L(s) = 1 | + (−0.254 − 0.0683i)2-s + (−1.56 − 0.750i)3-s + (−1.67 − 0.965i)4-s + (0.346 + 0.297i)6-s + (−3.34 + 0.894i)7-s + (0.733 + 0.733i)8-s + (1.87 + 2.34i)9-s + (0.378 + 0.655i)11-s + (1.88 + 2.76i)12-s + (−3.19 + 1.67i)13-s + 0.912·14-s + (1.79 + 3.10i)16-s + (7.08 − 1.89i)17-s + (−0.318 − 0.725i)18-s + (−2.37 + 4.11i)19-s + ⋯ |
L(s) = 1 | + (−0.180 − 0.0483i)2-s + (−0.901 − 0.433i)3-s + (−0.835 − 0.482i)4-s + (0.141 + 0.121i)6-s + (−1.26 + 0.338i)7-s + (0.259 + 0.259i)8-s + (0.624 + 0.780i)9-s + (0.114 + 0.197i)11-s + (0.544 + 0.796i)12-s + (−0.885 + 0.464i)13-s + 0.243·14-s + (0.448 + 0.776i)16-s + (1.71 − 0.460i)17-s + (−0.0749 − 0.170i)18-s + (−0.545 + 0.945i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.544 + 0.838i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.544 + 0.838i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.464374 - 0.252104i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.464374 - 0.252104i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.56 + 0.750i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.19 - 1.67i)T \) |
good | 2 | \( 1 + (0.254 + 0.0683i)T + (1.73 + i)T^{2} \) |
| 7 | \( 1 + (3.34 - 0.894i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-0.378 - 0.655i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-7.08 + 1.89i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (2.37 - 4.11i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.15 + 0.309i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (3.57 + 6.18i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.75iT - 31T^{2} \) |
| 37 | \( 1 + (-0.717 + 2.67i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.69 - 4.66i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.52 - 1.48i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + (-2.28 + 2.28i)T - 47iT^{2} \) |
| 53 | \( 1 + (-5.30 + 5.30i)T - 53iT^{2} \) |
| 59 | \( 1 + (-4.58 - 2.64i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.28 - 2.22i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.50 + 5.60i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (0.328 - 0.568i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-8.39 + 8.39i)T - 73iT^{2} \) |
| 79 | \( 1 + 6.35iT - 79T^{2} \) |
| 83 | \( 1 + (-2.33 - 2.33i)T + 83iT^{2} \) |
| 89 | \( 1 + (-9.05 + 5.22i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.55 - 2.29i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.817846200775140066988917469956, −9.458512063723945825444674337468, −8.111989166191414569300442848741, −7.33536790496058456738263723449, −6.19780096423871404789323310110, −5.73326644159615460625945284984, −4.75740585516507098905785620215, −3.67829584119664945142759408936, −2.05500886949686546945626709857, −0.50460841779208065942549337155,
0.72161545611503178981151405454, 3.17801636542973808709572931068, 3.83440170476846101690030341190, 4.96329735705777363170357258911, 5.69415427901705987211980437475, 6.80956639166065463072508183846, 7.48207096418013335132575196526, 8.658774763680390422261763880663, 9.531776148840800747921770109378, 10.04145483343014139067858740371