 11.9078i 0.268798 0.559479i
\(454\) 1.36978i 0.0642868i
\(455\) 0 0
\(456\) 8.40068 + 1.58151i 0.393398 + 0.0740608i
\(457\) −0.341127 + 1.27310i −0.0159572 + 0.0595532i −0.973445 0.228919i \(-0.926481\pi\)
0.957488 + 0.288473i \(0.0931474\pi\)
\(458\) 4.09736 + 1.09788i 0.191457 + 0.0513008i
\(459\) −17.9076 33.6581i −0.835856 1.57103i
\(460\) 0 0
\(461\) 5.56011 9.63039i 0.258960 0.448532i −0.707003 0.707210i \(-0.749954\pi\)
0.965964 + 0.258678i \(0.0832868\pi\)
\(462\) −0.0905875 1.19409i −0.00421451 0.0555542i
\(463\) −20.2693 + 20.2693i −0.941994 + 0.941994i −0.998407 0.0564134i \(-0.982034\pi\)
0.0564134 + 0.998407i \(0.482034\pi\)
\(464\) 12.8148 22.1959i 0.594914 1.03042i
\(465\) 0 0
\(466\) −1.84998 + 1.06809i −0.0856987 + 0.0494782i
\(467\) −6.97119 6.97119i −0.322588 0.322588i 0.527171 0.849759i \(-0.323253\pi\)
−0.849759 + 0.527171i \(0.823253\pi\)
\(468\) 12.3789 + 16.8141i 0.572216 + 0.777233i
\(469\) 20.0646i 0.926495i
\(470\) 0 0
\(471\) −6.92309 + 2.42963i −0.318999 + 0.111952i
\(472\) 1.42110 + 5.30360i 0.0654112 + 0.244118i
\(473\) −3.06290 3.06290i −0.140832 0.140832i
\(474\) 1.89294 2.20373i 0.0869456 0.101221i
\(475\) 0 0
\(476\) 48.9753 2.24478
\(477\) 22.3545 + 2.47718i 1.02354 + 0.113422i
\(478\) −0.968864 + 3.61585i −0.0443148 + 0.165385i
\(479\) 29.8923 17.2583i 1.36582 0.788554i 0.375425 0.926853i \(-0.377497\pi\)
0.990391 + 0.138299i \(0.0441635\pi\)
\(480\) 0 0
\(481\) 2.19586 + 9.75595i 0.100123 + 0.444833i
\(482\) 0.297655 + 0.297655i 0.0135578 + 0.0135578i
\(483\) −6.44944 3.09859i −0.293460 0.140991i
\(484\) −17.4297 + 10.0631i −0.792260 + 0.457412i
\(485\) 0 0
\(486\) −3.29987 + 2.45889i −0.149685 + 0.111538i
\(487\) −5.95347 + 1.59523i −0.269778 + 0.0722867i −0.391172 0.920318i \(-0.627930\pi\)
0.121394 + 0.992604i \(0.461264\pi\)
\(488\) −2.57106 + 0.688913i −0.116386 + 0.0311856i
\(489\) 5.24327 27.8513i 0.237109 1.25948i
\(490\) 0 0
\(491\) 33.2103 19.1739i 1.49876 0.865308i 0.498759 0.866741i \(-0.333789\pi\)
0.999999 + 0.00143268i \(0.000456037\pi\)
\(492\) −7.80674 + 16.2490i −0.351955 + 0.732562i
\(493\) −37.0737 37.0737i −1.66971 1.66971i
\(494\) −1.34753 + 4.32235i −0.0606283 + 0.194472i
\(495\) 0 0
\(496\) 11.6651 6.73486i 0.523779 0.302404i
\(497\) 0.587397 2.19219i 0.0263483 0.0983333i
\(498\) 0.114283 + 1.50644i 0.00512115 + 0.0675051i
\(499\) 15.3354 0.686509 0.343254 0.939242i \(-0.388471\pi\)
0.343254 + 0.939242i \(0.388471\pi\)
\(500\) 0 0
\(501\) 10.8375 + 9.30915i 0.484186 + 0.415902i
\(502\) 2.30921 + 2.30921i 0.103065 + 0.103065i
\(503\) −3.77227 14.0783i −0.168197 0.627721i −0.997611 0.0690858i \(-0.977992\pi\)
0.829413 0.558635i \(-0.188675\pi\)
\(504\) −1.62378 10.6404i −0.0723288 0.473962i
\(505\) 0 0
\(506\) 0.238863i 0.0106187i
\(507\) −19.5572 + 11.1587i −0.868565 + 0.495575i
\(508\) −17.5082 17.5082i −0.776800 0.776800i
\(509\) 14.2026 8.19989i 0.629520 0.363454i −0.151046 0.988527i \(-0.548264\pi\)
0.780566 + 0.625073i \(0.214931\pi\)
\(510\) 0 0
\(511\) −20.5323 + 35.5630i −0.908295 + 1.57321i
\(512\) 12.9273 12.9273i 0.571313 0.571313i
\(513\) 23.6380 + 7.22009i 1.04364 + 0.318775i
\(514\) −2.29171 + 3.96935i −0.101083 + 0.175081i
\(515\) 0 0
\(516\) −14.5050 12.4594i −0.638547 0.548494i
\(517\) 2.36084 + 0.632584i 0.103829 + 0.0278210i
\(518\) 0.655293 2.44559i 0.0287919 0.107453i
\(519\) −3.89317 + 20.6799i −0.170891 + 0.907745i
\(520\) 0 0
\(521\) 1.84827i 0.0809740i 0.999180 + 0.0404870i \(0.0128909\pi\)
−0.999180 + 0.0404870i \(0.987109\pi\)
\(522\) −3.35223 + 4.55962i −0.146723 + 0.199569i
\(523\) 6.03412 22.5196i 0.263854 0.984715i −0.699095 0.715029i \(-0.746413\pi\)
