Properties

Label 972.2.l.b.215.10
Level $972$
Weight $2$
Character 972.215
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,-3,0,3,-6,0,0,9,0,-3,0,0,6,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 215.10
Character \(\chi\) \(=\) 972.215
Dual form 972.2.l.b.755.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.223817 + 1.39639i) q^{2} +(-1.89981 + 0.625071i) q^{4} +(-2.21508 + 2.63983i) q^{5} +(1.00203 - 2.75305i) q^{7} +(-1.29805 - 2.51298i) q^{8} +(-4.18200 - 2.50228i) q^{10} +(2.00243 - 1.68024i) q^{11} +(0.941927 - 5.34193i) q^{13} +(4.06860 + 0.783043i) q^{14} +(3.21857 - 2.37503i) q^{16} +(-1.15583 - 0.667320i) q^{17} +(0.0790760 - 0.0456546i) q^{19} +(2.55816 - 6.39976i) q^{20} +(2.79445 + 2.42011i) q^{22} +(0.797738 - 0.290353i) q^{23} +(-1.19388 - 6.77083i) q^{25} +(7.67024 + 0.119685i) q^{26} +(-0.182815 + 5.85661i) q^{28} +(-0.493578 + 0.0870310i) q^{29} +(2.27906 + 6.26168i) q^{31} +(4.03684 + 3.96281i) q^{32} +(0.673145 - 1.76335i) q^{34} +(5.04800 + 8.74340i) q^{35} +(2.75869 - 4.77819i) q^{37} +(0.0814501 + 0.100203i) q^{38} +(9.50912 + 2.13981i) q^{40} +(-2.81281 - 0.495975i) q^{41} +(-3.65343 - 4.35398i) q^{43} +(-2.75398 + 4.44381i) q^{44} +(0.583993 + 1.04897i) q^{46} +(6.20947 + 2.26006i) q^{47} +(-1.21289 - 1.01774i) q^{49} +(9.18751 - 3.18255i) q^{50} +(1.54960 + 10.7374i) q^{52} -7.37249i q^{53} +9.00795i q^{55} +(-8.21903 + 1.05553i) q^{56} +(-0.232000 - 0.669748i) q^{58} +(2.33273 + 1.95739i) q^{59} +(2.27868 + 0.829371i) q^{61} +(-8.23365 + 4.58393i) q^{62} +(-4.63012 + 6.52395i) q^{64} +(12.0154 + 14.3193i) q^{65} +(-4.74821 - 0.837237i) q^{67} +(2.61299 + 0.545306i) q^{68} +(-11.0794 + 9.00590i) q^{70} +(5.91940 - 10.2527i) q^{71} +(-5.83049 - 10.0987i) q^{73} +(7.28967 + 2.78277i) q^{74} +(-0.121692 + 0.136163i) q^{76} +(-2.61929 - 7.19644i) q^{77} +(1.66138 - 0.292946i) q^{79} +(-0.859714 + 13.7574i) q^{80} +(0.0630204 - 4.03879i) q^{82} +(0.375017 + 2.12683i) q^{83} +(4.32187 - 1.57303i) q^{85} +(5.26216 - 6.07610i) q^{86} +(-6.82167 - 2.85103i) q^{88} +(12.5801 - 7.26310i) q^{89} +(-13.7628 - 7.94593i) q^{91} +(-1.33406 + 1.05026i) q^{92} +(-1.76615 + 9.17668i) q^{94} +(-0.0546395 + 0.309876i) q^{95} +(5.05588 - 4.24238i) q^{97} +(1.14969 - 1.92146i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 9 q^{8} - 3 q^{10} + 6 q^{13} + 12 q^{14} + 3 q^{16} + 18 q^{17} - 45 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 6 q^{29} + 57 q^{32} - 3 q^{34} - 6 q^{37} - 45 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.223817 + 1.39639i 0.158262 + 0.987397i
\(3\) 0 0
\(4\) −1.89981 + 0.625071i −0.949906 + 0.312535i
\(5\) −2.21508 + 2.63983i −0.990614 + 1.18057i −0.00705588 + 0.999975i \(0.502246\pi\)
−0.983558 + 0.180593i \(0.942198\pi\)
\(6\) 0 0
\(7\) 1.00203 2.75305i 0.378731 1.04055i −0.593153 0.805090i \(-0.702117\pi\)
0.971883 0.235464i \(-0.0756608\pi\)
\(8\) −1.29805 2.51298i −0.458931 0.888472i
\(9\) 0 0
\(10\) −4.18200 2.50228i −1.32247 0.791290i
\(11\) 2.00243 1.68024i 0.603757 0.506612i −0.288894 0.957361i \(-0.593288\pi\)
0.892651 + 0.450749i \(0.148843\pi\)
\(12\) 0 0
\(13\) 0.941927 5.34193i 0.261244 1.48159i −0.518279 0.855212i \(-0.673427\pi\)
0.779522 0.626374i \(-0.215462\pi\)
\(14\) 4.06860 + 0.783043i 1.08738 + 0.209277i
\(15\) 0 0
\(16\) 3.21857 2.37503i 0.804643 0.593758i
\(17\) −1.15583 0.667320i −0.280330 0.161849i 0.353243 0.935532i \(-0.385079\pi\)
−0.633573 + 0.773683i \(0.718412\pi\)
\(18\) 0 0
\(19\) 0.0790760 0.0456546i 0.0181413 0.0104739i −0.490902 0.871215i \(-0.663333\pi\)
0.509043 + 0.860741i \(0.329999\pi\)
\(20\) 2.55816 6.39976i 0.572021 1.43103i
\(21\) 0 0
\(22\) 2.79445 + 2.42011i 0.595779 + 0.515970i
\(23\) 0.797738 0.290353i 0.166340 0.0605428i −0.257508 0.966276i \(-0.582901\pi\)
0.423848 + 0.905733i \(0.360679\pi\)
\(24\) 0 0
\(25\) −1.19388 6.77083i −0.238776 1.35417i
\(26\) 7.67024 + 0.119685i 1.50426 + 0.0234721i
\(27\) 0 0
\(28\) −0.182815 + 5.85661i −0.0345487 + 1.10679i
\(29\) −0.493578 + 0.0870310i −0.0916551 + 0.0161613i −0.219288 0.975660i \(-0.570373\pi\)
0.127633 + 0.991822i \(0.459262\pi\)
\(30\) 0 0
\(31\) 2.27906 + 6.26168i 0.409332 + 1.12463i 0.957543 + 0.288290i \(0.0930868\pi\)
−0.548211 + 0.836340i \(0.684691\pi\)
\(32\) 4.03684 + 3.96281i 0.713620 + 0.700533i
\(33\) 0 0
\(34\) 0.673145 1.76335i 0.115443 0.302412i
\(35\) 5.04800 + 8.74340i 0.853268 + 1.47790i
