Properties

Label 972.2.l.b.215.8
Level $972$
Weight $2$
Character 972.215
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,-3,0,3,-6,0,0,9,0,-3,0,0,6,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 215.8
Character \(\chi\) \(=\) 972.215
Dual form 972.2.l.b.755.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.267275 - 1.38873i) q^{2} +(-1.85713 + 0.742344i) q^{4} +(-2.21508 + 2.63983i) q^{5} +(-1.00203 + 2.75305i) q^{7} +(1.52728 + 2.38064i) q^{8} +(4.25804 + 2.37058i) q^{10} +(-2.00243 + 1.68024i) q^{11} +(0.941927 - 5.34193i) q^{13} +(4.09105 + 0.655722i) q^{14} +(2.89785 - 2.75726i) q^{16} +(-1.15583 - 0.667320i) q^{17} +(-0.0790760 + 0.0456546i) q^{19} +(2.15403 - 6.54685i) q^{20} +(2.86860 + 2.33175i) q^{22} +(-0.797738 + 0.290353i) q^{23} +(-1.19388 - 6.77083i) q^{25} +(-7.67024 + 0.119685i) q^{26} +(-0.182815 - 5.85661i) q^{28} +(-0.493578 + 0.0870310i) q^{29} +(-2.27906 - 6.26168i) q^{31} +(-4.60360 - 3.28738i) q^{32} +(-0.617801 + 1.78349i) q^{34} +(-5.04800 - 8.74340i) q^{35} +(2.75869 - 4.77819i) q^{37} +(0.0845368 + 0.0976128i) q^{38} +(-9.66751 - 1.24155i) q^{40} +(-2.81281 - 0.495975i) q^{41} +(3.65343 + 4.35398i) q^{43} +(2.47146 - 4.60692i) q^{44} +(0.616436 + 1.03024i) q^{46} +(-6.20947 - 2.26006i) q^{47} +(-1.21289 - 1.01774i) q^{49} +(-9.08374 + 3.46765i) q^{50} +(2.21627 + 10.6199i) q^{52} -7.37249i q^{53} -9.00795i q^{55} +(-8.08437 + 1.81920i) q^{56} +(0.252783 + 0.662184i) q^{58} +(-2.33273 - 1.95739i) q^{59} +(2.27868 + 0.829371i) q^{61} +(-8.08663 + 4.83859i) q^{62} +(-3.33485 + 7.27178i) q^{64} +(12.0154 + 14.3193i) q^{65} +(4.74821 + 0.837237i) q^{67} +(2.64191 + 0.381274i) q^{68} +(-10.7930 + 9.34719i) q^{70} +(-5.91940 + 10.2527i) q^{71} +(-5.83049 - 10.0987i) q^{73} +(-7.37294 - 2.55398i) q^{74} +(0.112963 - 0.143488i) q^{76} +(-2.61929 - 7.19644i) q^{77} +(-1.66138 + 0.292946i) q^{79} +(0.859714 + 13.7574i) q^{80} +(0.0630204 + 4.03879i) q^{82} +(-0.375017 - 2.12683i) q^{83} +(4.32187 - 1.57303i) q^{85} +(5.07003 - 6.23732i) q^{86} +(-7.05831 - 2.20087i) q^{88} +(12.5801 - 7.26310i) q^{89} +(13.7628 + 7.94593i) q^{91} +(1.26596 - 1.13142i) q^{92} +(-1.47897 + 9.22731i) q^{94} +(0.0546395 - 0.309876i) q^{95} +(5.05588 - 4.24238i) q^{97} +(-1.08919 + 1.95639i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 9 q^{8} - 3 q^{10} + 6 q^{13} + 12 q^{14} + 3 q^{16} + 18 q^{17} - 45 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 6 q^{29} + 57 q^{32} - 3 q^{34} - 6 q^{37} - 45 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.267275 1.38873i −0.188992 0.981979i
\(3\) 0 0
\(4\) −1.85713 + 0.742344i −0.928564 + 0.371172i
\(5\) −2.21508 + 2.63983i −0.990614 + 1.18057i −0.00705588 + 0.999975i \(0.502246\pi\)
−0.983558 + 0.180593i \(0.942198\pi\)
\(6\) 0 0
\(7\) −1.00203 + 2.75305i −0.378731 + 1.04055i 0.593153 + 0.805090i \(0.297883\pi\)
−0.971883 + 0.235464i \(0.924339\pi\)
\(8\) 1.52728 + 2.38064i 0.539974 + 0.841682i
\(9\) 0 0
\(10\) 4.25804 + 2.37058i 1.34651 + 0.749644i
\(11\) −2.00243 + 1.68024i −0.603757 + 0.506612i −0.892651 0.450749i \(-0.851157\pi\)
0.288894 + 0.957361i \(0.406712\pi\)
\(12\) 0 0
\(13\) 0.941927 5.34193i 0.261244 1.48159i −0.518279 0.855212i \(-0.673427\pi\)
0.779522 0.626374i \(-0.215462\pi\)
\(14\) 4.09105 + 0.655722i 1.09338 + 0.175249i
\(15\) 0 0
\(16\) 2.89785 2.75726i 0.724463 0.689314i
\(17\) −1.15583 0.667320i −0.280330 0.161849i 0.353243 0.935532i \(-0.385079\pi\)
−0.633573 + 0.773683i \(0.718412\pi\)
\(18\) 0 0
\(19\) −0.0790760 + 0.0456546i −0.0181413 + 0.0104739i −0.509043 0.860741i \(-0.670001\pi\)
0.490902 + 0.871215i \(0.336667\pi\)
\(20\) 2.15403 6.54685i 0.481655 1.46392i
\(21\) 0 0
\(22\) 2.86860 + 2.33175i 0.611587 + 0.497131i
\(23\) −0.797738 + 0.290353i −0.166340 + 0.0605428i −0.423848 0.905733i \(-0.639321\pi\)
0.257508 + 0.966276i \(0.417099\pi\)
\(24\) 0 0
\(25\) −1.19388 6.77083i −0.238776 1.35417i
\(26\) −7.67024 + 0.119685i −1.50426 + 0.0234721i
\(27\) 0 0
\(28\) −0.182815 5.85661i −0.0345487 1.10679i
\(29\) −0.493578 + 0.0870310i −0.0916551 + 0.0161613i −0.219288 0.975660i \(-0.570373\pi\)
0.127633 + 0.991822i \(0.459262\pi\)
\(30\) 0 0
\(31\) −2.27906 6.26168i −0.409332 1.12463i −0.957543 0.288290i \(-0.906913\pi\)
0.548211 0.836340i \(-0.315309\pi\)
\(32\) −4.60360 3.28738i −0.813809 0.581132i
\(33\) 0 0
\(34\) −0.617801 + 1.78349i −0.105952 + 0.305867i
\(35\) −5.04800 8.74340i −0.853268 1.47790i
\(36\) 0 0
\(37\) 2.75869 4.77819i 0.453526 0.785530i −0.545076 0.838387i \(-0.683499\pi\)
0.998602 + 0.0528563i \(0.0168325\pi\)
\(38\) 0.0845368 + 0.0976128i 0.0137137 + 0.0158349i
\(39\) 0 0
\(40\) −9.66751 1.24155i −1.52857 0.196306i
\(41\) −2.81281 0.495975i −0.439288 0.0774583i −0.0503696 0.998731i \(-0.516040\pi\)
−0.388918 + 0.921272i \(0.627151\pi\)
\(42\) 0 0
\(43\) 3.65343 + 4.35398i 0.557142 + 0.663976i 0.968939 0.247299i \(-0.0795431\pi\)
−0.411797 + 0.911276i \(0.635099\pi\)
\(44\) 2.47146 4.60692i 0.372587 0.694519i
\(45\) 0 0
\(46\) 0.616436 + 1.03024i 0.0908886 + 0.151900i
\(47\) −6.20947 2.26006i −0.905744 0.329664i −0.153192 0.988197i \(-0.548955\pi\)
−0.752552 + 0.658533i \(0.771177\pi\)
\(48\) 0 0
\(49\) −1.21289 1.01774i −0.173271 0.145391i
\(50\) −9.08374 + 3.46765i −1.28464 + 0.490399i
\(51\) 0 0
\(52\) 2.21627 + 10.6199i 0.307342 + 1.47271i
\(53\) 7.37249i 1.01269i −0.862331 0.506345i \(-0.830996\pi\)
0.862331 0.506345i \(-0.169004\pi\)
\(54\) 0 0
\(55\) 9.00795i 1.21463i
\(56\) −8.08437 + 1.81920i −1.08032 + 0.243101i
\(57\) 0 0
\(58\) 0.252783 + 0.662184i 0.0331921 + 0.0869490i
\(59\) −2.33273 1.95739i −0.303696 0.254831i 0.478185 0.878259i \(-0.341295\pi\)
−0.781880 + 0.623428i \(0.785739\pi\)
\(60\) 0 0
\(61\) 2.27868 + 0.829371i 0.291755 + 0.106190i 0.483751 0.875206i \(-0.339274\pi\)
−0.191996 + 0.981396i \(0.561496\pi\)
\(62\) −8.08663 + 4.83859i −1.02700 + 0.614501i
\(63\) 0 0
\(64\) −3.33485 + 7.27178i −0.416856 + 0.908973i
\(65\) 12.0154 + 14.3193i 1.49032 + 1.77610i
\(66\) 0 0
\(67\) 4.74821 + 0.837237i 0.580086 + 0.102285i 0.455989 0.889985i \(-0.349286\pi\)
0.124097 + 0.992270i \(0.460397\pi\)
\(68\) 2.64191 + 0.381274i 0.320379 + 0.0462362i
\(69\) 0 0
\(70\) −10.7930 + 9.34719i −1.29001 + 1.11720i
\(71\) −5.91940 + 10.2527i −0.702504 + 1.21677i 0.265081 + 0.964226i \(0.414601\pi\)
−0.967585 + 0.252546i \(0.918732\pi\)
\(72\) 0 0
\(73\) −5.83049 10.0987i −0.682408 1.18197i −0.974244 0.225497i \(-0.927600\pi\)
0.291836 0.956468i \(-0.405734\pi\)