0.962948 0.269686i \(-0.0869200\pi\)
\(524\) −17.1227 + 29.6574i −0.748009 + 1.29559i
\(525\) 0 0
\(526\) −4.00685 2.31336i −0.174707 0.100867i
\(527\) −7.13169 26.6158i −0.310661 1.15940i
\(528\) 3.88510 2.65405i 0.169077 0.115502i
\(529\) −18.6826 10.7864i −0.812287 0.468974i
\(530\) 0 0
\(531\) 2.39495 + 15.6939i 0.103932 + 0.681055i
\(532\) −22.4505 + 22.4505i −0.973352 + 0.973352i
\(533\) −16.4296 10.3925i −0.711647 0.450151i
\(534\) 4.69681 + 0.884218i 0.203251 + 0.0382639i
\(535\) 0 0
\(536\) 5.21390 3.01025i 0.225206 0.130023i
\(537\) −1.80336 23.7713i −0.0778209 1.02581i
\(538\) 1.07629 1.07629i 0.0464023 0.0464023i
\(539\) 3.25156 + 1.87729i 0.140055 + 0.0808605i
\(540\) 0 0
\(541\) 30.2686i 1.30135i −0.759357 0.650674i \(-0.774487\pi\)
0.759357 0.650674i \(-0.225513\pi\)
\(542\) −5.37753 + 1.44090i −0.230985 + 0.0618921i
\(543\) 7.95292 + 3.82093i 0.341292 + 0.163972i
\(544\) −11.0866 19.2026i −0.475336 0.823306i
\(545\) 0 0
\(546\) 5.69734 0.201246i 0.243823 0.00861253i
\(547\) −22.9924 + 22.9924i −0.983084 + 0.983084i −0.999859 0.0167753i \(-0.994660\pi\)
0.0167753 + 0.999859i \(0.494660\pi\)
\(548\) 10.7245 40.0242i 0.458126 1.70975i
\(549\) −7.60801 + 1.16102i −0.324702 + 0.0495510i
\(550\) 0 0
\(551\) 33.9895 1.44800
\(552\) 0.162408 + 2.14080i 0.00691254 + 0.0911186i
\(553\) 5.68619 + 21.2212i 0.241801 + 0.902415i
\(554\) 1.46650i 0.0623057i
\(555\) 0 0
\(556\) 9.80599 + 16.9845i 0.415867 + 0.720302i
\(557\) 27.3100 + 7.31770i 1.15716 + 0.310061i 0.785832 0.618440i \(-0.212235\pi\)
0.371331 + 0.928501i \(0.378902\pi\)
\(558\) −2.72390 + 1.19438i −0.115312 + 0.0505623i
\(559\) 15.1583 13.9802i 0.641128 0.591298i
\(560\) 0 0
\(561\) −3.18732 9.08208i −0.134569 0.383446i
\(562\) −3.39832 0.910577i −0.143349 0.0384104i
\(563\) −6.99906 26.1208i −0.294975 1.10086i −0.941237 0.337747i \(-0.890335\pi\)
0.646262 0.763116i \(-0.276331\pi\)
\(564\) 10.6031 + 1.99613i 0.446472 + 0.0840524i
\(565\) 0 0
\(566\) −1.83788 + 3.18330i −0.0772519 + 0.133804i
\(567\) −1.27789 31.0952i −0.0536664 1.30588i
\(568\) −0.657781 + 0.176252i −0.0275999 + 0.00739537i
\(569\) −4.95492 8.58218i −0.207721 0.359784i 0.743275 0.668986i \(-0.233271\pi\)
−0.950996 + 0.309202i \(0.899938\pi\)
\(570\) 0 0
\(571\) 23.1555 0.969026 0.484513 0.874784i \(-0.338997\pi\)
0.484513 + 0.874784i \(0.338997\pi\)
\(572\) 2.44904 + 4.66776i 0.102399 + 0.195169i
\(573\) 8.17828 + 11.9717i 0.341652 + 0.500125i
\(574\) 2.46104 + 4.26265i 0.102722 + 0.177919i
\(575\) 0 0
\(576\) 14.9320 11.9528i 0.622168 0.498035i
\(577\) −7.88984 7.88984i −0.328458 0.328458i 0.523542 0.852000i \(-0.324610\pi\)
−0.852000 + 0.523542i \(0.824610\pi\)
\(578\) −9.39291 + 2.51682i −0.390693 + 0.104686i
\(579\) −9.87759 8.48458i −0.410499 0.352607i
\(580\) 0 0
\(581\) −9.89445 5.71256i −0.410491 0.236997i
\(582\) −3.64949 1.75338i −0.151276 0.0726798i
\(583\) 5.48468 + 1.46961i 0.227152 + 0.0608652i
\(584\) 12.3217 0.509874
\(585\) 0 0
\(586\) −3.94669 −0.163036
\(587\) 17.2891 + 4.63260i 0.713597 + 0.191208i 0.597313 0.802008i \(-0.296235\pi\)
0.116284 + 0.993216i \(0.462902\pi\)
\(588\) 14.9395 + 7.17761i 0.616096 + 0.295999i
\(589\) 15.4700 + 8.93162i 0.637431 + 0.368021i
\(590\) 0 0
\(591\) 24.5282 + 21.0691i 1.00896 + 0.866665i
\(592\) 9.60878 2.57466i 0.394918 0.105818i
\(593\) 18.2825 + 18.2825i 0.750773 + 0.750773i 0.974623 0.223851i \(-0.0718628\pi\)
−0.223851 + 0.974623i \(0.571863\pi\)
\(594\) −0.917196 + 0.487990i −0.0376330 + 0.0200225i
\(595\) 0 0
\(596\) −12.7524 22.0879i −0.522360 0.904754i
\(597\) 0.348060 + 0.509504i 0.0142451 + 0.0208526i