\(36\) 0 0
\(37\) 2.75869 4.77819i 0.453526 0.785530i −0.545076 0.838387i \(-0.683499\pi\)
0.998602 + 0.0528563i \(0.0168325\pi\)
\(38\) 0.0814501 + 0.100203i 0.0132130 + 0.0162550i
\(39\) 0 0
\(40\) 9.50912 + 2.13981i 1.50352 + 0.338334i
\(41\) −2.81281 0.495975i −0.439288 0.0774583i −0.0503696 0.998731i \(-0.516040\pi\)
−0.388918 + 0.921272i \(0.627151\pi\)
\(42\) 0 0
\(43\) −3.65343 4.35398i −0.557142 0.663976i 0.411797 0.911276i \(-0.364901\pi\)
−0.968939 + 0.247299i \(0.920457\pi\)
\(44\) −2.75398 + 4.44381i −0.415178 + 0.669929i
\(45\) 0 0
\(46\) 0.583993 + 1.04897i 0.0861051 + 0.154662i
\(47\) 6.20947 + 2.26006i 0.905744 + 0.329664i 0.752552 0.658533i \(-0.228823\pi\)
0.153192 + 0.988197i \(0.451045\pi\)
\(48\) 0 0
\(49\) −1.21289 1.01774i −0.173271 0.145391i
\(50\) 9.18751 3.18255i 1.29931 0.450080i
\(51\) 0 0
\(52\) 1.54960 + 10.7374i 0.214891 + 1.48902i
\(53\) 7.37249i 1.01269i −0.862331 0.506345i \(-0.830996\pi\)
0.862331 0.506345i \(-0.169004\pi\)
\(54\) 0 0
\(55\) 9.00795i 1.21463i
\(56\) −8.21903 + 1.05553i −1.09831 + 0.141050i
\(57\) 0 0
\(58\) −0.232000 0.669748i −0.0304631 0.0879422i
\(59\) 2.33273 + 1.95739i 0.303696 + 0.254831i 0.781880 0.623428i \(-0.214261\pi\)
−0.478185 + 0.878259i \(0.658705\pi\)
\(60\) 0 0
\(61\) 2.27868 + 0.829371i 0.291755 + 0.106190i 0.483751 0.875206i \(-0.339274\pi\)
−0.191996 + 0.981396i \(0.561496\pi\)
\(62\) −8.23365 + 4.58393i −1.04568 + 0.582160i
\(63\) 0 0
\(64\) −4.63012 + 6.52395i −0.578765 + 0.815494i
\(65\) 12.0154 + 14.3193i 1.49032 + 1.77610i
\(66\) 0 0
\(67\) −4.74821 0.837237i −0.580086 0.102285i −0.124097 0.992270i \(-0.539603\pi\)
−0.455989 + 0.889985i \(0.650714\pi\)
\(68\) 2.61299 + 0.545306i 0.316871 + 0.0661281i
\(69\) 0 0
\(70\) −11.0794 + 9.00590i −1.32424 + 1.07641i
\(71\) 5.91940 10.2527i 0.702504 1.21677i −0.265081 0.964226i \(-0.585399\pi\)
0.967585 0.252546i \(-0.0812678\pi\)
\(72\) 0 0
\(73\) −5.83049 10.0987i −0.682408 1.18197i −0.974244 0.225497i \(-0.927600\pi\)
0.291836 0.956468i \(-0.405734\pi\)
\(74\) 7.28967 + 2.78277i 0.847406 + 0.323491i
\(75\) 0 0
\(76\) −0.121692 + 0.136163i −0.0139591 + 0.0156190i
\(77\) −2.61929 7.19644i −0.298496 0.820110i
\(78\) 0 0
\(79\) 1.66138 0.292946i 0.186920 0.0329590i −0.0794047 0.996842i \(-0.525302\pi\)
0.266324 + 0.963884i \(0.414191\pi\)
\(80\) −0.859714 + 13.7574i −0.0961190 + 1.53812i
\(81\) 0 0
\(82\) 0.0630204 4.03879i 0.00695944 0.446010i
\(83\) 0.375017 + 2.12683i 0.0411635 + 0.233450i 0.998448 0.0556992i \(-0.0177388\pi\)
−0.957284 + 0.289149i \(0.906628\pi\)
\(84\) 0 0
\(85\) 4.32187 1.57303i 0.468773 0.170619i
\(86\) 5.26216 6.07610i 0.567434 0.655203i
\(87\) 0 0
\(88\) −6.82167 2.85103i −0.727193 0.303921i
\(89\) 12.5801 7.26310i 1.33348 0.769887i 0.347652 0.937624i \(-0.386979\pi\)
0.985832 + 0.167737i \(0.0536458\pi\)
\(90\) 0 0
\(91\) −13.7628 7.94593i −1.44273 0.832960i
\(92\) −1.33406 + 1.05026i −0.139086 + 0.109497i
\(93\) 0 0
\(94\) −1.76615 + 9.17668i −0.182164 + 0.946502i
\(95\) −0.0546395 + 0.309876i −0.00560589 + 0.0317926i
\(96\) 0 0
\(97\) 5.05588 4.24238i 0.513347 0.430749i −0.348958 0.937138i \(-0.613465\pi\)
0.862305 + 0.506389i \(0.169020\pi\)
\(98\) 1.14969 1.92146i 0.116137 0.194097i
\(99\) 0 0
\(100\) 6.50039 + 12.1170i 0.650039 + 1.21170i
\(101\) 2.82004 7.74801i 0.280605 0.770956i −0.716686 0.697396i \(-0.754342\pi\)
0.997291 0.0735595i \(-0.0234359\pi\)
\(102\) 0 0
\(103\) 10.3468 12.3309i 1.01950 1.21500i 0.0430954 0.999071i \(-0.486278\pi\)
0.976409 0.215928i \(-0.0692775\pi\)
\(104\) −14.6468 + 4.56707i −1.43624 + 0.447838i
\(105\) 0 0
\(106\) 10.2949 1.65009i 0.999927 0.160271i
\(107\) −9.71808 −0.939482 −0.469741 0.882804i \(-0.655653\pi\)
−0.469741 + 0.882804i \(0.655653\pi\)
\(108\) 0 0
\(109\) −4.69860 −0.450044 −0.225022 0.974354i \(-0.572245\pi\)
−0.225022 + 0.974354i \(0.572245\pi\)
\(110\) −12.5786 + 2.01613i −1.19932 + 0.192230i
\(111\) 0 0
\(112\) −3.31348 11.2407i −0.313094 1.06215i
\(113\) 0.362829 0.432403i 0.0341321 0.0406770i −0.748708 0.662900i \(-0.769326\pi\)
0.782840 + 0.622222i \(0.213770\pi\)
\(114\) 0 0
\(115\) −1.00057 + 2.74905i −0.0933038 + 0.256350i
\(116\) 0.883304 0.473863i 0.0820127 0.0439971i
\(117\) 0 0
\(118\) −2.21118 + 3.69550i −0.203556 + 0.340198i
\(119\) −2.99534 + 2.51339i −0.274582 + 0.230402i
\(120\) 0 0
\(121\) −0.723600 + 4.10374i −0.0657818 + 0.373067i