\(74\) −7.37294 2.55398i −0.857087 0.296894i
\(75\) 0 0
\(76\) 0.112963 0.143488i 0.0129577 0.0164592i
\(77\) −2.61929 7.19644i −0.298496 0.820110i
\(78\) 0 0
\(79\) −1.66138 + 0.292946i −0.186920 + 0.0329590i −0.266324 0.963884i \(-0.585809\pi\)
0.0794047 + 0.996842i \(0.474698\pi\)
\(80\) 0.859714 + 13.7574i 0.0961190 + 1.53812i
\(81\) 0 0
\(82\) 0.0630204 + 4.03879i 0.00695944 + 0.446010i
\(83\) −0.375017 2.12683i −0.0411635 0.233450i 0.957284 0.289149i \(-0.0933723\pi\)
−0.998448 + 0.0556992i \(0.982261\pi\)
\(84\) 0 0
\(85\) 4.32187 1.57303i 0.468773 0.170619i
\(86\) 5.07003 6.23732i 0.546715 0.672588i
\(87\) 0 0
\(88\) −7.05831 2.20087i −0.752419 0.234614i
\(89\) 12.5801 7.26310i 1.33348 0.769887i 0.347652 0.937624i \(-0.386979\pi\)
0.985832 + 0.167737i \(0.0536458\pi\)
\(90\) 0 0
\(91\) 13.7628 + 7.94593i 1.44273 + 0.832960i
\(92\) 1.26596 1.13142i 0.131985 0.117959i
\(93\) 0 0
\(94\) −1.47897 + 9.22731i −0.152545 + 0.951725i
\(95\) 0.0546395 0.309876i 0.00560589 0.0317926i
\(96\) 0 0
\(97\) 5.05588 4.24238i 0.513347 0.430749i −0.348958 0.937138i \(-0.613465\pi\)
0.862305 + 0.506389i \(0.169020\pi\)
\(98\) −1.08919 + 1.95639i −0.110024 + 0.197626i
\(99\) 0 0
\(100\) 7.24347 + 11.6880i 0.724347 + 1.16880i
\(101\) 2.82004 7.74801i 0.280605 0.770956i −0.716686 0.697396i \(-0.754342\pi\)
0.997291 0.0735595i \(-0.0234359\pi\)
\(102\) 0 0
\(103\) −10.3468 + 12.3309i −1.01950 + 1.21500i −0.0430954 + 0.999071i \(0.513722\pi\)
−0.976409 + 0.215928i \(0.930722\pi\)
\(104\) 14.1558 5.91623i 1.38809 0.580134i
\(105\) 0 0
\(106\) −10.2384 + 1.97048i −0.994440 + 0.191390i
\(107\) 9.71808 0.939482 0.469741 0.882804i \(-0.344347\pi\)
0.469741 + 0.882804i \(0.344347\pi\)
\(108\) 0 0
\(109\) −4.69860 −0.450044 −0.225022 0.974354i \(-0.572245\pi\)
−0.225022 + 0.974354i \(0.572245\pi\)
\(110\) −12.5096 + 2.40760i −1.19274 + 0.229556i
\(111\) 0 0
\(112\) 4.68713 + 10.7408i 0.442892 + 1.01491i
\(113\) 0.362829 0.432403i 0.0341321 0.0406770i −0.748708 0.662900i \(-0.769326\pi\)
0.782840 + 0.622222i \(0.213770\pi\)
\(114\) 0 0
\(115\) 1.00057 2.74905i 0.0933038 0.256350i
\(116\) 0.852030 0.528032i 0.0791090 0.0490266i
\(117\) 0 0
\(118\) −2.09480 + 3.76269i −0.192842 + 0.346383i
\(119\) 2.99534 2.51339i 0.274582 0.230402i
\(120\) 0 0
\(121\) −0.723600 + 4.10374i −0.0657818 + 0.373067i
\(122\) 0.542737 3.38613i 0.0491371 0.306566i
\(123\) 0 0
\(124\) 8.88083 + 9.93689i 0.797522 + 0.892359i
\(125\) 5.59652 + 3.23116i 0.500568 + 0.289003i
\(126\) 0 0
\(127\) −9.63141 + 5.56070i −0.854649 + 0.493432i −0.862217 0.506539i \(-0.830924\pi\)
0.00756758 + 0.999971i \(0.497591\pi\)
\(128\) 10.9898 + 2.68763i 0.971374 + 0.237555i
\(129\) 0 0
\(130\) 16.6743 20.5132i 1.46243 1.79913i
\(131\) −2.91519 + 1.06104i −0.254701 + 0.0927037i −0.466215 0.884671i \(-0.654383\pi\)
0.211514 + 0.977375i \(0.432161\pi\)
\(132\) 0 0
\(133\) −0.0464528 0.263447i −0.00402797 0.0228438i
\(134\) −0.106382 6.81774i −0.00919004 0.588963i
\(135\) 0 0
\(136\) −0.176631 3.77080i −0.0151459 0.323343i
\(137\) −17.0059 + 2.99860i −1.45291 + 0.256188i −0.843698 0.536818i \(-0.819626\pi\)
−0.609214 + 0.793006i \(0.708515\pi\)
\(138\) 0 0
\(139\) −3.82721 10.5152i −0.324620 0.891885i −0.989448 0.144889i \(-0.953718\pi\)
0.664828 0.746996i \(-0.268505\pi\)
\(140\) 15.8654 + 12.4903i 1.34087 + 1.05562i
\(141\) 0 0
\(142\) 15.8203 + 5.48014i 1.32761 + 0.459883i
\(143\) 7.08959 + 12.2795i 0.592862 + 1.02687i
\(144\) 0 0
\(145\) 0.863567 1.49574i 0.0717153 0.124215i
\(146\) −12.4660 + 10.7961i −1.03169 + 0.893492i
\(147\) 0 0
\(148\) −1.57618 + 10.9216i −0.129561 + 0.897751i
\(149\) −17.9746 3.16940i −1.47253 0.259647i −0.620943 0.783855i \(-0.713250\pi\)
−0.851590 + 0.524208i \(0.824361\pi\)
\(150\) 0 0
\(151\) −12.3734 14.7460i −1.00693 1.20001i −0.979718 0.200383i \(-0.935781\pi\)
−0.0272126 0.999630i \(-0.508663\pi\)
\(152\) −0.229458 0.118524i −0.0186115 0.00961357i
\(153\) 0 0
\(154\) −9.29382 + 5.56091i −0.748918 + 0.448111i
\(155\) 21.5781 + 7.85378i 1.73319 + 0.630830i
\(156\) 0 0
\(157\) −12.9003 10.8246i −1.02955 0.863897i −0.0387551 0.999249i \(-0.512339\pi\)
−0.990798 + 0.135351i \(0.956784\pi\)
\(158\) 0.850866 + 2.22890i 0.0676913 + 0.177322i
\(159\) 0 0
\(160\) 18.8755 4.87091i 1.49224 0.385079i
\(161\) 2.48715i 0.196015i
\(162\) 0 0
\(163\) 8.02606i 0.628650i 0.949315 + 0.314325i \(0.101778\pi\)
−0.949315 + 0.314325i \(0.898222\pi\)
\(164\) 5.59194 1.16699i 0.436657 0.0911263i
\(165\) 0 0
\(166\) −2.85335 + 1.08924i −0.221463 + 0.0845418i
\(167\) 1.00020 + 0.839268i 0.0773979 + 0.0649445i 0.680666 0.732594i \(-0.261691\pi\)
−0.603268 + 0.797539i \(0.706135\pi\)
\(168\) 0 0
\(169\) −15.4330 5.61716i −1.18716 0.432090i
\(170\) −3.33964 5.58147i −0.256139 0.428079i
\(171\) 0 0
\(172\) −10.0170 5.37381i −0.763792 0.409749i
\(173\) 7.36046 + 8.77186i 0.559606 + 0.666912i 0.969463 0.245238i \(-0.0788660\pi\)
−0.409857 + 0.912150i \(0.634422\pi\)
\(174\) 0 0
\(175\) 19.8367 + 3.49775i 1.49951 + 0.264405i
\(176\) −1.16990 + 10.3903i −0.0881844 + 0.783199i
\(177\) 0 0
\(178\) −13.4488 15.5290i −1.00803 1.16395i
\(179\) 10.7064 18.5441i 0.800237 1.38605i −0.119222 0.992868i \(-0.538040\pi\)
0.919460 0.393184i \(-0.128627\pi\)
\(180\) 0 0
\(181\) 7.31416 + 12.6685i 0.543657 + 0.941641i 0.998690 + 0.0511670i \(0.0162941\pi\)
−0.455033 + 0.890474i \(0.650373\pi\)
\(182\) 7.35629 21.2365i 0.545285 1.57415i
\(183\) 0 0
\(184\) −1.90959 1.45567i −0.140777 0.107314i
\(185\) 6.50290 + 17.8666i 0.478102 + 1.31358i
\(186\) 0 0
\(187\) 3.43574 0.605813i 0.251246 0.0443014i
\(188\) 13.2095 0.412337i 0.963403 0.0300728i
\(189\) 0 0
\(190\) −0.444937 + 0.00694269i −0.0322791 + 0.000503676i
\(191\) 0.333749 + 1.89278i 0.0241492 + 0.136957i 0.994499 0.104749i \(-0.0334040\pi\)
−0.970349 + 0.241706i \(0.922293\pi\)
\(192\) 0 0
\(193\) 5.88386 2.14155i 0.423530 0.154152i −0.121457 0.992597i \(-0.538757\pi\)
0.544987 + 0.838444i \(0.316535\pi\)
\(194\) −7.24283 5.88735i −0.520005 0.422687i
\(195\) 0 0
\(196\) 3.00801 + 0.989687i 0.214858 + 0.0706919i
\(197\) −13.1022 + 7.56456i −0.933494 + 0.538953i −0.887915 0.460008i \(-0.847847\pi\)
−0.0455788 + 0.998961i \(0.514513\pi\)
\(198\) 0 0
\(199\) −22.4427 12.9573i −1.59092 0.918517i −0.993150 0.116849i \(-0.962721\pi\)
−0.597769 0.801669i \(-0.703946\pi\)
\(200\) 14.2955 13.1831i 1.01084 0.932188i
\(201\) 0 0
\(202\) −11.5136 1.84543i −0.810094 0.129844i
\(203\) 0.254977 1.44605i 0.0178959 0.101493i
\(204\) 0 0