\(598\) −1.13619 0.0459385i −0.0464624 0.00187857i
\(599\) −28.6851 −1.17204 −0.586021 0.810296i \(-0.699306\pi\)
−0.586021 + 0.810296i \(0.699306\pi\)
\(600\) 0 0
\(601\) −22.4909 38.9554i −0.917423 1.58902i −0.803315 0.595554i \(-0.796933\pi\)
−0.114107 0.993468i \(-0.536401\pi\)
\(602\) −5.04300 + 1.35127i −0.205537 + 0.0550735i
\(603\) 15.9422 6.99037i 0.649215 0.284670i
\(604\) 7.36152 12.7505i 0.299536 0.518811i
\(605\) 0 0
\(606\) 5.55774 + 1.04630i 0.225768 + 0.0425028i
\(607\) 6.14482 + 22.9328i 0.249411 + 0.930813i 0.971115 + 0.238612i \(0.0766924\pi\)
−0.721704 + 0.692201i \(0.756641\pi\)
\(608\) 13.8847 + 3.72040i 0.563100 + 0.150882i
\(609\) −14.1724 40.3835i −0.574296 1.63642i
\(610\) 0 0
\(611\) −3.46304 + 11.1081i −0.140100 + 0.449385i
\(612\) −17.0627 38.9129i −0.689718 1.57296i
\(613\) −34.7467 9.31036i −1.40341 0.376042i −0.523840 0.851817i \(-0.675501\pi\)
−0.879567 + 0.475775i \(0.842168\pi\)
\(614\) −1.44082 2.49558i −0.0581468 0.100713i
\(615\) 0 0
\(616\) 2.71738i 0.109486i
\(617\) 4.62410 + 17.2574i 0.186159 + 0.694756i 0.994379 + 0.105876i \(0.0337646\pi\)
−0.808220 + 0.588881i \(0.799569\pi\)
\(618\) 0.582656 + 7.68035i 0.0234378 + 0.308949i
\(619\) −2.34719 −0.0943415 −0.0471707 0.998887i \(-0.515020\pi\)
−0.0471707 + 0.998887i \(0.515020\pi\)
\(620\) 0 0
\(621\) −0.215020 + 6.20388i −0.00862847 + 0.248953i
\(622\) −0.331065 + 1.23555i −0.0132745 + 0.0495410i
\(623\) −25.5573 + 25.5573i −1.02393 + 1.02393i
\(624\) 11.8773 + 18.9906i 0.475471 + 0.760233i
\(625\) 0 0
\(626\) −0.208825 0.361695i −0.00834632 0.0144563i
\(627\) 5.62435 + 2.70218i 0.224615 + 0.107915i
\(628\) −7.89826 + 2.11633i −0.315175 + 0.0844508i
\(629\) 20.3499i 0.811404i
\(630\) 0 0
\(631\) 11.6065 + 6.70099i 0.462046 + 0.266762i 0.712904 0.701262i \(-0.247379\pi\)
−0.250858 + 0.968024i \(0.580713\pi\)
\(632\) 4.66136 4.66136i 0.185419 0.185419i
\(633\) −1.05783 13.9439i −0.0420449 0.554221i
\(634\) −0.992107 + 0.572793i −0.0394016 + 0.0227485i
\(635\) 0 0
\(636\) 24.6331 + 4.63740i 0.976765 + 0.183885i
\(637\) −9.55501 + 15.1056i −0.378583 + 0.598505i
\(638\) −1.01027 + 1.01027i −0.0399971 + 0.0399971i
\(639\) −1.94644 + 0.297035i −0.0769998 + 0.0117505i
\(640\) 0 0
\(641\) 7.29316 + 4.21071i 0.288062 + 0.166313i 0.637068 0.770808i \(-0.280147\pi\)
−0.349005 + 0.937121i \(0.613480\pi\)
\(642\) 0.723580 0.494303i 0.0285574 0.0195086i
\(643\) −7.26793 27.1243i −0.286619 1.06968i −0.947648 0.319316i \(-0.896547\pi\)
0.661029 0.750360i \(-0.270120\pi\)
\(644\) −6.90584 3.98709i −0.272128 0.157113i
\(645\) 0 0
\(646\) 4.60673 7.97910i 0.181250 0.313933i
\(647\) 3.43885 12.8340i 0.135195 0.504555i −0.864802 0.502113i \(-0.832556\pi\)
0.999997 0.00244197i \(-0.000777304\pi\)
\(648\) −7.88856 + 4.99722i −0.309892 + 0.196309i
\(649\) 4.00793i 0.157325i
\(650\) 0 0
\(651\) 4.16135 22.1044i 0.163096 0.866338i
\(652\) 8.17468 30.5083i 0.320145 1.19480i
\(653\) −37.7391 10.1122i −1.47685 0.395719i −0.571573 0.820551i \(-0.693667\pi\)
−0.905272 + 0.424832i \(0.860333\pi\)
\(654\) 2.52373 + 2.16782i 0.0986858 + 0.0847684i
\(655\) 0 0
\(656\) −9.66949 + 16.7481i −0.377530 + 0.653902i
\(657\) 35.4096 + 3.92386i 1.38146 + 0.153084i
\(658\) 2.08307 2.08307i 0.0812066 0.0812066i
\(659\) 0.692965 1.20025i 0.0269941 0.0467551i −0.852213 0.523195i \(-0.824740\pi\)
0.879207 + 0.476440i \(0.158073\pi\)
\(660\) 0 0
\(661\) −36.2520 + 20.9301i −1.41004 + 0.814087i −0.995392 0.0958938i \(-0.969429\pi\)
−0.414649 + 0.909981i \(0.636096\pi\)
\(662\) 2.97299 + 2.97299i 0.115548 + 0.115548i
\(663\) 43.8136 13.4144i 1.70158 0.520972i