\(122\) −0.648119 + 3.36755i −0.0586780 + 0.304884i
\(123\) 0 0
\(124\) −8.24378 10.4714i −0.740314 0.940363i
\(125\) 5.59652 + 3.23116i 0.500568 + 0.289003i
\(126\) 0 0
\(127\) 9.63141 5.56070i 0.854649 0.493432i −0.00756758 0.999971i \(-0.502409\pi\)
0.862217 + 0.506539i \(0.169076\pi\)
\(128\) −10.1463 5.00529i −0.896813 0.442409i
\(129\) 0 0
\(130\) −17.3062 + 19.9830i −1.51785 + 1.75263i
\(131\) 2.91519 1.06104i 0.254701 0.0927037i −0.211514 0.977375i \(-0.567839\pi\)
0.466215 + 0.884671i \(0.345617\pi\)
\(132\) 0 0
\(133\) −0.0464528 0.263447i −0.00402797 0.0228438i
\(134\) 0.106382 6.81774i 0.00919004 0.588963i
\(135\) 0 0
\(136\) −0.176631 + 3.77080i −0.0151459 + 0.323343i
\(137\) −17.0059 + 2.99860i −1.45291 + 0.256188i −0.843698 0.536818i \(-0.819626\pi\)
−0.609214 + 0.793006i \(0.708515\pi\)
\(138\) 0 0
\(139\) 3.82721 + 10.5152i 0.324620 + 0.891885i 0.989448 + 0.144889i \(0.0462825\pi\)
−0.664828 + 0.746996i \(0.731495\pi\)
\(140\) −15.0555 13.4555i −1.27242 1.13719i
\(141\) 0 0
\(142\) 15.6416 + 5.97107i 1.31262 + 0.501081i
\(143\) −7.08959 12.2795i −0.592862 1.02687i
\(144\) 0 0
\(145\) 0.863567 1.49574i 0.0717153 0.124215i
\(146\) 12.7968 10.4019i 1.05907 0.860868i
\(147\) 0 0
\(148\) −2.25429 + 10.8020i −0.185301 + 0.887923i
\(149\) −17.9746 3.16940i −1.47253 0.259647i −0.620943 0.783855i \(-0.713250\pi\)
−0.851590 + 0.524208i \(0.824361\pi\)
\(150\) 0 0
\(151\) 12.3734 + 14.7460i 1.00693 + 1.20001i 0.979718 + 0.200383i \(0.0642187\pi\)
0.0272126 + 0.999630i \(0.491337\pi\)
\(152\) −0.217374 0.139454i −0.0176313 0.0113112i
\(153\) 0 0
\(154\) 9.46280 5.26823i 0.762534 0.424526i
\(155\) −21.5781 7.85378i −1.73319 0.630830i
\(156\) 0 0
\(157\) −12.9003 10.8246i −1.02955 0.863897i −0.0387551 0.999249i \(-0.512339\pi\)
−0.990798 + 0.135351i \(0.956784\pi\)
\(158\) 0.780910 + 2.25436i 0.0621259 + 0.179348i
\(159\) 0 0
\(160\) −19.4031 + 1.87863i −1.53395 + 0.148519i
\(161\) 2.48715i 0.196015i
\(162\) 0 0
\(163\) 8.02606i 0.628650i −0.949315 0.314325i \(-0.898222\pi\)
0.949315 0.314325i \(-0.101778\pi\)
\(164\) 5.65384 0.815948i 0.441490 0.0637148i
\(165\) 0 0
\(166\) −2.88595 + 0.999690i −0.223993 + 0.0775910i
\(167\) −1.00020 0.839268i −0.0773979 0.0649445i 0.603268 0.797539i \(-0.293865\pi\)
−0.680666 + 0.732594i \(0.738309\pi\)
\(168\) 0 0
\(169\) −15.4330 5.61716i −1.18716 0.432090i
\(170\) 3.16387 + 5.68295i 0.242658 + 0.435862i
\(171\) 0 0
\(172\) 9.66237 + 5.98810i 0.736749 + 0.456588i
\(173\) 7.36046 + 8.77186i 0.559606 + 0.666912i 0.969463 0.245238i \(-0.0788660\pi\)
−0.409857 + 0.912150i \(0.634422\pi\)
\(174\) 0 0
\(175\) −19.8367 3.49775i −1.49951 0.264405i
\(176\) 2.45435 10.1638i 0.185004 0.766127i
\(177\) 0 0
\(178\) 12.9578 + 15.9411i 0.971224 + 1.19483i
\(179\) −10.7064 + 18.5441i −0.800237 + 1.38605i 0.119222 + 0.992868i \(0.461960\pi\)
−0.919460 + 0.393184i \(0.871373\pi\)
\(180\) 0 0
\(181\) 7.31416 + 12.6685i 0.543657 + 0.941641i 0.998690 + 0.0511670i \(0.0162941\pi\)
−0.455033 + 0.890474i \(0.650373\pi\)
\(182\) 8.01529 20.9966i 0.594133 1.55637i
\(183\) 0 0
\(184\) −1.76516 1.62781i −0.130129 0.120003i
\(185\) 6.50290 + 17.8666i 0.478102 + 1.31358i
\(186\) 0 0
\(187\) −3.43574 + 0.605813i −0.251246 + 0.0443014i
\(188\) −13.2095 0.412337i −0.963403 0.0300728i
\(189\) 0 0
\(190\) −0.444937 0.00694269i −0.0322791 0.000503676i
\(191\) −0.333749 1.89278i −0.0241492 0.136957i 0.970349 0.241706i \(-0.0777071\pi\)
−0.994499 + 0.104749i \(0.966596\pi\)
\(192\) 0 0
\(193\) 5.88386 2.14155i 0.423530 0.154152i −0.121457 0.992597i \(-0.538757\pi\)
0.544987 + 0.838444i \(0.316535\pi\)
\(194\) 7.05561 + 6.11046i 0.506564 + 0.438706i
\(195\) 0 0
\(196\) 2.94043 + 1.17537i 0.210031 + 0.0839549i
\(197\) −13.1022 + 7.56456i −0.933494 + 0.538953i −0.887915 0.460008i \(-0.847847\pi\)
−0.0455788 + 0.998961i \(0.514513\pi\)
\(198\) 0 0
\(199\) 22.4427 + 12.9573i 1.59092 + 0.918517i 0.993150 + 0.116849i \(0.0372792\pi\)
0.597769 + 0.801669i \(0.296054\pi\)
\(200\) −15.4652 + 11.7891i −1.09356 + 0.833614i
\(201\) 0 0
\(202\) 11.4504 + 2.20375i 0.805648 + 0.155055i
\(203\) −0.254977 + 1.44605i −0.0178959 + 0.101493i
\(204\) 0 0
\(205\) 7.53990 6.32672i 0.526609 0.441878i
\(206\) 19.5345 + 11.6884i 1.36104 + 0.814368i
\(207\) 0 0
\(208\) −9.65561 19.4305i −0.669496 1.34726i
\(209\) 0.0816338 0.224287i 0.00564673 0.0155143i
\(210\) 0 0