\(205\) 7.53990 6.32672i 0.526609 0.441878i
\(206\) 19.8897 + 11.0732i 1.38578 + 0.771507i
\(207\) 0 0
\(208\) −11.9995 18.0773i −0.832017 1.25343i
\(209\) 0.0816338 0.224287i 0.00564673 0.0155143i
\(210\) 0 0
\(211\) −11.2158 + 13.3665i −0.772127 + 0.920186i −0.998549 0.0538436i \(-0.982853\pi\)
0.226422 + 0.974029i \(0.427297\pi\)
\(212\) 5.47293 + 13.6917i 0.375882 + 0.940347i
\(213\) 0 0
\(214\) −2.59740 13.4958i −0.177555 0.922551i
\(215\) −19.5864 −1.33578
\(216\) 0 0
\(217\) 19.5224 1.32526
\(218\) 1.25582 + 6.52508i 0.0850547 + 0.441934i
\(219\) 0 0
\(220\) 6.68700 + 16.7289i 0.450837 + 1.12786i
\(221\) −4.65349 + 5.54581i −0.313028 + 0.373052i
\(222\) 0 0
\(223\) 6.04555 16.6100i 0.404840 1.11229i −0.555027 0.831832i \(-0.687292\pi\)
0.959867 0.280456i \(-0.0904857\pi\)
\(224\) 13.6632 9.37988i 0.912914 0.626720i
\(225\) 0 0
\(226\) −0.697465 0.388300i −0.0463947 0.0258294i
\(227\) 7.14681 5.99689i 0.474351 0.398027i −0.374028 0.927417i \(-0.622024\pi\)
0.848379 + 0.529390i \(0.177579\pi\)
\(228\) 0 0
\(229\) 2.92027 16.5617i 0.192977 1.09442i −0.722294 0.691586i \(-0.756912\pi\)
0.915271 0.402839i \(-0.131977\pi\)
\(230\) −4.08511 0.654770i −0.269364 0.0431742i
\(231\) 0 0
\(232\) −0.961019 1.04211i −0.0630940 0.0684177i
\(233\) −15.2659 8.81379i −1.00010 0.577410i −0.0918250 0.995775i \(-0.529270\pi\)
−0.908279 + 0.418365i \(0.862603\pi\)
\(234\) 0 0
\(235\) 19.7206 11.3857i 1.28643 0.742722i
\(236\) 5.78524 + 1.90344i 0.376587 + 0.123903i
\(237\) 0 0
\(238\) −4.29099 3.48794i −0.278143 0.226090i
\(239\) 8.65868 3.15150i 0.560084 0.203854i −0.0464374 0.998921i \(-0.514787\pi\)
0.606521 + 0.795067i \(0.292565\pi\)
\(240\) 0 0
\(241\) 1.08125 + 6.13209i 0.0696496 + 0.395003i 0.999625 + 0.0273809i \(0.00871671\pi\)
−0.929975 + 0.367622i \(0.880172\pi\)
\(242\) 5.89238 0.0919433i 0.378776 0.00591034i
\(243\) 0 0
\(244\) −4.84747 + 0.151315i −0.310328 + 0.00968692i
\(245\) 5.37331 0.947460i 0.343288 0.0605310i
\(246\) 0 0
\(247\) 0.169400 + 0.465422i 0.0107787 + 0.0296141i
\(248\) 11.4260 14.9889i 0.725552 0.951798i
\(249\) 0 0
\(250\) 2.99138 8.63565i 0.189192 0.546167i
\(251\) 14.1765 + 24.5545i 0.894814 + 1.54986i 0.834034 + 0.551713i \(0.186026\pi\)
0.0607805 + 0.998151i \(0.480641\pi\)
\(252\) 0 0
\(253\) 1.10955 1.92181i 0.0697571 0.120823i
\(254\) 10.2965 + 11.8892i 0.646061 + 0.745993i
\(255\) 0 0
\(256\) 0.795079 15.9802i 0.0496925 0.998765i
\(257\) 16.2474 + 2.86485i 1.01348 + 0.178705i 0.655638 0.755076i \(-0.272400\pi\)
0.357847 + 0.933780i \(0.383511\pi\)
\(258\) 0 0
\(259\) 10.3903 + 12.3827i 0.645622 + 0.769423i
\(260\) −32.9439 17.6733i −2.04310 1.09605i
\(261\) 0 0
\(262\) 2.25266 + 3.76481i 0.139170 + 0.232591i
\(263\) −22.7564 8.28265i −1.40322 0.510730i −0.474087 0.880478i \(-0.657222\pi\)
−0.929132 + 0.369748i \(0.879444\pi\)
\(264\) 0 0
\(265\) 19.4621 + 16.3307i 1.19555 + 1.00318i
\(266\) −0.353441 + 0.134923i −0.0216708 + 0.00827267i
\(267\) 0 0
\(268\) −9.43955 + 1.96995i −0.576612 + 0.120334i
\(269\) 12.1956i 0.743578i 0.928317 + 0.371789i \(0.121255\pi\)
−0.928317 + 0.371789i \(0.878745\pi\)
\(270\) 0 0
\(271\) 25.0009i 1.51870i 0.650683 + 0.759349i \(0.274483\pi\)
−0.650683 + 0.759349i \(0.725517\pi\)
\(272\) −5.18940 + 1.25313i −0.314654 + 0.0759822i
\(273\) 0 0
\(274\) 8.70949 + 22.8151i 0.526159 + 1.37831i
\(275\) 13.7673 + 11.5521i 0.830199 + 0.696620i
\(276\) 0 0
\(277\) 8.21089 + 2.98852i 0.493345 + 0.179563i 0.576698 0.816957i \(-0.304341\pi\)
−0.0833536 + 0.996520i \(0.526563\pi\)
\(278\) −13.5798 + 8.12539i −0.814462 + 0.487329i
\(279\) 0 0
\(280\) 13.1051 25.3710i 0.783182 1.51621i
\(281\) −14.0693 16.7671i −0.839303 1.00024i −0.999913 0.0132243i \(-0.995790\pi\)
0.160610 0.987018i \(-0.448654\pi\)
\(282\) 0 0
\(283\) 29.6450 + 5.22722i 1.76221 + 0.310726i 0.958670 0.284520i \(-0.0918344\pi\)
0.803543 + 0.595246i \(0.202945\pi\)
\(284\) 3.38205 23.4348i 0.200688 1.39060i
\(285\) 0 0
\(286\) 15.1581 13.1275i 0.896315 0.776247i
\(287\) 4.18396 7.24682i 0.246971 0.427766i
\(288\) 0 0
\(289\) −7.60937 13.1798i −0.447610 0.775283i
\(290\) −2.30799 0.799485i −0.135530 0.0469474i
\(291\) 0 0
\(292\) 18.3247 + 14.4264i 1.07237 + 0.844240i
\(293\) −4.52797 12.4405i −0.264527 0.726782i −0.998848 0.0479801i \(-0.984722\pi\)
0.734321 0.678802i \(-0.237501\pi\)
\(294\) 0 0
\(295\) 10.3344 1.82223i 0.601690 0.106094i
\(296\) 15.5884 0.730189i 0.906059 0.0424413i
\(297\) 0 0
\(298\) 0.402716 + 25.8089i 0.0233287 + 1.49507i
\(299\) 0.799635 + 4.53496i 0.0462441 + 0.262263i
\(300\) 0 0
\(301\) −15.6475 + 5.69524i −0.901910 + 0.328268i
\(302\) −17.1711 + 21.1245i −0.988085 + 1.21558i
\(303\) 0 0
\(304\) −0.103269 + 0.350333i −0.00592290 + 0.0200930i
\(305\) −7.23685 + 4.17820i −0.414381 + 0.239243i
\(306\) 0 0
\(307\) −11.4064 6.58546i −0.650995 0.375852i 0.137842 0.990454i \(-0.455983\pi\)
−0.788837 + 0.614602i \(0.789317\pi\)
\(308\) 10.2066 + 11.4203i 0.581575 + 0.650732i
\(309\) 0 0
\(310\) 5.13948 32.0652i 0.291903 1.82118i
\(311\) −1.07244 + 6.08211i −0.0608125 + 0.344885i 0.939186 + 0.343408i \(0.111581\pi\)
−0.999999 + 0.00147712i \(0.999530\pi\)
\(312\) 0 0
\(313\) −16.4217 + 13.7794i −0.928207 + 0.778858i −0.975495 0.220023i \(-0.929387\pi\)
0.0472879 + 0.998881i \(0.484942\pi\)
\(314\) −11.5845 + 20.8081i −0.653752 + 1.17427i
\(315\) 0 0
\(316\) 2.86792 1.77735i 0.161333 0.0999838i
\(317\) 5.02856 13.8159i 0.282432 0.775976i −0.714639 0.699494i \(-0.753409\pi\)
0.997071 0.0764825i \(-0.0243689\pi\)
\(318\) 0 0
\(319\) 0.842123 1.00360i 0.0471499 0.0561910i
\(320\) −11.8093 24.9110i −0.660160 1.39257i
\(321\) 0 0
\(322\) −3.45398 + 0.664753i −0.192483 + 0.0370452i
\(323\) 0.121865 0.00678074
\(324\) 0 0
\(325\) −37.2939 −2.06869
\(326\) 11.1460 2.14516i 0.617321 0.118810i
\(327\) 0 0
\(328\) −3.11521 7.45377i −0.172009 0.411566i
\(329\) 12.4441 14.8303i 0.686066 0.817621i
\(330\) 0 0
\(331\) −9.07166 + 24.9242i −0.498624 + 1.36996i 0.393982 + 0.919118i \(0.371097\pi\)
−0.892605 + 0.450839i \(0.851125\pi\)
\(332\) 2.27529 + 3.67140i 0.124873 + 0.201494i
\(333\) 0 0
\(334\) 0.898186 1.61332i 0.0491466 0.0882770i
\(335\) −12.7278 + 10.6799i −0.695395 + 0.583506i
\(336\) 0 0
\(337\) −2.67934 + 15.1953i −0.145953 + 0.827740i 0.820644 + 0.571439i \(0.193615\pi\)
−0.966597 + 0.256300i \(0.917496\pi\)
\(338\) −3.67585 + 22.9336i −0.199940 + 1.24742i
\(339\) 0 0
\(340\) −6.85854 + 6.12964i −0.371956 + 0.332426i
\(341\) 15.0848 + 8.70922i 0.816888 + 0.471631i