\(664\) 3.42818i 0.133039i
\(665\) 0 0
\(666\) −2.17142 + 0.331369i −0.0841409 + 0.0128403i
\(667\) 2.20946 + 8.24582i 0.0855507 + 0.319279i
\(668\) 11.2586 + 11.2586i 0.435610 + 0.435610i
\(669\) 7.62854 + 6.55271i 0.294936 + 0.253342i
\(670\) 0 0
\(671\) −1.94295 −0.0750068
\(672\) −1.36918 18.0480i −0.0528171 0.696216i
\(673\) −5.82222 + 21.7288i −0.224430 + 0.837585i 0.758202 + 0.652020i \(0.226078\pi\)
−0.982632 + 0.185565i \(0.940588\pi\)
\(674\) 1.86127 1.07460i 0.0716934 0.0413922i
\(675\) 0 0
\(676\) −22.6740 + 10.7516i −0.872079 + 0.413522i
\(677\) −9.66307 9.66307i −0.371382 0.371382i 0.496599 0.867980i \(-0.334582\pi\)
−0.867980 + 0.496599i \(0.834582\pi\)
\(678\) −0.580822 + 1.20893i −0.0223063 + 0.0464286i
\(679\) 26.5170 15.3096i 1.01763 0.587529i
\(680\) 0 0
\(681\) 1.66269 8.83191i 0.0637143 0.338439i
\(682\) −0.725292 + 0.194341i −0.0277729 + 0.00744171i
\(683\) −39.5275 + 10.5914i −1.51248 + 0.405267i −0.917257 0.398295i \(-0.869602\pi\)
−0.595221 + 0.803562i \(0.702935\pi\)
\(684\) 25.6595 + 10.0163i 0.981114 + 0.382981i
\(685\) 0 0
\(686\) −1.61487 + 0.932347i −0.0616561 + 0.0355972i
\(687\) 25.0859 + 12.0524i 0.957086 + 0.459826i
\(688\) −14.5049 14.5049i −0.552995 0.552995i
\(689\) −8.04531 + 25.8062i −0.306502 + 0.983139i
\(690\) 0 0
\(691\) −35.2096 + 20.3283i −1.33944 + 0.773323i −0.986724 0.162409i \(-0.948074\pi\)
−0.352712 + 0.935732i \(0.614740\pi\)
\(692\) −6.06977 + 22.6527i −0.230738 + 0.861127i
\(693\) 0.865354 7.80910i 0.0328721 0.296643i
\(694\) 0.717694 0.0272433
\(695\) 0 0
\(696\) −8.36764 + 9.74145i −0.317175 + 0.369249i
\(697\) 27.9741 + 27.9741i 1.05960 + 1.05960i
\(698\) −1.38091 5.15364i −0.0522684 0.195068i
\(699\) −13.2246 + 4.64113i −0.500201 + 0.175543i
\(700\) 0 0
\(701\) 49.6743i 1.87617i 0.346401 + 0.938086i \(0.387404\pi\)
−0.346401 + 0.938086i \(0.612596\pi\)
\(702\) −2.14481 4.45666i −0.0809508 0.168206i
\(703\) 9.32848 + 9.32848i 0.351830 + 0.351830i
\(704\) 4.18182 2.41437i 0.157608 0.0909952i
\(705\) 0 0
\(706\) −3.85390 + 6.67515i −0.145044 + 0.251223i
\(707\) −30.2419 + 30.2419i −1.13736 + 1.13736i
\(708\) 1.33838 + 17.6420i 0.0502994 + 0.663028i
\(709\) 0.0385950 0.0668486i 0.00144947 0.00251055i −0.865300 0.501255i \(-0.832872\pi\)
0.866749 + 0.498744i \(0.166205\pi\)
\(710\) 0 0
\(711\) 14.8801 11.9112i 0.558047 0.446706i
\(712\) 10.4755 + 2.80691i 0.392587 + 0.105193i
\(713\) −1.16119 + 4.33360i −0.0434868 + 0.162295i
\(714\) −11.4010 2.14634i −0.426670 0.0803246i
\(715\) 0 0
\(716\) 26.5684i 0.992906i
\(717\) −10.6360 + 22.1379i −0.397209 + 0.826754i
\(718\) −2.01273 + 7.51161i −0.0751144 + 0.280331i
\(719\) 1.97524 3.42122i 0.0736641 0.127590i −0.826840 0.562437i \(-0.809864\pi\)
0.900505 + 0.434847i \(0.143197\pi\)
\(720\) 0 0
\(721\) −50.4454 29.1247i −1.87868 1.08466i
\(722\) 0.247702 + 0.924438i 0.00921853 + 0.0344040i
\(723\) 1.55789 + 2.28050i 0.0579384 + 0.0848126i
\(724\) 8.51572 + 4.91655i 0.316484 + 0.182722i
\(725\) 0 0
\(726\) 4.49848 1.57872i 0.166954 0.0585919i
\(727\) 26.2031 26.2031i 0.971818 0.971818i −0.0277959 0.999614i \(-0.508849\pi\)
0.999614 + 0.0277959i \(0.00884884\pi\)
\(728\) 12.9257 + 0.522611i 0.479058 + 0.0193693i
\(729\) −24.2612 + 11.8487i −0.898565 + 0.438841i
\(730\) 0 0
\(731\) −36.3412 + 20.9816i −1.34413 + 0.776032i
\(732\) −8.55243 + 0.648814i −0.316107 + 0.0239809i
\(733\) −4.40376 + 4.40376i −0.162656 + 0.162656i −0.783742 0.621086i \(-0.786692\pi\)
0.621086 + 0.783742i \(0.286692\pi\)
\(734\) 1.47172 + 0.849695i 0.0543220 + 0.0313628i
\(735\) 0 0
\(736\) 3.61027i 0.133076i
\(737\) 4.24492 1.13742i 0.156364 0.0418975i