\(211\) 11.2158 13.3665i 0.772127 0.920186i −0.226422 0.974029i \(-0.572703\pi\)
0.998549 + 0.0538436i \(0.0171473\pi\)
\(212\) 4.60833 + 14.0064i 0.316501 + 0.961960i
\(213\) 0 0
\(214\) −2.17507 13.5702i −0.148685 0.927642i
\(215\) 19.5864 1.33578
\(216\) 0 0
\(217\) 19.5224 1.32526
\(218\) −1.05162 6.56108i −0.0712250 0.444373i
\(219\) 0 0
\(220\) −5.63061 17.1134i −0.379615 1.15379i
\(221\) −4.65349 + 5.54581i −0.313028 + 0.373052i
\(222\) 0 0
\(223\) −6.04555 + 16.6100i −0.404840 + 1.11229i 0.555027 + 0.831832i \(0.312708\pi\)
−0.959867 + 0.280456i \(0.909514\pi\)
\(224\) 14.9548 7.14277i 0.999212 0.477247i
\(225\) 0 0
\(226\) 0.685010 + 0.409872i 0.0455662 + 0.0272643i
\(227\) −7.14681 + 5.99689i −0.474351 + 0.398027i −0.848379 0.529390i \(-0.822421\pi\)
0.374028 + 0.927417i \(0.377976\pi\)
\(228\) 0 0
\(229\) 2.92027 16.5617i 0.192977 1.09442i −0.722294 0.691586i \(-0.756912\pi\)
0.915271 0.402839i \(-0.131977\pi\)
\(230\) −4.06269 0.781906i −0.267886 0.0515574i
\(231\) 0 0
\(232\) 0.859396 + 1.12738i 0.0564221 + 0.0740161i
\(233\) −15.2659 8.81379i −1.00010 0.577410i −0.0918250 0.995775i \(-0.529270\pi\)
−0.908279 + 0.418365i \(0.862603\pi\)
\(234\) 0 0
\(235\) −19.7206 + 11.3857i −1.28643 + 0.742722i
\(236\) −5.65526 2.26056i −0.368126 0.147150i
\(237\) 0 0
\(238\) −4.18007 3.62012i −0.270954 0.234658i
\(239\) −8.65868 + 3.15150i −0.560084 + 0.203854i −0.606521 0.795067i \(-0.707435\pi\)
0.0464374 + 0.998921i \(0.485213\pi\)
\(240\) 0 0
\(241\) 1.08125 + 6.13209i 0.0696496 + 0.395003i 0.999625 + 0.0273809i \(0.00871671\pi\)
−0.929975 + 0.367622i \(0.880172\pi\)
\(242\) −5.89238 0.0919433i −0.378776 0.00591034i
\(243\) 0 0
\(244\) −4.84747 0.151315i −0.310328 0.00968692i
\(245\) 5.37331 0.947460i 0.343288 0.0605310i
\(246\) 0 0
\(247\) −0.169400 0.465422i −0.0107787 0.0296141i
\(248\) 12.7771 13.8552i 0.811348 0.879807i
\(249\) 0 0
\(250\) −3.25936 + 8.53812i −0.206140 + 0.539998i
\(251\) −14.1765 24.5545i −0.894814 1.54986i −0.834034 0.551713i \(-0.813974\pi\)
−0.0607805 0.998151i \(-0.519359\pi\)
\(252\) 0 0
\(253\) 1.10955 1.92181i 0.0697571 0.120823i
\(254\) 9.92057 + 12.2046i 0.622472 + 0.765787i
\(255\) 0 0
\(256\) 4.71843 15.2884i 0.294902 0.955528i
\(257\) 16.2474 + 2.86485i 1.01348 + 0.178705i 0.655638 0.755076i \(-0.272400\pi\)
0.357847 + 0.933780i \(0.383511\pi\)
\(258\) 0 0
\(259\) −10.3903 12.3827i −0.645622 0.769423i
\(260\) −31.7775 19.6936i −1.97076 1.22135i
\(261\) 0 0
\(262\) 2.13410 + 3.83326i 0.131845 + 0.236820i
\(263\) 22.7564 + 8.28265i 1.40322 + 0.510730i 0.929132 0.369748i \(-0.120556\pi\)
0.474087 + 0.880478i \(0.342778\pi\)
\(264\) 0 0
\(265\) 19.4621 + 16.3307i 1.19555 + 1.00318i
\(266\) 0.357478 0.123830i 0.0219184 0.00759251i
\(267\) 0 0
\(268\) 9.54404 1.37737i 0.582995 0.0841364i
\(269\) 12.1956i 0.743578i 0.928317 + 0.371789i \(0.121255\pi\)
−0.928317 + 0.371789i \(0.878745\pi\)
\(270\) 0 0
\(271\) 25.0009i 1.51870i −0.650683 0.759349i \(-0.725517\pi\)
0.650683 0.759349i \(-0.274483\pi\)
\(272\) −5.30504 + 0.597322i −0.321665 + 0.0362179i
\(273\) 0 0
\(274\) −7.99342 23.0757i −0.482900 1.39406i
\(275\) −13.7673 11.5521i −0.830199 0.696620i
\(276\) 0 0
\(277\) 8.21089 + 2.98852i 0.493345 + 0.179563i 0.576698 0.816957i \(-0.304341\pi\)
−0.0833536 + 0.996520i \(0.526563\pi\)
\(278\) −13.8267 + 7.69775i −0.829270 + 0.461680i
\(279\) 0 0
\(280\) 15.4194 24.0349i 0.921485 1.43636i
\(281\) −14.0693 16.7671i −0.839303 1.00024i −0.999913 0.0132243i \(-0.995790\pi\)
0.160610 0.987018i \(-0.448654\pi\)
\(282\) 0 0
\(283\) −29.6450 5.22722i −1.76221 0.310726i −0.803543 0.595246i \(-0.797055\pi\)
−0.958670 + 0.284520i \(0.908166\pi\)
\(284\) −4.83709 + 23.1783i −0.287028 + 1.37538i
\(285\) 0 0
\(286\) 15.5603 12.6482i 0.920097 0.747904i
\(287\) −4.18396 + 7.24682i −0.246971 + 0.427766i
\(288\) 0 0
\(289\) −7.60937 13.1798i −0.447610 0.775283i
\(290\) 2.28192 + 0.871105i 0.133999 + 0.0511530i
\(291\) 0 0
\(292\) 17.3893 + 15.5412i 1.01763 + 0.909479i
\(293\) −4.52797 12.4405i −0.264527 0.726782i −0.998848 0.0479801i \(-0.984722\pi\)
0.734321 0.678802i \(-0.237501\pi\)
\(294\) 0 0
\(295\) −10.3344 + 1.82223i −0.601690 + 0.106094i
\(296\) −15.5884 0.730189i −0.906059 0.0424413i
\(297\) 0 0
\(298\) 0.402716 25.8089i 0.0233287 1.49507i
\(299\) −0.799635 4.53496i −0.0462441 0.262263i
\(300\) 0 0
\(301\) −15.6475 + 5.69524i −0.901910 + 0.328268i