\(342\) 0 0
\(343\) −13.7433 + 7.93471i −0.742069 + 0.428434i
\(344\) −4.78545 + 15.3472i −0.258014 + 0.827466i
\(345\) 0 0
\(346\) 10.2145 12.5662i 0.549133 0.675562i
\(347\) 20.2264 7.36182i 1.08581 0.395203i 0.263744 0.964593i \(-0.415043\pi\)
0.822068 + 0.569390i \(0.192820\pi\)
\(348\) 0 0
\(349\) 2.19509 + 12.4490i 0.117501 + 0.666379i 0.985482 + 0.169782i \(0.0543063\pi\)
−0.867981 + 0.496597i \(0.834583\pi\)
\(350\) −0.444436 28.4826i −0.0237561 1.52246i
\(351\) 0 0
\(352\) 14.7420 1.15240i 0.785751 0.0614231i
\(353\) 11.0190 1.94295i 0.586484 0.103413i 0.127471 0.991842i \(-0.459314\pi\)
0.459013 + 0.888429i \(0.348203\pi\)
\(354\) 0 0
\(355\) −13.9534 38.3368i −0.740572 2.03470i
\(356\) −17.9711 + 22.8272i −0.952465 + 1.20984i
\(357\) 0 0
\(358\) −28.6143 9.91196i −1.51231 0.523864i
\(359\) −16.1699 28.0070i −0.853413 1.47816i −0.878109 0.478460i \(-0.841195\pi\)
0.0246959 0.999695i \(-0.492138\pi\)
\(360\) 0 0
\(361\) −9.49583 + 16.4473i −0.499781 + 0.865645i
\(362\) 15.6382 13.5433i 0.821925 0.711822i
\(363\) 0 0
\(364\) −31.4578 4.53991i −1.64884 0.237956i
\(365\) 39.5739 + 6.97795i 2.07139 + 0.365242i
\(366\) 0 0
\(367\) 0.428395 + 0.510541i 0.0223620 + 0.0266500i 0.777110 0.629365i \(-0.216685\pi\)
−0.754748 + 0.656015i \(0.772241\pi\)
\(368\) −1.51115 + 3.04097i −0.0787741 + 0.158521i
\(369\) 0 0
\(370\) 23.0737 13.8060i 1.19955 0.717741i
\(371\) 20.2968 + 7.38744i 1.05376 + 0.383537i
\(372\) 0 0
\(373\) 15.9574 + 13.3899i 0.826243 + 0.693300i 0.954425 0.298450i \(-0.0964697\pi\)
−0.128182 + 0.991751i \(0.540914\pi\)
\(374\) −1.75960 4.60938i −0.0909865 0.238345i
\(375\) 0 0
\(376\) −4.10320 18.2342i −0.211606 0.940358i
\(377\) 2.71864i 0.140017i
\(378\) 0 0
\(379\) 19.1904i 0.985744i −0.870102 0.492872i \(-0.835947\pi\)
0.870102 0.492872i \(-0.164053\pi\)
\(380\) 0.128562 + 0.616040i 0.00659509 + 0.0316022i
\(381\) 0 0
\(382\) 2.53936 0.969380i 0.129925 0.0495978i
\(383\) −6.07655 5.09883i −0.310497 0.260538i 0.474200 0.880417i \(-0.342737\pi\)
−0.784697 + 0.619879i \(0.787182\pi\)
\(384\) 0 0
\(385\) 24.7993 + 9.02621i 1.26389 + 0.460018i
\(386\) −4.54664 7.59870i −0.231418 0.386763i
\(387\) 0 0
\(388\) −6.24010 + 11.6319i −0.316793 + 0.590518i
\(389\) −7.93591 9.45764i −0.402366 0.479522i 0.526374 0.850253i \(-0.323551\pi\)
−0.928740 + 0.370732i \(0.879107\pi\)
\(390\) 0 0
\(391\) 1.11581 + 0.196747i 0.0564289 + 0.00994994i
\(392\) 0.570440 4.44183i 0.0288115 0.224346i
\(393\) 0 0
\(394\) 14.0070 + 16.1736i 0.705663 + 0.814813i
\(395\) 2.90676 5.03465i 0.146255 0.253321i
\(396\) 0 0
\(397\) 11.5959 + 20.0847i 0.581982 + 1.00802i 0.995244 + 0.0974099i \(0.0310558\pi\)
−0.413263 + 0.910612i \(0.635611\pi\)
\(398\) −11.9958 + 34.6299i −0.601294 + 1.73584i
\(399\) 0 0
\(400\) −22.1286 16.3290i −1.10643 0.816451i
\(401\) −2.32432 6.38601i −0.116071 0.318902i 0.868030 0.496511i \(-0.165386\pi\)
−0.984101 + 0.177609i \(0.943164\pi\)
\(402\) 0 0
\(403\) −35.5962 + 6.27657i −1.77317 + 0.312658i
\(404\) 0.514503 + 16.4825i 0.0255975 + 0.820034i
\(405\) 0 0
\(406\) −2.07632 + 0.0323984i −0.103046 + 0.00160790i
\(407\) 2.50442 + 14.2033i 0.124140 + 0.704031i
\(408\) 0 0
\(409\) −17.0717 + 6.21358i −0.844140 + 0.307242i −0.727649 0.685950i \(-0.759387\pi\)
−0.116491 + 0.993192i \(0.537165\pi\)
\(410\) −10.8013 8.77989i −0.533439 0.433608i
\(411\) 0 0
\(412\) 10.0617 30.5810i 0.495702 1.50662i
\(413\) 7.72625 4.46075i 0.380184 0.219499i
\(414\) 0 0
\(415\) 6.44516 + 3.72111i 0.316380 + 0.182662i
\(416\) −21.8972 + 21.4957i −1.07360 + 1.05391i
\(417\) 0 0
\(418\) −0.333292 0.0534208i −0.0163019 0.00261290i
\(419\) 0.854595 4.84665i 0.0417497 0.236774i −0.956791 0.290776i \(-0.906087\pi\)
0.998541 + 0.0540017i \(0.0171976\pi\)
\(420\) 0 0
\(421\) −9.01524 + 7.56468i −0.439376 + 0.368680i −0.835476 0.549527i \(-0.814808\pi\)
0.396100 + 0.918207i \(0.370363\pi\)
\(422\) 21.5601 + 12.0032i 1.04953 + 0.584305i
\(423\) 0 0
\(424\) 17.5512 11.2598i 0.852362 0.546826i
\(425\) −3.13838 + 8.62264i −0.152234 + 0.418259i
\(426\) 0 0
\(427\) −4.56659 + 5.44225i −0.220993 + 0.263369i
\(428\) −18.0477 + 7.21416i −0.872369 + 0.348709i
\(429\) 0 0
\(430\) 5.23495 + 27.2002i 0.252452 + 1.31171i
\(431\) 4.40894 0.212371 0.106186 0.994346i \(-0.466136\pi\)
0.106186 + 0.994346i \(0.466136\pi\)
\(432\) 0 0
\(433\) 28.5232 1.37074 0.685369 0.728196i \(-0.259641\pi\)
0.685369 + 0.728196i \(0.259641\pi\)
\(434\) −5.21784 27.1113i −0.250464 1.30138i
\(435\) 0 0
\(436\) 8.72591 3.48798i 0.417895 0.167044i
\(437\) 0.0498260 0.0593804i 0.00238350 0.00284055i
\(438\) 0 0
\(439\) 1.65430 4.54515i 0.0789555 0.216928i −0.893934 0.448198i \(-0.852066\pi\)
0.972890 + 0.231270i \(0.0742881\pi\)
\(440\) 21.4447 13.7576i 1.02233 0.655870i
\(441\) 0 0
\(442\) 8.94538 + 4.98017i 0.425488 + 0.236883i
\(443\) −5.56660 + 4.67093i −0.264477 + 0.221923i −0.765376 0.643583i \(-0.777447\pi\)
0.500899 + 0.865506i \(0.333003\pi\)
\(444\) 0 0
\(445\) −8.69249 + 49.2976i −0.412064 + 2.33693i
\(446\) −24.6826 3.95618i −1.16875 0.187331i
\(447\) 0 0
\(448\) −16.6779 16.4675i −0.787958 0.778017i
\(449\) 5.50442 + 3.17798i 0.259769 + 0.149978i 0.624229 0.781241i \(-0.285413\pi\)
−0.364460 + 0.931219i \(0.618746\pi\)
\(450\) 0 0
\(451\) 6.46583 3.73305i 0.304464 0.175782i
\(452\) −0.352828 + 1.07237i −0.0165957 + 0.0504401i
\(453\) 0 0
\(454\) −10.2382 8.32216i −0.480503 0.390578i
\(455\) −51.4615 + 18.7305i −2.41255 + 0.878097i
\(456\) 0 0
\(457\) −0.155269 0.880575i −0.00726318 0.0411916i 0.980961 0.194206i \(-0.0622130\pi\)
−0.988224 + 0.153014i \(0.951102\pi\)
\(458\) −23.7801 + 0.371060i −1.11117 + 0.0173385i
\(459\) 0 0
\(460\) 0.182549 + 5.84810i 0.00851140 + 0.272669i
\(461\) −12.9026 + 2.27507i −0.600934 + 0.105961i −0.465835 0.884871i \(-0.654246\pi\)
−0.135098 + 0.990832i \(0.543135\pi\)
\(462\) 0 0
\(463\) 0.461244 + 1.26726i 0.0214358 + 0.0588945i 0.949949 0.312405i \(-0.101135\pi\)
−0.928513 + 0.371299i \(0.878912\pi\)
\(464\) −1.19035 + 1.61312i −0.0552605 + 0.0748873i
\(465\) 0 0
\(466\) −8.15975 + 23.5559i −0.377993 + 1.09121i
\(467\) −9.81172 16.9944i −0.454032 0.786407i 0.544600 0.838696i \(-0.316682\pi\)
−0.998632 + 0.0522890i \(0.983348\pi\)
\(468\) 0 0
\(469\) −7.06278 + 12.2331i −0.326129 + 0.564872i
\(470\) −21.0825 24.3435i −0.972463 1.12288i
\(471\) 0 0
\(472\) 1.09711 8.54286i 0.0504987 0.393217i
\(473\) −14.6315 2.57993i −0.672756 0.118625i
\(474\) 0 0
\(475\) 0.403527 + 0.480904i 0.0185151 + 0.0220654i