\(738\) 2.52944 3.44048i 0.0931101 0.126646i
\(739\) 19.3253 + 33.4724i 0.710892 + 1.23130i 0.964523 + 0.264000i \(0.0850420\pi\)
−0.253630 + 0.967301i \(0.581625\pi\)
\(740\) 0 0
\(741\) −13.9351 + 26.2335i −0.511919 + 0.963713i
\(742\) 4.83938 4.83938i 0.177659 0.177659i
\(743\) −10.9045 + 40.6962i −0.400048 + 1.49300i 0.412961 + 0.910749i \(0.364494\pi\)
−0.813009 + 0.582251i \(0.802172\pi\)
\(744\) −6.36828 + 2.23492i −0.233472 + 0.0819362i
\(745\) 0 0
\(746\) 2.55087 0.0933940
\(747\) −1.09171 + 9.85178i −0.0399436 + 0.360458i
\(748\) −2.77632 10.3613i −0.101512 0.378848i
\(749\) 6.62700i 0.242145i
\(750\) 0 0
\(751\) 8.97373 + 15.5430i 0.327456 + 0.567170i 0.982006 0.188848i \(-0.0604754\pi\)
−0.654550 + 0.756018i \(0.727142\pi\)
\(752\) 11.1802 + 2.99572i 0.407699 + 0.109243i
\(753\) 12.0861 + 17.6921i 0.440442 + 0.644737i
\(754\) −4.61125 4.99984i −0.167932 0.182084i
\(755\) 0 0
\(756\) 1.20138 34.6629i 0.0436938 1.26068i
\(757\) −6.17589 1.65482i −0.224466 0.0601456i 0.144833 0.989456i \(-0.453736\pi\)
−0.369299 + 0.929311i \(0.620402\pi\)
\(758\) −1.04852 3.91312i −0.0380838 0.142131i
\(759\) −0.289941 + 1.54011i −0.0105242 + 0.0559026i
\(760\) 0 0
\(761\) 1.79494 3.10892i 0.0650664 0.112698i −0.831657 0.555290i \(-0.812607\pi\)
0.896723 + 0.442591i \(0.145941\pi\)
\(762\) 3.30844 + 4.84303i 0.119852 + 0.175444i
\(763\) −24.3027 + 6.51189i −0.879818 + 0.235746i
\(764\) 8.07901 + 13.9933i 0.292288 + 0.506258i
\(765\) 0 0
\(766\) 5.97290 0.215810
\(767\) −19.0645 0.770813i −0.688377 0.0278324i
\(768\) 15.3192 10.4651i 0.552785 0.377626i
\(769\) −3.66193 6.34265i −0.132053 0.228722i 0.792415 0.609982i \(-0.208823\pi\)
−0.924468 + 0.381260i \(0.875490\pi\)
\(770\) 0 0
\(771\) −19.5944 + 22.8114i −0.705675 + 0.821533i
\(772\) −10.2614 10.2614i −0.369315 0.369315i
\(773\) 31.5967 8.46631i 1.13645 0.304512i 0.358930 0.933364i \(-0.383142\pi\)
0.777525 + 0.628852i \(0.216475\pi\)
\(774\) 2.83059 + 3.53610i 0.101743 + 0.127103i
\(775\) 0 0
\(776\) −7.95660 4.59374i −0.285625 0.164906i
\(777\) 7.19368 14.9730i 0.258072 0.537153i
\(778\) 2.80764 + 0.752305i 0.100659 + 0.0269714i
\(779\) −25.6469 −0.918897
\(780\) 0 0
\(781\) −0.497085 −0.0177871
\(782\) 2.23518 + 0.598915i 0.0799299 + 0.0214171i
\(783\) −27.1488 + 25.3300i −0.970220 + 0.905219i
\(784\) 15.3983 + 8.89024i 0.549941 + 0.317509i
\(785\) 0 0
\(786\) 5.28573 6.15355i 0.188536 0.219490i
\(787\) 24.6663 6.60933i 0.879260 0.235597i 0.209172 0.977879i \(-0.432923\pi\)
0.670088 + 0.742282i \(0.266256\pi\)
\(788\) 25.4813 + 25.4813i 0.907732 + 0.907732i
\(789\) −23.0269 19.7795i −0.819781 0.704169i
\(790\) 0 0
\(791\) −5.07145 8.78400i −0.180320 0.312323i
\(792\) −2.15907 + 0.946716i −0.0767192 + 0.0336401i
\(793\) 0.373672 9.24200i 0.0132695 0.328193i
\(794\) −2.12624 −0.0754573
\(795\) 0 0
\(796\) 0.343835 + 0.595539i 0.0121869 + 0.0211083i
\(797\) −1.26147 + 0.338010i −0.0446836 + 0.0119729i −0.281092 0.959681i \(-0.590696\pi\)
0.236408 + 0.971654i \(0.424030\pi\)
\(798\) 6.21014 4.24236i 0.219836 0.150178i
\(799\) 11.8389 20.5056i 0.418831 0.725437i
\(800\) 0 0
\(801\) 29.2103 + 11.4023i 1.03210 + 0.402882i
\(802\) −2.55235 9.52552i −0.0901268 0.336358i
\(803\) 8.68774 + 2.32787i 0.306584 + 0.0821488i
\(804\) 18.3054 6.42420i 0.645580 0.226564i
\(805\) 0 0
\(806\) −0.784930 3.48736i −0.0276480 0.122837i
\(807\) 8.24606 5.63317i 0.290275 0.198297i
\(808\) 12.3957 + 3.32141i 0.436079 + 0.116847i
\(809\) −14.5548 25.2097i −0.511720 0.886326i −0.999908 0.0135868i \(-0.995675\pi\)
0.488187 0.872739i \(-0.337658\pi\)
\(810\) 0 0