\(302\) −17.8218 + 20.5784i −1.02553 + 1.18416i
\(303\) 0 0
\(304\) 0.146081 0.334751i 0.00837831 0.0191993i
\(305\) −7.23685 + 4.17820i −0.414381 + 0.239243i
\(306\) 0 0
\(307\) 11.4064 + 6.58546i 0.650995 + 0.375852i 0.788837 0.614602i \(-0.210683\pi\)
−0.137842 + 0.990454i \(0.544017\pi\)
\(308\) 9.47444 + 12.0346i 0.539856 + 0.685738i
\(309\) 0 0
\(310\) 6.13741 31.8892i 0.348581 1.81119i
\(311\) 1.07244 6.08211i 0.0608125 0.344885i −0.939186 0.343408i \(-0.888419\pi\)
0.999999 0.00147712i \(-0.000470181\pi\)
\(312\) 0 0
\(313\) −16.4217 + 13.7794i −0.928207 + 0.778858i −0.975495 0.220023i \(-0.929387\pi\)
0.0472879 + 0.998881i \(0.484942\pi\)
\(314\) 12.2281 20.4365i 0.690070 1.15330i
\(315\) 0 0
\(316\) −2.97319 + 1.59502i −0.167255 + 0.0897269i
\(317\) 5.02856 13.8159i 0.282432 0.775976i −0.714639 0.699494i \(-0.753409\pi\)
0.997071 0.0764825i \(-0.0243689\pi\)
\(318\) 0 0
\(319\) −0.842123 + 1.00360i −0.0471499 + 0.0561910i
\(320\) −6.96603 26.6738i −0.389413 1.49111i
\(321\) 0 0
\(322\) 3.47303 0.556666i 0.193545 0.0310218i
\(323\) −0.121865 −0.00678074
\(324\) 0 0
\(325\) −37.2939 −2.06869
\(326\) 11.2075 1.79637i 0.620727 0.0994915i
\(327\) 0 0
\(328\) 2.40480 + 7.71234i 0.132783 + 0.425843i
\(329\) 12.4441 14.8303i 0.686066 0.817621i
\(330\) 0 0
\(331\) 9.07166 24.9242i 0.498624 1.36996i −0.393982 0.919118i \(-0.628903\pi\)
0.892605 0.450839i \(-0.148875\pi\)
\(332\) −2.04188 3.80616i −0.112063 0.208890i
\(333\) 0 0
\(334\) 0.948085 1.58451i 0.0518769 0.0867007i
\(335\) 12.7278 10.6799i 0.695395 0.583506i
\(336\) 0 0
\(337\) −2.67934 + 15.1953i −0.145953 + 0.827740i 0.820644 + 0.571439i \(0.193615\pi\)
−0.966597 + 0.256300i \(0.917496\pi\)
\(338\) 4.38959 22.8077i 0.238762 1.24058i
\(339\) 0 0
\(340\) −7.22749 + 5.68994i −0.391966 + 0.308580i
\(341\) 15.0848 + 8.70922i 0.816888 + 0.471631i
\(342\) 0 0
\(343\) 13.7433 7.93471i 0.742069 0.428434i
\(344\) −6.19913 + 14.8327i −0.334235 + 0.799724i
\(345\) 0 0
\(346\) −10.6015 + 12.2414i −0.569943 + 0.658100i
\(347\) −20.2264 + 7.36182i −1.08581 + 0.395203i −0.822068 0.569390i \(-0.807180\pi\)
−0.263744 + 0.964593i \(0.584957\pi\)
\(348\) 0 0
\(349\) 2.19509 + 12.4490i 0.117501 + 0.666379i 0.985482 + 0.169782i \(0.0543063\pi\)
−0.867981 + 0.496597i \(0.834583\pi\)
\(350\) 0.444436 28.4826i 0.0237561 1.52246i
\(351\) 0 0
\(352\) 14.7420 + 1.15240i 0.785751 + 0.0614231i
\(353\) 11.0190 1.94295i 0.586484 0.103413i 0.127471 0.991842i \(-0.459314\pi\)
0.459013 + 0.888429i \(0.348203\pi\)
\(354\) 0 0
\(355\) 13.9534 + 38.3368i 0.740572 + 2.03470i
\(356\) −19.3598 + 21.6620i −1.02607 + 1.14808i
\(357\) 0 0
\(358\) −28.2911 10.7999i −1.49523 0.570793i
\(359\) 16.1699 + 28.0070i 0.853413 + 1.47816i 0.878109 + 0.478460i \(0.158805\pi\)
−0.0246959 + 0.999695i \(0.507862\pi\)
\(360\) 0 0
\(361\) −9.49583 + 16.4473i −0.499781 + 0.865645i
\(362\) −16.0531 + 13.0488i −0.843734 + 0.685832i
\(363\) 0 0
\(364\) 31.1134 + 6.49308i 1.63079 + 0.340330i
\(365\) 39.5739 + 6.97795i 2.07139 + 0.365242i
\(366\) 0 0
\(367\) −0.428395 0.510541i −0.0223620 0.0266500i 0.754748 0.656015i \(-0.227759\pi\)
−0.777110 + 0.629365i \(0.783315\pi\)
\(368\) 1.87798 2.82918i 0.0978965 0.147481i
\(369\) 0 0
\(370\) −23.4932 + 13.0794i −1.22136 + 0.679966i
\(371\) −20.2968 7.38744i −1.05376 0.383537i
\(372\) 0 0
\(373\) 15.9574 + 13.3899i 0.826243 + 0.693300i 0.954425 0.298450i \(-0.0964697\pi\)
−0.128182 + 0.991751i \(0.540914\pi\)
\(374\) −1.61493 4.66204i −0.0835058 0.241068i
\(375\) 0 0
\(376\) −2.38073 18.5379i −0.122777 0.956021i
\(377\) 2.71864i 0.140017i
\(378\) 0 0
\(379\) 19.1904i 0.985744i 0.870102 + 0.492872i \(0.164053\pi\)
−0.870102 + 0.492872i \(0.835947\pi\)
\(380\) −0.0898895 0.622859i −0.00461123 0.0319520i
\(381\) 0 0
\(382\) 2.56837 0.889680i 0.131409 0.0455200i
\(383\) 6.07655 + 5.09883i 0.310497 + 0.260538i 0.784697 0.619879i \(-0.212818\pi\)
−0.474200 + 0.880417i \(0.657263\pi\)
\(384\) 0 0
\(385\) 24.7993 + 9.02621i 1.26389 + 0.460018i
\(386\) 4.30735 + 7.73685i 0.219238 + 0.393795i
\(387\) 0 0
\(388\) −6.95343 + 11.2200i −0.353007 + 0.569610i
\(389\) −7.93591 9.45764i −0.402366 0.479522i 0.526374 0.850253i \(-0.323551\pi\)
−0.928740 + 0.370732i \(0.879107\pi\)
\(390\) 0 0
\(391\) −1.11581 0.196747i −0.0564289 0.00994994i
\(392\) −0.983156 + 4.36905i −0.0496569 + 0.220671i
\(393\) 0 0
\(394\) −13.4956 16.6027i −0.679897 0.836433i