\(476\) −3.69693 + 6.89125i −0.169448 + 0.315860i
\(477\) 0 0
\(478\) −6.69083 11.1822i −0.306031 0.511464i
\(479\) −17.9117 6.51932i −0.818405 0.297875i −0.101314 0.994854i \(-0.532305\pi\)
−0.717091 + 0.696979i \(0.754527\pi\)
\(480\) 0 0
\(481\) −22.9263 19.2375i −1.04535 0.877153i
\(482\) 8.22681 3.14052i 0.374721 0.143047i
\(483\) 0 0
\(484\) −1.70257 8.15833i −0.0773895 0.370833i
\(485\) 22.7439i 1.03275i
\(486\) 0 0
\(487\) 12.7440i 0.577486i −0.957407 0.288743i \(-0.906763\pi\)
0.957407 0.288743i \(-0.0932373\pi\)
\(488\) 1.50574 + 6.69138i 0.0681618 + 0.302904i
\(489\) 0 0
\(490\) −2.75192 7.20884i −0.124319 0.325662i
\(491\) −18.9461 15.8977i −0.855027 0.717453i 0.105864 0.994381i \(-0.466239\pi\)
−0.960891 + 0.276928i \(0.910684\pi\)
\(492\) 0 0
\(493\) 0.628570 + 0.228781i 0.0283094 + 0.0103038i
\(494\) 0.601068 0.359646i 0.0270433 0.0161812i
\(495\) 0 0
\(496\) −23.8694 11.8614i −1.07177 0.532595i
\(497\) −22.2948 26.5699i −1.00006 1.19182i
\(498\) 0 0
\(499\) −38.9086 6.86064i −1.74179 0.307124i −0.789824 0.613334i \(-0.789828\pi\)
−0.951964 + 0.306209i \(0.900939\pi\)
\(500\) −12.7921 1.84612i −0.572080 0.0825611i
\(501\) 0 0
\(502\) 30.3104 26.2501i 1.35282 1.17160i
\(503\) −18.2058 + 31.5334i −0.811757 + 1.40600i 0.0998757 + 0.995000i \(0.468155\pi\)
−0.911633 + 0.411005i \(0.865178\pi\)
\(504\) 0 0
\(505\) 14.2068 + 24.6069i 0.632194 + 1.09499i
\(506\) −2.96542 1.02722i −0.131829 0.0456655i
\(507\) 0 0
\(508\) 13.7588 17.4767i 0.610449 0.775405i
\(509\) 1.23919 + 3.40464i 0.0549260 + 0.150908i 0.964121 0.265462i \(-0.0855244\pi\)
−0.909195 + 0.416370i \(0.863302\pi\)
\(510\) 0 0
\(511\) 33.6445 5.93244i 1.48835 0.262436i
\(512\) −22.4047 + 3.16697i −0.990157 + 0.139961i
\(513\) 0 0
\(514\) −0.364019 23.3289i −0.0160562 1.02899i
\(515\) −9.63236 54.6278i −0.424452 2.40719i
\(516\) 0 0
\(517\) 16.2315 5.90778i 0.713860 0.259824i
\(518\) 14.4191 17.7389i 0.633539 0.779402i
\(519\) 0 0
\(520\) −15.7383 + 50.4738i −0.690172 + 2.21342i
\(521\) −18.0443 + 10.4179i −0.790534 + 0.456415i −0.840151 0.542353i \(-0.817534\pi\)
0.0496162 + 0.998768i \(0.484200\pi\)
\(522\) 0 0
\(523\) 19.0780 + 11.0147i 0.834223 + 0.481639i 0.855296 0.518139i \(-0.173375\pi\)
−0.0210733 + 0.999778i \(0.506708\pi\)
\(524\) 4.62622 4.13456i 0.202097 0.180619i
\(525\) 0 0
\(526\) −5.42013 + 33.8162i −0.236329 + 1.47446i
\(527\) −1.54433 + 8.75831i −0.0672719 + 0.381518i
\(528\) 0 0
\(529\) −17.0669 + 14.3209i −0.742041 + 0.622646i
\(530\) 17.4771 31.3924i 0.759157 1.36360i
\(531\) 0 0
\(532\) 0.281837 + 0.454771i 0.0122192 + 0.0197168i
\(533\) −5.29893 + 14.5587i −0.229522 + 0.630607i
\(534\) 0 0
\(535\) −21.5263 + 25.6541i −0.930664 + 1.10912i
\(536\) 5.25867 + 12.5824i 0.227140 + 0.543479i
\(537\) 0 0
\(538\) 16.9363 3.25957i 0.730178 0.140530i
\(539\) 4.13879 0.178270
\(540\) 0 0
\(541\) −13.2610 −0.570135 −0.285067 0.958507i \(-0.592016\pi\)
−0.285067 + 0.958507i \(0.592016\pi\)
\(542\) 34.7195 6.68212i 1.49133 0.287022i
\(543\) 0 0
\(544\) 3.12725 + 6.87173i 0.134080 + 0.294623i
\(545\) 10.4078 12.4035i 0.445820 0.531308i
\(546\) 0 0
\(547\) −4.89178 + 13.4401i −0.209157 + 0.574655i −0.999266 0.0383119i \(-0.987802\pi\)
0.790108 + 0.612967i \(0.210024\pi\)
\(548\) 29.3561 18.1930i 1.25403 0.777167i
\(549\) 0 0
\(550\) 12.3631 22.2066i 0.527165 0.946893i
\(551\) 0.0350568 0.0294161i 0.00149347 0.00125317i
\(552\) 0 0
\(553\) 0.858252 4.86739i 0.0364966 0.206982i
\(554\) 1.95567 12.2014i 0.0830887 0.518390i
\(555\) 0 0
\(556\) 14.9135 + 16.6869i 0.632473 + 0.707683i
\(557\) −6.40425 3.69750i −0.271357 0.156668i 0.358147 0.933665i \(-0.383409\pi\)
−0.629504 + 0.776997i \(0.716742\pi\)
\(558\) 0 0
\(559\) 26.6999 15.4152i 1.12929 0.651994i
\(560\) −38.7361 11.4184i −1.63690 0.482517i
\(561\) 0 0
\(562\) −19.5246 + 24.0198i −0.823595 + 1.01322i
\(563\) 19.9054 7.24497i 0.838912 0.305339i 0.113401 0.993549i \(-0.463826\pi\)
0.725511 + 0.688210i \(0.241603\pi\)
\(564\) 0 0
\(565\) 0.337774 + 1.91561i 0.0142103 + 0.0805905i
\(566\) −0.664189 42.5660i −0.0279180 1.78918i
\(567\) 0 0
\(568\) −33.4485 + 1.56679i −1.40347 + 0.0657409i
\(569\) −4.38899 + 0.773898i −0.183996 + 0.0324435i −0.264887 0.964279i \(-0.585335\pi\)
0.0808907 + 0.996723i \(0.474224\pi\)
\(570\) 0 0
\(571\) −0.735560 2.02093i −0.0307822 0.0845734i 0.923350 0.383960i \(-0.125440\pi\)
−0.954132 + 0.299387i \(0.903218\pi\)
\(572\) −22.2819 17.5418i −0.931654 0.733458i
\(573\) 0 0
\(574\) −11.1821 3.87348i −0.466733 0.161676i
\(575\) 2.91833 + 5.05470i 0.121703 + 0.210796i
\(576\) 0 0
\(577\) −16.0706 + 27.8351i −0.669028 + 1.15879i 0.309148 + 0.951014i \(0.399956\pi\)
−0.978176 + 0.207777i \(0.933377\pi\)
\(578\) −16.2694 + 14.0900i −0.676717 + 0.586066i
\(579\) 0 0
\(580\) −0.493400 + 3.41885i −0.0204873 + 0.141960i
\(581\) 6.23104 + 1.09870i 0.258507 + 0.0455817i
\(582\) 0 0
\(583\) 12.3876 + 14.7629i 0.513041 + 0.611418i
\(584\) 15.1366 29.3038i 0.626356 1.21260i
\(585\) 0 0
\(586\) −16.0663 + 9.61316i −0.663691 + 0.397116i
\(587\) −33.8753 12.3296i −1.39818 0.508897i −0.470545 0.882376i \(-0.655943\pi\)
−0.927639 + 0.373478i \(0.878165\pi\)
\(588\) 0 0
\(589\) 0.466094 + 0.391099i 0.0192051 + 0.0161150i
\(590\) −5.29269 13.8646i −0.217897 0.570796i
\(591\) 0 0
\(592\) −5.18043 21.4529i −0.212914 0.881709i
\(593\) 4.09387i 0.168115i 0.996461 + 0.0840576i \(0.0267880\pi\)
−0.996461 + 0.0840576i \(0.973212\pi\)
\(594\) 0 0
\(595\) 13.4745i 0.552402i
\(596\) 35.7339 7.45732i 1.46372 0.305464i
\(597\) 0 0
\(598\) 6.08410 2.32256i 0.248797 0.0949763i
\(599\) −6.47708 5.43491i −0.264646 0.222065i 0.500802 0.865562i \(-0.333038\pi\)
−0.765449 + 0.643497i \(0.777483\pi\)
\(600\) 0 0
\(601\) −27.4438 9.98874i −1.11946 0.407449i −0.285003 0.958527i \(-0.591995\pi\)
−0.834454 + 0.551078i \(0.814217\pi\)
\(602\) 12.0913 + 20.2080i 0.492806 + 0.823616i
\(603\) 0 0
\(604\) 33.9255 + 18.1999i 1.38041 + 0.740544i
\(605\) −9.23034 11.0003i −0.375267 0.447225i
\(606\) 0 0
\(607\) 38.2139 + 6.73814i 1.55105 + 0.273493i 0.882551 0.470217i \(-0.155824\pi\)
0.668503 + 0.743710i \(0.266936\pi\)
\(608\) 0.514118 + 0.0497776i 0.0208503 + 0.00201875i
\(609\) 0 0
\(610\) 7.73660 + 8.93328i 0.313246 + 0.361698i
\(611\) −17.9220 + 31.0417i −0.725045 + 1.25581i
\(612\) 0 0
\(613\) −0.677216 1.17297i −0.0273525 0.0473759i 0.852025 0.523501i \(-0.175374\pi\)
−0.879378 + 0.476125i \(0.842041\pi\)
\(614\) −6.09678 + 17.6004i −0.246046 + 0.710296i
\(615\) 0 0