\(811\) 40.2274i 1.41257i −0.707926 0.706287i \(-0.750369\pi\)
0.707926 0.706287i \(-0.249631\pi\)
\(812\) −12.3449 46.0718i −0.433221 1.61680i
\(813\) −36.4217 + 2.76306i −1.27736 + 0.0969049i
\(814\) −0.554543 −0.0194367
\(815\) 0 0
\(816\) −15.0941 43.0098i −0.528400 1.50565i
\(817\) 7.04090 26.2770i 0.246330 0.919315i
\(818\) 2.59387 2.59387i 0.0906927 0.0906927i
\(819\) 36.9790 + 5.61807i 1.29215 + 0.196311i
\(820\) 0 0
\(821\) −10.4818 18.1550i −0.365818 0.633615i 0.623089 0.782151i \(-0.285877\pi\)
−0.988907 + 0.148536i \(0.952544\pi\)
\(822\) −4.25060 + 8.84724i −0.148257 + 0.308583i
\(823\) 38.6043 10.3440i 1.34566 0.360569i 0.487130 0.873329i \(-0.338044\pi\)
0.858532 + 0.512760i \(0.171377\pi\)
\(824\) 17.4781i 0.608877i
\(825\) 0 0
\(826\) 4.18358 + 2.41539i 0.145565 + 0.0840422i
\(827\) −0.968029 + 0.968029i −0.0336617 + 0.0336617i −0.723737 0.690076i \(-0.757577\pi\)
0.690076 + 0.723737i \(0.257577\pi\)
\(828\) −0.761961 + 6.87606i −0.0264800 + 0.238960i
\(829\) −23.0443 + 13.3046i −0.800362 + 0.462089i −0.843598 0.536976i \(-0.819567\pi\)
0.0432359 + 0.999065i \(0.486233\pi\)
\(830\) 0 0
\(831\) 1.78010 9.45556i 0.0617509 0.328010i
\(832\) 10.6802 + 20.3559i 0.370268 + 0.705715i
\(833\) 25.7197 25.7197i 0.891136 0.891136i
\(834\) −1.53839 4.38356i −0.0532702 0.151790i
\(835\) 0 0
\(836\) 6.02236 + 3.47701i 0.208288 + 0.120255i
\(837\) −19.0127 + 4.39465i −0.657173 + 0.151901i
\(838\) −2.28665 8.53388i −0.0789909 0.294798i
\(839\) −10.1710 5.87220i −0.351140 0.202731i 0.314047 0.949407i \(-0.398315\pi\)
−0.665187 + 0.746676i \(0.731648\pi\)
\(840\) 0 0
\(841\) −11.0308 + 19.1060i −0.380374 + 0.658827i
\(842\) 1.13583 4.23897i 0.0391432 0.146085i
\(843\) −20.8060 9.99614i −0.716598 0.344285i
\(844\) 15.5846i 0.536446i
\(845\) 0 0
\(846\) −2.38082 0.929360i −0.0818542 0.0319521i
\(847\) −9.33140 + 34.8253i −0.320631 + 1.19661i
\(848\) 25.9737 + 6.95963i 0.891940 + 0.238995i
\(849\) −15.7141 + 18.2941i −0.539307 + 0.627852i
\(850\) 0 0
\(851\) −1.65669 + 2.86947i −0.0567907 + 0.0983643i
\(852\) −2.18806 + 0.165993i −0.0749617 + 0.00568683i
\(853\) 12.6463 12.6463i 0.433001 0.433001i −0.456647 0.889648i \(-0.650950\pi\)
0.889648 + 0.456647i \(0.150950\pi\)
\(854\) −1.17092 + 2.02810i −0.0400682 + 0.0694002i
\(855\) 0 0
\(856\) 1.72207 0.994235i 0.0588590 0.0339823i
\(857\) −17.5943 17.5943i −0.601008 0.601008i 0.339572 0.940580i \(-0.389718\pi\)
−0.940580 + 0.339572i \(0.889718\pi\)
\(858\) −0.365547 1.19394i −0.0124796 0.0407603i
\(859\) 0.150593i 0.00513817i 0.999997 + 0.00256909i \(0.000817767\pi\)
−0.999997 + 0.00256909i \(0.999182\pi\)
\(860\) 0 0
\(861\) 10.6939 + 30.4716i 0.364446 + 1.03847i
\(862\) 2.37116 + 8.84929i 0.0807620 + 0.301408i
\(863\) 21.1115 + 21.1115i 0.718643 + 0.718643i 0.968327 0.249685i \(-0.0803269\pi\)
−0.249685 + 0.968327i \(0.580327\pi\)
\(864\) −13.8629 + 7.37567i −0.471624 + 0.250925i
\(865\) 0 0
\(866\) −5.59987 −0.190291
\(867\) −63.6176 + 4.82623i −2.16057 + 0.163907i
\(868\) 6.48788 24.2131i 0.220213 0.821846i
\(869\) 4.16727 2.40597i 0.141365 0.0816171i
\(870\) 0 0
\(871\) 4.59396 + 20.4105i 0.155661 + 0.691582i
\(872\) 5.33824 + 5.33824i 0.180776 + 0.180776i
\(873\) −21.4025 15.7351i −0.724365 0.532554i
\(874\) −1.29916 + 0.750071i −0.0439448 + 0.0253715i
\(875\) 0 0
\(876\) 39.0188 + 7.34566i 1.31832 + 0.248187i
\(877\) −9.57243 + 2.56493i −0.323238 + 0.0866114i −0.416789 0.909003i \(-0.636845\pi\)
0.0935514 + 0.995614i \(0.470178\pi\)
\(878\) 4.52524 1.21253i 0.152719 0.0409210i
\(879\) −25.4471 4.79064i −0.858308 0.161584i
\(880\) 0 0
\(881\) −41.0035 + 23.6734i −1.38144 + 0.797576i −0.992330 0.123614i \(-0.960551\pi\)