\(395\) −2.90676 + 5.03465i −0.146255 + 0.253321i
\(396\) 0 0
\(397\) 11.5959 + 20.0847i 0.581982 + 1.00802i 0.995244 + 0.0974099i \(0.0310558\pi\)
−0.413263 + 0.910612i \(0.635611\pi\)
\(398\) −13.0704 + 34.2388i −0.655159 + 1.71623i
\(399\) 0 0
\(400\) −19.9235 18.9569i −0.996177 0.947845i
\(401\) −2.32432 6.38601i −0.116071 0.318902i 0.868030 0.496511i \(-0.165386\pi\)
−0.984101 + 0.177609i \(0.943164\pi\)
\(402\) 0 0
\(403\) 35.5962 6.27657i 1.77317 0.312658i
\(404\) −0.514503 + 16.4825i −0.0255975 + 0.820034i
\(405\) 0 0
\(406\) −2.07632 0.0323984i −0.103046 0.00160790i
\(407\) −2.50442 14.2033i −0.124140 0.704031i
\(408\) 0 0
\(409\) −17.0717 + 6.21358i −0.844140 + 0.307242i −0.727649 0.685950i \(-0.759387\pi\)
−0.116491 + 0.993192i \(0.537165\pi\)
\(410\) 10.5221 + 9.11261i 0.519651 + 0.450040i
\(411\) 0 0
\(412\) −11.9494 + 29.8939i −0.588704 + 1.47277i
\(413\) 7.72625 4.46075i 0.380184 0.219499i
\(414\) 0 0
\(415\) −6.44516 3.72111i −0.316380 0.182662i
\(416\) 24.9715 17.8319i 1.22433 0.874280i
\(417\) 0 0
\(418\) 0.331463 + 0.0637935i 0.0162124 + 0.00312024i
\(419\) −0.854595 + 4.84665i −0.0417497 + 0.236774i −0.998541 0.0540017i \(-0.982802\pi\)
0.956791 + 0.290776i \(0.0939135\pi\)
\(420\) 0 0
\(421\) −9.01524 + 7.56468i −0.439376 + 0.368680i −0.835476 0.549527i \(-0.814808\pi\)
0.396100 + 0.918207i \(0.370363\pi\)
\(422\) 21.1751 + 12.6700i 1.03079 + 0.616766i
\(423\) 0 0
\(424\) −18.5269 + 9.56988i −0.899747 + 0.464754i
\(425\) −3.13838 + 8.62264i −0.152234 + 0.418259i
\(426\) 0 0
\(427\) 4.56659 5.44225i 0.220993 0.263369i
\(428\) 18.4625 6.07449i 0.892420 0.293621i
\(429\) 0 0
\(430\) 4.38376 + 27.3503i 0.211404 + 1.31895i
\(431\) −4.40894 −0.212371 −0.106186 0.994346i \(-0.533864\pi\)
−0.106186 + 0.994346i \(0.533864\pi\)
\(432\) 0 0
\(433\) 28.5232 1.37074 0.685369 0.728196i \(-0.259641\pi\)
0.685369 + 0.728196i \(0.259641\pi\)
\(434\) 4.36943 + 27.2608i 0.209739 + 1.30856i
\(435\) 0 0
\(436\) 8.92646 2.93696i 0.427500 0.140655i
\(437\) 0.0498260 0.0593804i 0.00238350 0.00284055i
\(438\) 0 0
\(439\) −1.65430 + 4.54515i −0.0789555 + 0.216928i −0.972890 0.231270i \(-0.925712\pi\)
0.893934 + 0.448198i \(0.147934\pi\)
\(440\) 22.6368 11.6928i 1.07917 0.557432i
\(441\) 0 0
\(442\) −8.78565 5.25684i −0.417891 0.250042i
\(443\) 5.56660 4.67093i 0.264477 0.221923i −0.500899 0.865506i \(-0.666997\pi\)
0.765376 + 0.643583i \(0.222553\pi\)
\(444\) 0 0
\(445\) −8.69249 + 49.2976i −0.412064 + 2.33693i
\(446\) −24.5472 4.72435i −1.16234 0.223705i
\(447\) 0 0
\(448\) 13.3212 + 19.2841i 0.629369 + 0.911089i
\(449\) 5.50442 + 3.17798i 0.259769 + 0.149978i 0.624229 0.781241i \(-0.285413\pi\)
−0.364460 + 0.931219i \(0.618746\pi\)
\(450\) 0 0
\(451\) −6.46583 + 3.73305i −0.304464 + 0.175782i
\(452\) −0.419025 + 1.04828i −0.0197093 + 0.0493068i
\(453\) 0 0
\(454\) −9.97357 8.63754i −0.468083 0.405380i
\(455\) 51.4615 18.7305i 2.41255 0.878097i
\(456\) 0 0
\(457\) −0.155269 0.880575i −0.00726318 0.0411916i 0.980961 0.194206i \(-0.0622130\pi\)
−0.988224 + 0.153014i \(0.951102\pi\)
\(458\) 23.7801 + 0.371060i 1.11117 + 0.0173385i
\(459\) 0 0
\(460\) 0.182549 5.84810i 0.00851140 0.272669i
\(461\) −12.9026 + 2.27507i −0.600934 + 0.105961i −0.465835 0.884871i \(-0.654246\pi\)
−0.135098 + 0.990832i \(0.543135\pi\)
\(462\) 0 0
\(463\) −0.461244 1.26726i −0.0214358 0.0588945i 0.928513 0.371299i \(-0.121088\pi\)
−0.949949 + 0.312405i \(0.898865\pi\)
\(464\) −1.38191 + 1.45238i −0.0641537 + 0.0674250i
\(465\) 0 0
\(466\) 8.89072 23.2899i 0.411855 1.07888i
\(467\) 9.81172 + 16.9944i 0.454032 + 0.786407i 0.998632 0.0522890i \(-0.0166517\pi\)
−0.544600 + 0.838696i \(0.683318\pi\)
\(468\) 0 0
\(469\) −7.06278 + 12.2331i −0.326129 + 0.564872i
\(470\) −20.3127 24.9894i −0.936955 1.15267i
\(471\) 0 0
\(472\) 1.89088 8.40290i 0.0870349 0.386775i
\(473\) −14.6315 2.57993i −0.672756 0.118625i
\(474\) 0 0
\(475\) −0.403527 0.480904i −0.0185151 0.0220654i
\(476\) 4.11953 6.64726i 0.188819 0.304677i
\(477\) 0 0
\(478\) −6.33869 11.3855i −0.289925 0.520763i
\(479\) 17.9117 + 6.51932i 0.818405 + 0.297875i 0.717091 0.696979i \(-0.245473\pi\)
0.101314 + 0.994854i \(0.467695\pi\)
\(480\) 0 0
\(481\) −22.9263 19.2375i −1.04535 0.877153i
\(482\) −8.32079 + 2.88231i −0.379001 + 0.131286i
\(483\) 0 0
\(484\) −1.19042 8.24864i −0.0541101 0.374938i
\(485\) 22.7439i 1.03275i