\(616\) 13.1317 17.2265i 0.529092 0.694077i
\(617\) 7.59537 + 20.8681i 0.305778 + 0.840118i 0.993468 + 0.114114i \(0.0364028\pi\)
−0.687690 + 0.726005i \(0.741375\pi\)
\(618\) 0 0
\(619\) −2.18009 + 0.384409i −0.0876253 + 0.0154507i −0.217289 0.976107i \(-0.569721\pi\)
0.129664 + 0.991558i \(0.458610\pi\)
\(620\) −45.9034 + 1.43288i −1.84353 + 0.0575459i
\(621\) 0 0
\(622\) 8.73303 0.136268i 0.350163 0.00546386i
\(623\) 7.39009 + 41.9113i 0.296078 + 1.67914i
\(624\) 0 0
\(625\) 11.3768 4.14082i 0.455072 0.165633i
\(626\) 23.5249 + 19.1223i 0.940245 + 0.764281i
\(627\) 0 0
\(628\) 31.9930 + 10.5262i 1.27666 + 0.420043i
\(629\) −6.37717 + 3.68186i −0.254274 + 0.146805i
\(630\) 0 0
\(631\) 10.3534 + 5.97752i 0.412161 + 0.237961i 0.691718 0.722168i \(-0.256854\pi\)
−0.279557 + 0.960129i \(0.590187\pi\)
\(632\) −3.23478 3.50772i −0.128673 0.139530i
\(633\) 0 0
\(634\) −20.5305 3.29067i −0.815370 0.130689i
\(635\) 6.65505 37.7427i 0.264098 1.49777i
\(636\) 0 0
\(637\) −6.57915 + 5.52056i −0.260675 + 0.218733i
\(638\) −1.61881 0.901242i −0.0640893 0.0356805i
\(639\) 0 0
\(640\) −31.4383 + 23.0580i −1.24271 + 0.911447i
\(641\) −4.61107 + 12.6688i −0.182126 + 0.500388i −0.996836 0.0794805i \(-0.974674\pi\)
0.814710 + 0.579868i \(0.196896\pi\)
\(642\) 0 0
\(643\) 17.7513 21.1552i 0.700044 0.834280i −0.292487 0.956269i \(-0.594483\pi\)
0.992531 + 0.121989i \(0.0389273\pi\)
\(644\) 1.84632 + 4.61896i 0.0727553 + 0.182012i
\(645\) 0 0
\(646\) −0.0325714 0.169237i −0.00128150 0.00665854i
\(647\) −15.2634 −0.600064 −0.300032 0.953929i \(-0.596997\pi\)
−0.300032 + 0.953929i \(0.596997\pi\)
\(648\) 0 0
\(649\) 7.96003 0.312458
\(650\) 9.96771 + 51.7910i 0.390966 + 2.03141i
\(651\) 0 0
\(652\) −5.95810 14.9054i −0.233337 0.583742i
\(653\) −19.6661 + 23.4372i −0.769595 + 0.917167i −0.998414 0.0563018i \(-0.982069\pi\)
0.228819 + 0.973469i \(0.426514\pi\)
\(654\) 0 0
\(655\) 3.65641 10.0459i 0.142868 0.392526i
\(656\) −9.51864 + 6.31838i −0.371641 + 0.246691i
\(657\) 0 0
\(658\) −23.9212 13.3177i −0.932547 0.519178i
\(659\) 32.0036 26.8542i 1.24668 1.04609i 0.249714 0.968320i \(-0.419663\pi\)
0.996971 0.0777732i \(-0.0247810\pi\)
\(660\) 0 0
\(661\) 5.68117 32.2195i 0.220972 1.25319i −0.649265 0.760562i \(-0.724924\pi\)
0.870237 0.492633i \(-0.163965\pi\)
\(662\) 37.0375 + 5.93646i 1.43950 + 0.230727i
\(663\) 0 0
\(664\) 4.49045 4.14104i 0.174263 0.160703i
\(665\) 0.798352 + 0.460929i 0.0309588 + 0.0178741i
\(666\) 0 0
\(667\) 0.368476 0.212740i 0.0142674 0.00823731i
\(668\) −2.48053 0.816136i −0.0959745 0.0315772i
\(669\) 0 0
\(670\) 18.2333 + 14.8210i 0.704414 + 0.572585i
\(671\) −5.95644 + 2.16797i −0.229946 + 0.0836935i
\(672\) 0 0
\(673\) 4.92417 + 27.9264i 0.189813 + 1.07648i 0.919614 + 0.392823i \(0.128501\pi\)
−0.729801 + 0.683659i \(0.760387\pi\)
\(674\) 21.8182 0.340446i 0.840407 0.0131135i
\(675\) 0 0
\(676\) 32.8310 1.02482i 1.26273 0.0394163i
\(677\) 39.6598 6.99309i 1.52425 0.268766i 0.652148 0.758092i \(-0.273868\pi\)
0.872101 + 0.489326i \(0.162757\pi\)
\(678\) 0 0
\(679\) 6.61336 + 18.1700i 0.253797 + 0.697302i
\(680\) 10.3455 + 7.88634i 0.396732 + 0.302427i
\(681\) 0 0
\(682\) 8.06294 23.2764i 0.308746 0.891301i
\(683\) −2.35647 4.08153i −0.0901678 0.156175i 0.817414 0.576051i \(-0.195407\pi\)
−0.907582 + 0.419876i \(0.862074\pi\)
\(684\) 0 0
\(685\) 29.7536 51.5348i 1.13683 1.96904i
\(686\) 14.6924 + 16.9650i 0.560958 + 0.647726i
\(687\) 0 0
\(688\) 22.5921 + 2.54376i 0.861317 + 0.0969801i
\(689\) −39.3834 6.94435i −1.50039 0.264559i
\(690\) 0 0
\(691\) −31.2420 37.2328i −1.18850 1.41640i −0.886270 0.463169i \(-0.846712\pi\)
−0.302234 0.953234i \(-0.597732\pi\)
\(692\) −20.1811 10.8265i −0.767169 0.411561i
\(693\) 0 0
\(694\) −15.6296 26.1214i −0.593291 0.991553i
\(695\) 36.2358 + 13.1888i 1.37450 + 0.500278i
\(696\) 0 0
\(697\) 2.92017 + 2.45031i 0.110609 + 0.0928121i
\(698\) 16.7016 6.37569i 0.632163 0.241323i
\(699\) 0 0
\(700\) −39.4358 + 8.22989i −1.49053 + 0.311061i
\(701\) 5.10945i 0.192981i −0.995334 0.0964906i \(-0.969238\pi\)
0.995334 0.0964906i \(-0.0307618\pi\)
\(702\) 0 0
\(703\) 0.503788i 0.0190007i
\(704\) −5.54053 20.1646i −0.208817 0.759982i
\(705\) 0 0
\(706\) −5.64335 14.7831i −0.212390 0.556371i
\(707\) 18.5049 + 15.5274i 0.695947 + 0.583969i
\(708\) 0 0
\(709\) 8.59158 + 3.12708i 0.322663 + 0.117440i 0.498273 0.867020i \(-0.333968\pi\)
−0.175610 + 0.984460i \(0.556190\pi\)
\(710\) −49.5099 + 29.6240i −1.85807 + 1.11177i
\(711\) 0 0
\(712\) 36.5040 + 18.8558i 1.36805 + 0.706650i
\(713\) 3.63619 + 4.33345i 0.136176 + 0.162289i
\(714\) 0 0
\(715\) −48.1199 8.48484i −1.79958 0.317315i
\(716\) −6.11714 + 42.3867i −0.228608 + 1.58406i
\(717\) 0 0
\(718\) −34.5724 + 29.9411i −1.29023 + 1.11739i
\(719\) 11.2528 19.4904i 0.419658 0.726869i −0.576247 0.817276i \(-0.695483\pi\)
0.995905 + 0.0904064i \(0.0288166\pi\)
\(720\) 0 0
\(721\) −23.5797 40.8412i −0.878153 1.52101i
\(722\) 25.3788 + 8.79118i 0.944500 + 0.327174i
\(723\) 0 0
\(724\) −22.9877 18.0974i −0.854331 0.672584i
\(725\) 1.17854 + 3.23802i 0.0437700 + 0.120257i
\(726\) 0 0
\(727\) −17.2598 + 3.04338i −0.640132 + 0.112873i −0.484287 0.874909i \(-0.660921\pi\)
−0.155845 + 0.987782i \(0.549810\pi\)
\(728\) 2.10318 + 44.8997i 0.0779491 + 1.66409i
\(729\) 0 0
\(730\) −0.886643 56.8224i −0.0328161 2.10309i
\(731\) −1.31725 7.47048i −0.0487201 0.276306i
\(732\) 0 0
\(733\) 21.1222 7.68786i 0.780167 0.283958i 0.0789247 0.996881i \(-0.474851\pi\)
0.701242 + 0.712923i \(0.252629\pi\)
\(734\) 0.594504 0.731379i 0.0219435 0.0269957i
\(735\) 0 0
\(736\) 4.62697 + 1.28580i 0.170552 + 0.0473952i
\(737\) −10.9147 + 6.30162i −0.402049 + 0.232123i
\(738\) 0 0
\(739\) 7.76664 + 4.48407i 0.285700 + 0.164949i 0.636001 0.771688i \(-0.280587\pi\)
−0.350301 + 0.936637i \(0.613921\pi\)
\(740\) −25.3398 28.3531i −0.931511 1.04228i
\(741\) 0 0
\(742\) 4.83431 30.1612i 0.177473 1.10725i
\(743\) −8.24486 + 46.7589i −0.302474 + 1.71542i 0.332686 + 0.943038i \(0.392045\pi\)
−0.635161 + 0.772380i \(0.719066\pi\)
\(744\) 0 0
\(745\) 48.1818 40.4293i 1.76524 1.48122i
\(746\) 14.3298 25.7393i 0.524653 0.942381i
\(747\) 0 0
\(748\) −5.93088 + 3.67557i −0.216854 + 0.134392i
\(749\) −9.73778 + 26.7543i −0.355811 + 0.977582i
\(750\) 0 0
\(751\) 8.95708 10.6746i 0.326848 0.389523i −0.577448 0.816427i \(-0.695951\pi\)
0.904297 + 0.426904i \(0.140396\pi\)
\(752\) −24.2257 + 10.5718i −0.883419 + 0.385513i
\(753\) 0 0
\(754\) 3.77544 0.726623i 0.137494 0.0264621i