−0.389112 + 0.921190i \(0.627218\pi\)
\(882\) −3.16322 2.32560i −0.106511 0.0783070i
\(883\) 8.67634 + 8.67634i 0.291982 + 0.291982i 0.837863 0.545881i \(-0.183805\pi\)
−0.545881 + 0.837863i \(0.683805\pi\)
\(884\) 49.8196 11.2133i 1.67561 0.377145i
\(885\) 0 0
\(886\) −3.98900 + 2.30305i −0.134013 + 0.0773724i
\(887\) −4.44848 + 16.6020i −0.149365 + 0.557439i 0.850157 + 0.526530i \(0.176507\pi\)
−0.999522 + 0.0309097i \(0.990160\pi\)
\(888\) −4.97008 + 0.377046i −0.166785 + 0.0126528i
\(889\) −44.3554 −1.48763
\(890\) 0 0
\(891\) −6.50615 + 2.03308i −0.217964 + 0.0681108i
\(892\) 7.92495 + 7.92495i 0.265347 + 0.265347i
\(893\) 3.97285 + 14.8269i 0.132946 + 0.496163i
\(894\) 2.00064 + 5.70071i 0.0669115 + 0.190660i
\(895\) 0 0
\(896\) 26.7200i 0.892653i
\(897\) −7.27008 1.67535i −0.242741 0.0559385i
\(898\) −2.58022 2.58022i −0.0861032 0.0861032i
\(899\) −23.2403 + 13.4178i −0.775107 + 0.447508i
\(900\) 0 0
\(901\) 27.5041 47.6385i 0.916295 1.58707i
\(902\) 0.762306 0.762306i 0.0253820 0.0253820i
\(903\) −34.1560 + 2.59118i −1.13664 + 0.0862290i
\(904\) −1.52172 + 2.63569i −0.0506116 + 0.0876619i
\(905\) 0 0
\(906\) −2.27248 + 2.64558i −0.0754980 + 0.0878934i
\(907\) −42.1187 11.2857i −1.39853 0.374735i −0.520713 0.853732i \(-0.674334\pi\)
−0.877817 + 0.478997i \(0.841001\pi\)
\(908\) 2.59226 9.67446i 0.0860273 0.321058i
\(909\) 34.5646 + 13.4924i 1.14644 + 0.447515i
\(910\) 0 0
\(911\) 17.9743i 0.595516i −0.954641 0.297758i \(-0.903761\pi\)
0.954641 0.297758i \(-0.0962388\pi\)
\(912\) 26.6351 + 12.7967i 0.881977 + 0.423740i
\(913\) −0.647668 + 2.41713i −0.0214347 + 0.0799954i
\(914\) 0.173973 0.301331i 0.00575452 0.00996713i
\(915\) 0 0
\(916\) 26.8611 + 15.5083i 0.887517 + 0.512408i
\(917\) 15.8778 + 59.2566i 0.524330 + 1.95683i
\(918\) 2.26667 + 9.80631i 0.0748112 + 0.323657i
\(919\) 26.6383 + 15.3796i 0.878716 + 0.507327i 0.870235 0.492637i \(-0.163967\pi\)
0.00848144 + 0.999964i \(0.497300\pi\)
\(920\) 0 0
\(921\) −6.26076 17.8397i −0.206299 0.587837i
\(922\) −2.07583 + 2.07583i −0.0683638 + 0.0683638i
\(923\) 0.0956004 2.36448i 0.00314673 0.0778277i
\(924\) 1.61998 8.60507i 0.0532935 0.283086i
\(925\) 0 0
\(926\) 6.55356 3.78370i 0.215363 0.124340i
\(927\) −5.56592 + 50.2279i −0.182809 + 1.64970i
\(928\) −15.2697 + 15.2697i −0.501251 + 0.501251i
\(929\) 35.1545 + 20.2965i 1.15338 + 0.665906i 0.949709 0.313133i \(-0.101379\pi\)
0.203673 + 0.979039i \(0.434712\pi\)
\(930\) 0 0
\(931\) 23.5801i 0.772806i
\(932\) −15.0874 + 4.04265i −0.494204 + 0.132421i
\(933\) −3.63436 + 7.56459i −0.118984 + 0.247654i
\(934\) 1.30132 + 2.25396i 0.0425806 + 0.0737517i
\(935\) 0 0
\(936\) −4.08799 10.4521i −0.133620 0.341637i
\(937\) −25.1017 + 25.1017i −0.820037 + 0.820037i −0.986113 0.166076i \(-0.946890\pi\)
0.166076 + 0.986113i \(0.446890\pi\)
\(938\) 1.37094 5.11642i 0.0447628 0.167057i
\(939\) −0.907400 2.58558i −0.0296119 0.0843773i
\(940\) 0 0
\(941\) −8.19014 −0.266991 −0.133495 0.991049i \(-0.542620\pi\)
−0.133495 + 0.991049i \(0.542620\pi\)
\(942\) 1.93138 0.146521i 0.0629279 0.00477390i
\(943\) −1.66716 6.22192i −0.0542902 0.202614i
\(944\) 18.9803i 0.617756i
\(945\) 0 0
\(946\) 0.571756 + 0.990310i 0.0185894 + 0.0321978i
\(947\) −37.4781 10.0422i −1.21787 0.326328i −0.408027 0.912970i \(-0.633783\pi\)
−0.809847 + 0.586642i \(0.800450\pi\)
\(948\) 17.5400 11.9822i 0.569671 0.389162i
\(949\) −12.7438 + 40.8771i −0.413681 + 1.32693i
\(950\) 0 0
\(951\) −7.09209 + 2.48894i −0.229977 + 0.0807094i
\(952\) −25.4281 6.81344i −0.824129 0.220825i
\(953\) 8.38243 + 31.2837i 0.271534 + 1.01338i 0.958129 + 0.286338i \(0.0924379\pi\)