\(486\) 0 0
\(487\) 12.7440i 0.577486i 0.957407 + 0.288743i \(0.0932373\pi\)
−0.957407 + 0.288743i \(0.906763\pi\)
\(488\) −0.873651 6.80283i −0.0395483 0.307950i
\(489\) 0 0
\(490\) 2.52566 + 7.29119i 0.114098 + 0.329382i
\(491\) 18.9461 + 15.8977i 0.855027 + 0.717453i 0.960891 0.276928i \(-0.0893162\pi\)
−0.105864 + 0.994381i \(0.533761\pi\)
\(492\) 0 0
\(493\) 0.628570 + 0.228781i 0.0283094 + 0.0103038i
\(494\) 0.611997 0.340718i 0.0275350 0.0153296i
\(495\) 0 0
\(496\) 22.2070 + 14.7408i 0.997125 + 0.661882i
\(497\) −22.2948 26.5699i −1.00006 1.19182i
\(498\) 0 0
\(499\) 38.9086 + 6.86064i 1.74179 + 0.307124i 0.951964 0.306209i \(-0.0990608\pi\)
0.789824 + 0.613334i \(0.210172\pi\)
\(500\) −12.6520 2.64037i −0.565817 0.118081i
\(501\) 0 0
\(502\) 31.1147 25.2917i 1.38872 1.12882i
\(503\) 18.2058 31.5334i 0.811757 1.40600i −0.0998757 0.995000i \(-0.531845\pi\)
0.911633 0.411005i \(-0.134822\pi\)
\(504\) 0 0
\(505\) 14.2068 + 24.6069i 0.632194 + 1.09499i
\(506\) 2.93193 + 1.11924i 0.130340 + 0.0497563i
\(507\) 0 0
\(508\) −14.8220 + 16.5846i −0.657622 + 0.735822i
\(509\) 1.23919 + 3.40464i 0.0549260 + 0.150908i 0.964121 0.265462i \(-0.0855244\pi\)
−0.909195 + 0.416370i \(0.863302\pi\)
\(510\) 0 0
\(511\) −33.6445 + 5.93244i −1.48835 + 0.262436i
\(512\) 22.4047 + 3.16697i 0.990157 + 0.139961i
\(513\) 0 0
\(514\) −0.364019 + 23.3289i −0.0160562 + 1.02899i
\(515\) 9.63236 + 54.6278i 0.424452 + 2.40719i
\(516\) 0 0
\(517\) 16.2315 5.90778i 0.713860 0.259824i
\(518\) 14.9655 17.2804i 0.657548 0.759256i
\(519\) 0 0
\(520\) 20.3876 48.7816i 0.894057 2.13921i
\(521\) −18.0443 + 10.4179i −0.790534 + 0.456415i −0.840151 0.542353i \(-0.817534\pi\)
0.0496162 + 0.998768i \(0.484200\pi\)
\(522\) 0 0
\(523\) −19.0780 11.0147i −0.834223 0.481639i 0.0210733 0.999778i \(-0.493292\pi\)
−0.855296 + 0.518139i \(0.826625\pi\)
\(524\) −4.87509 + 3.83798i −0.212969 + 0.167663i
\(525\) 0 0
\(526\) −6.47255 + 33.6306i −0.282217 + 1.46636i
\(527\) 1.54433 8.75831i 0.0672719 0.381518i
\(528\) 0 0
\(529\) −17.0669 + 14.3209i −0.742041 + 0.622646i
\(530\) −18.4480 + 30.8318i −0.801331 + 1.33925i
\(531\) 0 0
\(532\) 0.252925 + 0.471464i 0.0109657 + 0.0204405i
\(533\) −5.29893 + 14.5587i −0.229522 + 0.630607i
\(534\) 0 0
\(535\) 21.5263 25.6541i 0.930664 1.10912i
\(536\) 4.05946 + 13.0189i 0.175342 + 0.562332i
\(537\) 0 0
\(538\) −17.0298 + 2.72957i −0.734207 + 0.117680i
\(539\) −4.13879 −0.178270
\(540\) 0 0
\(541\) −13.2610 −0.570135 −0.285067 0.958507i \(-0.592016\pi\)
−0.285067 + 0.958507i \(0.592016\pi\)
\(542\) 34.9111 5.59562i 1.49956 0.240353i
\(543\) 0 0
\(544\) −2.02145 7.27421i −0.0866689 0.311879i
\(545\) 10.4078 12.4035i 0.445820 0.531308i
\(546\) 0 0
\(547\) 4.89178 13.4401i 0.209157 0.574655i −0.790108 0.612967i \(-0.789976\pi\)
0.999266 + 0.0383119i \(0.0121980\pi\)
\(548\) 30.4337 16.3267i 1.30006 0.697440i
\(549\) 0 0
\(550\) 13.0499 21.8101i 0.556451 0.929985i
\(551\) −0.0350568 + 0.0294161i −0.00149347 + 0.00125317i
\(552\) 0 0
\(553\) 0.858252 4.86739i 0.0364966 0.206982i
\(554\) −2.33541 + 12.1345i −0.0992219 + 0.515545i
\(555\) 0 0
\(556\) −13.8437 17.5846i −0.587104 0.745752i
\(557\) −6.40425 3.69750i −0.271357 0.156668i 0.358147 0.933665i \(-0.383409\pi\)
−0.629504 + 0.776997i \(0.716742\pi\)
\(558\) 0 0
\(559\) −26.6999 + 15.4152i −1.12929 + 0.651994i
\(560\) 37.0132 + 16.1521i 1.56409 + 0.682550i
\(561\) 0 0
\(562\) 20.2645 23.3990i 0.854806 0.987026i
\(563\) −19.9054 + 7.24497i −0.838912 + 0.305339i −0.725511 0.688210i \(-0.758397\pi\)
−0.113401 + 0.993549i \(0.536174\pi\)
\(564\) 0 0
\(565\) 0.337774 + 1.91561i 0.0142103 + 0.0805905i
\(566\) 0.664189 42.5660i 0.0279180 1.78918i
\(567\) 0 0
\(568\) −33.4485 1.56679i −1.40347 0.0657409i
\(569\) −4.38899 + 0.773898i −0.183996 + 0.0324435i −0.264887 0.964279i \(-0.585335\pi\)
0.0808907 + 0.996723i \(0.474224\pi\)
\(570\) 0 0
\(571\) 0.735560 + 2.02093i 0.0307822 + 0.0845734i 0.954132 0.299387i \(-0.0967821\pi\)
−0.923350 + 0.383960i \(0.874560\pi\)
\(572\) 21.1445 + 18.8973i 0.884095 + 0.790137i
\(573\) 0 0
\(574\) −11.0558 4.22048i −0.461462 0.176159i
\(575\) −2.91833 5.05470i −0.121703 0.210796i
\(576\) 0 0
\(577\) −16.0706 + 27.8351i −0.669028 + 1.15879i 0.309148 + 0.951014i \(0.399956\pi\)
−0.978176 + 0.207777i \(0.933377\pi\)
\(578\) 16.7011 13.5755i 0.694673 0.564667i
\(579\) 0 0