\(755\) 66.3349 2.41418
\(756\) 0 0
\(757\) 12.8098 0.465582 0.232791 0.972527i \(-0.425214\pi\)
0.232791 + 0.972527i \(0.425214\pi\)
\(758\) −26.6502 + 5.12911i −0.967980 + 0.186298i
\(759\) 0 0
\(760\) 0.821151 0.343190i 0.0297863 0.0124488i
\(761\) 19.9205 23.7403i 0.722117 0.860586i −0.272718 0.962094i \(-0.587922\pi\)
0.994835 + 0.101509i \(0.0323669\pi\)
\(762\) 0 0
\(763\) 4.70813 12.9355i 0.170446 0.468295i
\(764\) −2.02491 3.26739i −0.0732587 0.118210i
\(765\) 0 0
\(766\) −5.45678 + 9.80146i −0.197161 + 0.354141i
\(767\) −12.6535 + 10.6176i −0.456892 + 0.383378i
\(768\) 0 0
\(769\) 2.97310 16.8613i 0.107213 0.608034i −0.883101 0.469184i \(-0.844548\pi\)
0.990313 0.138850i \(-0.0443406\pi\)
\(770\) 5.90672 36.8520i 0.212863 1.32805i
\(771\) 0 0
\(772\) −9.33732 + 8.34498i −0.336057 + 0.300342i
\(773\) −37.1476 21.4472i −1.33610 0.771401i −0.349877 0.936795i \(-0.613777\pi\)
−0.986227 + 0.165395i \(0.947110\pi\)
\(774\) 0 0
\(775\) −39.6758 + 22.9068i −1.42520 + 0.822838i
\(776\) 17.8213 + 5.55690i 0.639747 + 0.199481i
\(777\) 0 0
\(778\) −11.0130 + 13.5486i −0.394836 + 0.485741i
\(779\) 0.245070 0.0891981i 0.00878053 0.00319585i
\(780\) 0 0
\(781\) −5.37381 30.4764i −0.192290 1.09053i
\(782\) −0.0249994 1.60214i −0.000893978 0.0572924i
\(783\) 0 0
\(784\) −6.32095 + 0.395004i −0.225748 + 0.0141073i
\(785\) 57.1502 10.0771i 2.03978 0.359668i
\(786\) 0 0
\(787\) −2.03832 5.60024i −0.0726582 0.199627i 0.898047 0.439899i \(-0.144986\pi\)
−0.970706 + 0.240272i \(0.922763\pi\)
\(788\) 18.7170 23.7747i 0.666765 0.846939i
\(789\) 0 0
\(790\) −7.76866 2.69106i −0.276397 0.0957435i
\(791\) 0.826860 + 1.43216i 0.0293998 + 0.0509219i
\(792\) 0 0
\(793\) 6.57679 11.3913i 0.233549 0.404518i
\(794\) 24.7929 21.4717i 0.879866 0.762002i
\(795\) 0 0
\(796\) 51.2977 + 7.40315i 1.81820 + 0.262398i
\(797\) 40.7435 + 7.18417i 1.44321 + 0.254477i 0.839774 0.542936i \(-0.182688\pi\)
0.603434 + 0.797413i \(0.293799\pi\)
\(798\) 0 0
\(799\) 5.66892 + 6.75595i 0.200552 + 0.239008i
\(800\) −16.7621 + 35.0949i −0.592631 + 1.24079i
\(801\) 0 0
\(802\) −8.24720 + 4.93467i −0.291219 + 0.174249i
\(803\) 28.6435 + 10.4254i 1.01081 + 0.367903i
\(804\) 0 0
\(805\) 6.56566 + 5.50924i 0.231409 + 0.194175i
\(806\) 18.2304 + 47.7558i 0.642139 + 1.68213i
\(807\) 0 0
\(808\) 22.7522 5.11986i 0.800419 0.180116i
\(809\) 45.8780i 1.61298i −0.591245 0.806492i \(-0.701363\pi\)
0.591245 0.806492i \(-0.298637\pi\)
\(810\) 0 0
\(811\) 25.4302i 0.892974i −0.894790 0.446487i \(-0.852675\pi\)
0.894790 0.446487i \(-0.147325\pi\)
\(812\) 0.599940 + 2.87478i 0.0210538 + 0.100885i
\(813\) 0 0
\(814\) 19.0551 7.27414i 0.667882 0.254959i
\(815\) −21.1874 17.7784i −0.742163 0.622749i
\(816\) 0 0
\(817\) −0.487678 0.177500i −0.0170617 0.00620994i
\(818\) 13.1918 + 22.0472i 0.461241 + 0.770861i
\(819\) 0 0
\(820\) −9.30595 + 17.3467i −0.324978 + 0.605774i
\(821\) −5.04053 6.00706i −0.175916 0.209648i 0.670881 0.741565i \(-0.265916\pi\)
−0.846796 + 0.531917i \(0.821472\pi\)
\(822\) 0 0
\(823\) 8.63034 + 1.52176i 0.300835 + 0.0530453i 0.322028 0.946730i \(-0.395635\pi\)
−0.0211934 + 0.999775i \(0.506747\pi\)
\(824\) −45.1578 5.79938i −1.57315 0.202031i
\(825\) 0 0
\(826\) −8.25980 9.53741i −0.287395 0.331849i
\(827\) 9.57006 16.5758i 0.332784 0.576398i −0.650273 0.759701i \(-0.725345\pi\)
0.983057 + 0.183303i \(0.0586788\pi\)
\(828\) 0 0
\(829\) −0.0258029 0.0446919i −0.000896172 0.00155222i 0.865577 0.500776i \(-0.166952\pi\)
−0.866473 + 0.499224i \(0.833619\pi\)
\(830\) 3.44499 9.94513i 0.119577 0.345201i
\(831\) 0 0
\(832\) 35.7042 + 24.6640i 1.23782 + 0.855071i
\(833\) 0.722744 + 1.98572i 0.0250416 + 0.0688012i
\(834\) 0 0
\(835\) −4.43105 + 0.781314i −0.153343 + 0.0270385i
\(836\) 0.0148937 + 0.477130i 0.000515109 + 0.0165019i
\(837\) 0 0
\(838\) −6.95909 + 0.108588i −0.240398 + 0.00375111i
\(839\) −1.86814 10.5948i −0.0644954 0.365771i −0.999925 0.0122581i \(-0.996098\pi\)
0.935429 0.353513i \(-0.115013\pi\)
\(840\) 0 0
\(841\) −27.0150 + 9.83267i −0.931553 + 0.339058i
\(842\) 12.9148 + 10.4979i 0.445075 + 0.361780i
\(843\) 0 0
\(844\) 10.9067 33.1492i 0.375423 1.14104i
\(845\) 49.0137 28.2981i 1.68612 0.973484i
\(846\) 0 0
\(847\) −10.5727 6.10416i −0.363283 0.209741i
\(848\) −20.3279 21.3644i −0.698061 0.733656i
\(849\) 0 0
\(850\) 12.8133 + 2.05375i 0.439493 + 0.0704429i
\(851\) −0.813351 + 4.61274i −0.0278813 + 0.158123i
\(852\) 0 0
\(853\) 30.2999 25.4247i 1.03745 0.870524i 0.0457315 0.998954i \(-0.485438\pi\)
0.991719 + 0.128430i \(0.0409937\pi\)
\(854\) 8.77834 + 4.88717i 0.300389 + 0.167236i
\(855\) 0 0
\(856\) 14.8422 + 23.1352i 0.507296 + 0.790745i
\(857\) 3.50870 9.64007i 0.119855 0.329299i −0.865228 0.501378i \(-0.832826\pi\)
0.985083 + 0.172080i \(0.0550487\pi\)
\(858\) 0 0
\(859\) 2.27840 2.71529i 0.0777381 0.0926446i −0.725774 0.687934i \(-0.758518\pi\)
0.803512 + 0.595289i \(0.202962\pi\)
\(860\) 36.3745 14.5398i 1.24036 0.495805i
\(861\) 0 0
\(862\) −1.17840 6.12282i −0.0401365 0.208544i
\(863\) −6.36151 −0.216548 −0.108274 0.994121i \(-0.534532\pi\)
−0.108274 + 0.994121i \(0.534532\pi\)
\(864\) 0 0
\(865\) −39.4602 −1.34169
\(866\) −7.62354 39.6110i −0.259058 1.34604i
\(867\) 0 0
\(868\) −36.2555 + 14.4923i −1.23059 + 0.491901i
\(869\) 2.83458 3.37812i 0.0961565 0.114595i
\(870\) 0 0
\(871\) 8.94493 24.5760i 0.303087 0.832726i
\(872\) −7.17607 11.1857i −0.243012 0.378794i
\(873\) 0 0
\(874\) −0.0957804 0.0533239i −0.00323982 0.00180371i
\(875\) −14.5034 + 12.1698i −0.490304 + 0.411414i
\(876\) 0 0
\(877\) −2.83565 + 16.0818i −0.0957531 + 0.543043i 0.898761 + 0.438439i \(0.144468\pi\)
−0.994514 + 0.104604i \(0.966643\pi\)
\(878\) −6.75413 1.08257i −0.227941 0.0365349i
\(879\) 0 0
\(880\) −24.8372 26.1037i −0.837263 0.879956i
\(881\) 43.1593 + 24.9180i 1.45407 + 0.839509i 0.998709 0.0507963i \(-0.0161759\pi\)
0.455364 + 0.890306i \(0.349509\pi\)
\(882\) 0 0
\(883\) −38.2077 + 22.0592i −1.28579 + 0.742352i −0.977901 0.209070i \(-0.932956\pi\)
−0.307890 + 0.951422i \(0.599623\pi\)
\(884\) 4.52523 13.7538i 0.152200 0.462589i
\(885\) 0 0
\(886\) 7.97446 + 6.48207i 0.267907 + 0.217769i
\(887\) −2.25857 + 0.822052i −0.0758353 + 0.0276018i −0.379659 0.925126i \(-0.623959\pi\)
0.303824 + 0.952728i \(0.401737\pi\)
\(888\) 0 0
\(889\) −5.65792 32.0877i −0.189761 1.07619i
\(890\) 70.7842 1.10450i 2.37269 0.0370229i
\(891\) 0 0
\(892\) 1.10298 + 35.3348i 0.0369305 + 1.18310i
\(893\) 0.594202 0.104774i 0.0198842 0.00350612i