−0.686595 + 0.727040i \(0.740895\pi\)
\(954\) −5.53110 2.15908i −0.179076 0.0699029i
\(955\) 0 0
\(956\) −13.6858 + 23.7045i −0.442630 + 0.766658i
\(957\) −7.74024 + 5.28762i −0.250206 + 0.170925i
\(958\) −8.80169 + 2.35841i −0.284370 + 0.0761966i
\(959\) −37.1142 64.2836i −1.19848 2.07583i
\(960\) 0 0
\(961\) 16.8965 0.545049
\(962\) 0.106651 2.63778i 0.00343856 0.0850456i
\(963\) 5.26543 2.30880i 0.169676 0.0744002i
\(964\) 1.53898 + 2.66558i 0.0495671 + 0.0858527i
\(965\) 0 0
\(966\) 1.43288 + 1.23080i 0.0461021 + 0.0396004i
\(967\) −0.363600 0.363600i −0.0116926 0.0116926i 0.701236 0.712929i \(-0.252632\pi\)
−0.712929 + 0.701236i \(0.752632\pi\)
\(968\) 10.4495 2.79994i 0.335861 0.0899936i
\(969\) 39.3882 45.8550i 1.26533 1.47307i
\(970\) 0 0
\(971\) −51.2520 29.5904i −1.64476 0.949600i −0.979110 0.203332i \(-0.934823\pi\)
−0.665645 0.746268i \(-0.731844\pi\)
\(972\) −27.9597 + 11.1218i −0.896808 + 0.356732i
\(973\) 33.9356 + 9.09302i 1.08793 + 0.291509i
\(974\) 1.62712 0.0521363
\(975\) 0 0
\(976\) −9.20119 −0.294523
\(977\) 7.43926 + 1.99334i 0.238003 + 0.0637727i 0.375849 0.926681i \(-0.377351\pi\)
−0.137846 + 0.990454i \(0.544018\pi\)
\(978\) −3.24001 + 6.74378i −0.103604 + 0.215642i
\(979\) 6.85576 + 3.95818i 0.219111 + 0.126504i
\(980\) 0 0
\(981\) 13.6409 + 17.0408i 0.435520 + 0.544072i
\(982\) −9.77864 + 2.62018i −0.312049 + 0.0836132i
\(983\) −0.396618 0.396618i −0.0126502 0.0126502i 0.700753 0.713404i \(-0.252847\pi\)
−0.713404 + 0.700753i \(0.752847\pi\)
\(984\) 6.31384 7.35046i 0.201278 0.234324i
\(985\) 0 0
\(986\) 6.92060 + 11.9868i 0.220397 + 0.381739i
\(987\) 15.9595 10.9025i 0.507998 0.347031i
\(988\) −17.6973 + 27.9778i −0.563025 + 0.890091i
\(989\) 6.83246 0.217260
\(990\) 0 0
\(991\) 17.3190 + 29.9974i 0.550157 + 0.952900i 0.998263 + 0.0589191i \(0.0187654\pi\)
−0.448106 + 0.893980i \(0.647901\pi\)
\(992\) −10.9623 + 2.93735i −0.348055 + 0.0932610i
\(993\) 15.5602 + 22.7776i 0.493788 + 0.722827i
\(994\) −0.299570 + 0.518870i −0.00950178 + 0.0164576i
\(995\) 0 0
\(996\) −2.04373 + 10.8560i −0.0647582 + 0.343984i
\(997\) −4.90330 18.2994i −0.155289 0.579546i −0.999080 0.0428751i \(-0.986348\pi\)
0.843791 0.536671i \(-0.180318\pi\)
\(998\) −3.91051 1.04782i −0.123785 0.0331681i
\(999\) −14.4029 0.499190i −0.455688 0.0157937i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.218.11 96
3.2 odd 2 inner 975.2.bn.d.218.14 96
5.2 odd 4 inner 975.2.bn.d.257.14 96
5.3 odd 4 195.2.bf.a.62.11 yes 96
5.4 even 2 195.2.bf.a.23.14 yes 96
13.4 even 6 inner 975.2.bn.d.368.11 96
15.2 even 4 inner 975.2.bn.d.257.11 96
15.8 even 4 195.2.bf.a.62.14 yes 96
15.14 odd 2 195.2.bf.a.23.11 yes 96
39.17 odd 6 inner 975.2.bn.d.368.14 96
65.4 even 6 195.2.bf.a.173.14 yes 96
65.17 odd 12 inner 975.2.bn.d.407.14 96
65.43 odd 12 195.2.bf.a.17.11 96
195.17 even 12 inner 975.2.bn.d.407.11 96
195.134 odd 6 195.2.bf.a.173.11 yes 96
195.173 even 12 195.2.bf.a.17.14 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.11 96 65.43 odd 12
195.2.bf.a.17.14 yes 96 195.173 even 12
195.2.bf.a.23.11 yes 96 15.14 odd 2
195.2.bf.a.23.14 yes 96 5.4 even 2
195.2.bf.a.62.11 yes 96 5.3 odd 4
195.2.bf.a.62.14 yes 96 15.8 even 4
195.2.bf.a.173.11 yes 96 195.134 odd 6
195.2.bf.a.173.14 yes 96 65.4 even 6
975.2.bn.d.218.11 96 1.1 even 1 trivial
975.2.bn.d.218.14 96 3.2 odd 2 inner
975.2.bn.d.257.11 96 15.2 even 4 inner
975.2.bn.d.257.14 96 5.2 odd 4 inner
975.2.bn.d.368.11 96 13.4 even 6 inner
975.2.bn.d.368.14 96 39.17 odd 6 inner
975.2.bn.d.407.11 96 195.17 even 12 inner
975.2.bn.d.407.14 96 65.17 odd 12 inner