\(894\) 0 0
\(895\) 25.2377 + 69.3399i 0.843602 + 2.31778i
\(896\) −18.4113 + 27.5625i −0.615078 + 0.920797i
\(897\) 0 0
\(898\) 2.94215 8.49353i 0.0981808 0.283433i
\(899\) 1.66986 + 2.89227i 0.0556928 + 0.0964627i
\(900\) 0 0
\(901\) −4.91981 + 8.52136i −0.163903 + 0.283888i
\(902\) −6.91234 7.98153i −0.230156 0.265756i
\(903\) 0 0
\(904\) 1.58353 + 0.203365i 0.0526676 + 0.00676381i
\(905\) −49.6441 8.75359i −1.65023 0.290979i
\(906\) 0 0
\(907\) 22.5530 + 26.8776i 0.748858 + 0.892455i 0.997089 0.0762463i \(-0.0242935\pi\)
−0.248231 + 0.968701i \(0.579849\pi\)
\(908\) −8.82079 + 16.4424i −0.292728 + 0.545660i
\(909\) 0 0
\(910\) 39.7659 + 66.4598i 1.31823 + 2.20312i
\(911\) −10.1501 3.69433i −0.336287 0.122399i 0.168357 0.985726i \(-0.446154\pi\)
−0.504644 + 0.863328i \(0.668376\pi\)
\(912\) 0 0
\(913\) 4.32453 + 3.62872i 0.143121 + 0.120093i
\(914\) −1.18138 + 0.450982i −0.0390766 + 0.0149172i
\(915\) 0 0
\(916\) 6.87113 + 32.9250i 0.227029 + 1.08787i
\(917\) 9.08884i 0.300140i
\(918\) 0 0
\(919\) 20.9319i 0.690481i −0.938514 0.345241i \(-0.887797\pi\)
0.938514 0.345241i \(-0.112203\pi\)
\(920\) 8.07263 1.81656i 0.266147 0.0598903i
\(921\) 0 0
\(922\) 6.60800 + 17.3101i 0.217623 + 0.570078i
\(923\) 49.1936 + 41.2783i 1.61923 + 1.35869i
\(924\) 0 0
\(925\) −35.6459 12.9740i −1.17203 0.426584i
\(926\) 1.63660 0.979249i 0.0537819 0.0321801i
\(927\) 0 0
\(928\) 2.55834 + 1.22192i 0.0839816 + 0.0401115i
\(929\) 21.6205 + 25.7663i 0.709345 + 0.845365i 0.993550 0.113399i \(-0.0361738\pi\)
−0.284204 + 0.958764i \(0.591729\pi\)
\(930\) 0 0
\(931\) 0.142375 + 0.0251046i 0.00466616 + 0.000822770i
\(932\) 34.8936 + 5.03576i 1.14298 + 0.164952i
\(933\) 0 0
\(934\) −20.9782 + 18.1680i −0.686427 + 0.594475i
\(935\) −6.01119 + 10.4117i −0.196587 + 0.340498i
\(936\) 0 0
\(937\) −12.5767 21.7834i −0.410862 0.711634i 0.584122 0.811666i \(-0.301439\pi\)
−0.994984 + 0.100032i \(0.968106\pi\)
\(938\) 18.8761 + 6.53868i 0.616328 + 0.213496i
\(939\) 0 0
\(940\) −28.1716 + 35.7842i −0.918857 + 1.16715i
\(941\) −14.1661 38.9209i −0.461801 1.26879i −0.924130 0.382078i \(-0.875208\pi\)
0.462329 0.886708i \(-0.347014\pi\)
\(942\) 0 0
\(943\) 2.38790 0.421051i 0.0777606 0.0137113i
\(944\) −12.1569 + 0.759701i −0.395675 + 0.0247262i
\(945\) 0 0
\(946\) 0.327815 + 21.0087i 0.0106582 + 0.683052i
\(947\) 9.81759 + 55.6783i 0.319029 + 1.80930i 0.548684 + 0.836030i \(0.315129\pi\)
−0.229656 + 0.973272i \(0.573760\pi\)
\(948\) 0 0
\(949\) −59.4386 + 21.6339i −1.92946 + 0.702265i
\(950\) 0.559992 0.688922i 0.0181686 0.0223516i
\(951\) 0 0
\(952\) 10.5582 + 3.29217i 0.342192 + 0.106700i
\(953\) 31.8569 18.3926i 1.03195 0.595795i 0.114405 0.993434i \(-0.463504\pi\)
0.917542 + 0.397639i \(0.130170\pi\)
\(954\) 0 0
\(955\) −5.73591 3.31163i −0.185610 0.107162i
\(956\) −13.7408 + 12.2805i −0.444409 + 0.397179i
\(957\) 0 0
\(958\) −4.26621 + 26.6169i −0.137835 + 0.859953i
\(959\) 8.78509 49.8227i 0.283685 1.60886i
\(960\) 0 0
\(961\) −10.2671 + 8.61511i −0.331196 + 0.277907i
\(962\) −20.5880 + 36.9801i −0.663783 + 1.19229i
\(963\) 0 0
\(964\) −6.56014 10.5854i −0.211288 0.340933i
\(965\) −7.37989 + 20.2761i −0.237567 + 0.652711i
\(966\) 0 0
\(967\) 28.9550 34.5072i 0.931129 1.10968i −0.0626196 0.998037i \(-0.519945\pi\)
0.993749 0.111639i \(-0.0356101\pi\)
\(968\) −10.8746 + 4.54492i −0.349524 + 0.146079i
\(969\) 0 0
\(970\) 31.5850 6.07887i 1.01413 0.195181i
\(971\) −40.1053 −1.28704 −0.643520 0.765429i \(-0.722527\pi\)
−0.643520 + 0.765429i \(0.722527\pi\)
\(972\) 0 0
\(973\) 32.7837 1.05100
\(974\) −17.6980 + 3.40615i −0.567079 + 0.109140i
\(975\) 0 0
\(976\) 8.89005 3.87950i 0.284564 0.124180i
\(977\) −23.6105 + 28.1379i −0.755368 + 0.900213i −0.997546 0.0700194i \(-0.977694\pi\)
0.242178 + 0.970232i \(0.422138\pi\)
\(978\) 0 0
\(979\) −12.9870 + 35.6814i −0.415066 + 1.14038i
\(980\) −9.27559 + 5.74840i −0.296298 + 0.183626i
\(981\) 0 0
\(982\) −17.0137 + 30.5601i −0.542930 + 0.975211i
\(983\) −14.5073 + 12.1730i −0.462710 + 0.388259i −0.844127 0.536144i \(-0.819881\pi\)
0.381417 + 0.924403i \(0.375436\pi\)
\(984\) 0 0
\(985\) 9.05328 51.3437i 0.288462 1.63595i
\(986\) 0.149713 0.934060i 0.00476784 0.0297465i
\(987\) 0 0
\(988\) −0.660101 0.738596i −0.0210006 0.0234979i
\(989\) −4.17867 2.41256i −0.132874 0.0767148i
\(990\) 0 0
\(991\) −30.3997 + 17.5513i −0.965680 + 0.557535i −0.897916 0.440166i \(-0.854920\pi\)
−0.0677633 + 0.997701i \(0.521586\pi\)
\(992\) −10.0926 + 36.3184i −0.320441 + 1.15311i
\(993\) 0 0
\(994\) −30.9395 + 38.0628i −0.981340 + 1.20728i
\(995\) 83.9173 30.5434i 2.66036 0.968291i
\(996\) 0 0
\(997\) 4.16898 + 23.6435i 0.132033 + 0.748796i 0.976880 + 0.213788i \(0.0685803\pi\)
−0.844847 + 0.535008i \(0.820309\pi\)
\(998\) 0.871737 + 55.8671i 0.0275944 + 1.76844i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.b.215.8 96
3.2 odd 2 972.2.l.c.215.9 96
4.3 odd 2 inner 972.2.l.b.215.10 96
9.2 odd 6 972.2.l.d.863.13 96
9.4 even 3 324.2.l.a.179.15 96
9.5 odd 6 108.2.l.a.23.2 96
9.7 even 3 972.2.l.a.863.4 96
12.11 even 2 972.2.l.c.215.7 96
27.2 odd 18 inner 972.2.l.b.755.10 96
27.7 even 9 972.2.l.d.107.5 96
27.11 odd 18 324.2.l.a.143.2 96
27.16 even 9 108.2.l.a.47.15 yes 96
27.20 odd 18 972.2.l.a.107.12 96
27.25 even 9 972.2.l.c.755.7 96
36.7 odd 6 972.2.l.a.863.12 96
36.11 even 6 972.2.l.d.863.5 96
36.23 even 6 108.2.l.a.23.15 yes 96
36.31 odd 6 324.2.l.a.179.2 96
108.7 odd 18 972.2.l.d.107.13 96
108.11 even 18 324.2.l.a.143.15 96
108.43 odd 18 108.2.l.a.47.2 yes 96
108.47 even 18 972.2.l.a.107.4 96
108.79 odd 18 972.2.l.c.755.9 96
108.83 even 18 inner 972.2.l.b.755.8 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.2 96 9.5 odd 6
108.2.l.a.23.15 yes 96 36.23 even 6
108.2.l.a.47.2 yes 96 108.43 odd 18
108.2.l.a.47.15 yes 96 27.16 even 9
324.2.l.a.143.2 96 27.11 odd 18
324.2.l.a.143.15 96 108.11 even 18
324.2.l.a.179.2 96 36.31 odd 6
324.2.l.a.179.15 96 9.4 even 3
972.2.l.a.107.4 96 108.47 even 18
972.2.l.a.107.12 96 27.20 odd 18
972.2.l.a.863.4 96 9.7 even 3
972.2.l.a.863.12 96 36.7 odd 6
972.2.l.b.215.8 96 1.1 even 1 trivial
972.2.l.b.215.10 96 4.3 odd 2 inner
972.2.l.b.755.8 96 108.83 even 18 inner
972.2.l.b.755.10 96 27.2 odd 18 inner
972.2.l.c.215.7 96 12.11 even 2
972.2.l.c.215.9 96 3.2 odd 2
972.2.l.c.755.7 96 27.25 even 9
972.2.l.c.755.9 96 108.79 odd 18
972.2.l.d.107.5 96 27.7 even 9
972.2.l.d.107.13 96 108.7 odd 18
972.2.l.d.863.5 96 36.11 even 6
972.2.l.d.863.13 96 9.2 odd 6