\(580\) −0.705671 + 3.38142i −0.0293014 + 0.140406i
\(581\) 6.23104 + 1.09870i 0.258507 + 0.0455817i
\(582\) 0 0
\(583\) −12.3876 14.7629i −0.513041 0.611418i
\(584\) −17.8096 + 27.7606i −0.736965 + 1.14874i
\(585\) 0 0
\(586\) 16.3584 9.10721i 0.675758 0.376215i
\(587\) 33.8753 + 12.3296i 1.39818 + 0.508897i 0.927639 0.373478i \(-0.121835\pi\)
0.470545 + 0.882376i \(0.344057\pi\)
\(588\) 0 0
\(589\) 0.466094 + 0.391099i 0.0192051 + 0.0161150i
\(590\) −4.85754 14.0230i −0.199982 0.577316i
\(591\) 0 0
\(592\) −2.46932 21.9310i −0.101488 0.901357i
\(593\) 4.09387i 0.168115i 0.996461 + 0.0840576i \(0.0267880\pi\)
−0.996461 + 0.0840576i \(0.973212\pi\)
\(594\) 0 0
\(595\) 13.4745i 0.552402i
\(596\) 36.1294 5.21410i 1.47992 0.213578i
\(597\) 0 0
\(598\) 6.15360 2.13160i 0.251639 0.0871676i
\(599\) 6.47708 + 5.43491i 0.264646 + 0.222065i 0.765449 0.643497i \(-0.222517\pi\)
−0.500802 + 0.865562i \(0.666962\pi\)
\(600\) 0 0
\(601\) −27.4438 9.98874i −1.11946 0.407449i −0.285003 0.958527i \(-0.591995\pi\)
−0.834454 + 0.551078i \(0.814217\pi\)
\(602\) −11.4550 20.5754i −0.466869 0.838590i
\(603\) 0 0
\(604\) −32.7244 20.2804i −1.33154 0.825198i
\(605\) −9.23034 11.0003i −0.375267 0.447225i
\(606\) 0 0
\(607\) −38.2139 6.73814i −1.55105 0.273493i −0.668503 0.743710i \(-0.733064\pi\)
−0.882551 + 0.470217i \(0.844176\pi\)
\(608\) 0.500138 + 0.129063i 0.0202833 + 0.00523420i
\(609\) 0 0
\(610\) −7.45412 9.17032i −0.301808 0.371295i
\(611\) 17.9220 31.0417i 0.725045 1.25581i
\(612\) 0 0
\(613\) −0.677216 1.17297i −0.0273525 0.0473759i 0.852025 0.523501i \(-0.175374\pi\)
−0.879378 + 0.476125i \(0.842041\pi\)
\(614\) −6.64294 + 17.4017i −0.268087 + 0.702274i
\(615\) 0 0
\(616\) −14.6845 + 15.9236i −0.591656 + 0.641579i
\(617\) 7.59537 + 20.8681i 0.305778 + 0.840118i 0.993468 + 0.114114i \(0.0364028\pi\)
−0.687690 + 0.726005i \(0.741375\pi\)
\(618\) 0 0
\(619\) 2.18009 0.384409i 0.0876253 0.0154507i −0.129664 0.991558i \(-0.541390\pi\)
0.217289 + 0.976107i \(0.430279\pi\)
\(620\) 45.9034 + 1.43288i 1.84353 + 0.0575459i
\(621\) 0 0
\(622\) 8.73303 + 0.136268i 0.350163 + 0.00546386i
\(623\) −7.39009 41.9113i −0.296078 1.67914i
\(624\) 0 0
\(625\) 11.3768 4.14082i 0.455072 0.165633i
\(626\) −22.9169 19.8470i −0.915942 0.793245i
\(627\) 0 0
\(628\) 31.2742 + 12.5011i 1.24798 + 0.498850i
\(629\) −6.37717 + 3.68186i −0.254274 + 0.146805i
\(630\) 0 0
\(631\) −10.3534 5.97752i −0.412161 0.237961i 0.279557 0.960129i \(-0.409813\pi\)
−0.691718 + 0.722168i \(0.743146\pi\)
\(632\) −2.89272 3.79475i −0.115066 0.150947i
\(633\) 0 0
\(634\) 20.4178 + 3.92962i 0.810895 + 0.156065i
\(635\) −6.65505 + 37.7427i −0.264098 + 1.49777i
\(636\) 0 0
\(637\) −6.57915 + 5.52056i −0.260675 + 0.218733i
\(638\) −1.58990 0.951310i −0.0629449 0.0376627i
\(639\) 0 0
\(640\) 35.6879 15.6973i 1.41069 0.620492i
\(641\) −4.61107 + 12.6688i −0.182126 + 0.500388i −0.996836 0.0794805i \(-0.974674\pi\)
0.814710 + 0.579868i \(0.196896\pi\)
\(642\) 0 0
\(643\) −17.7513 + 21.1552i −0.700044 + 0.834280i −0.992531 0.121989i \(-0.961073\pi\)
0.292487 + 0.956269i \(0.405517\pi\)
\(644\) 1.55465 + 4.72512i 0.0612616 + 0.186196i
\(645\) 0 0
\(646\) −0.0272754 0.170171i −0.00107313 0.00669528i
\(647\) 15.2634 0.600064 0.300032 0.953929i \(-0.403003\pi\)
0.300032 + 0.953929i \(0.403003\pi\)
\(648\) 0 0
\(649\) 7.96003 0.312458
\(650\) −8.34698 52.0768i −0.327396 2.04262i
\(651\) 0 0
\(652\) 5.01685 + 15.2480i 0.196475 + 0.597158i
\(653\) −19.6661 + 23.4372i −0.769595 + 0.917167i −0.998414 0.0563018i \(-0.982069\pi\)
0.228819 + 0.973469i \(0.426514\pi\)
\(654\) 0 0
\(655\) −3.65641 + 10.0459i −0.142868 + 0.392526i
\(656\) −10.2312 + 5.08419i −0.399461 + 0.198504i
\(657\) 0 0
\(658\) 23.4941 + 14.0576i 0.915895 + 0.548021i
\(659\) −32.0036 + 26.8542i −1.24668 + 1.04609i −0.249714 + 0.968320i \(0.580337\pi\)
−0.996971 + 0.0777732i \(0.975219\pi\)
\(660\) 0 0
\(661\) 5.68117 32.2195i 0.220972 1.25319i −0.649265 0.760562i \(-0.724924\pi\)
0.870237 0.492633i \(-0.163965\pi\)
\(662\) 36.8343 + 7.08914i 1.43160 + 0.275527i
\(663\) 0 0
\(664\) 4.85788 3.70315i 0.188522 0.143710i
\(665\) 0.798352 + 0.460929i 0.0309588 + 0.0178741i
\(666\) 0 0
\(667\) −0.368476 + 0.212740i −0.0142674 + 0.00823731i
\(668\) 2.42480 + 0.969256i 0.0938182 + 0.0375016i
\(669\) 0 0
\(670\) 17.7620 + 15.3827i 0.686207 + 0.594284i
\(671\) 5.95644 2.16797i 0.229946 0.0836935i
\(672\) 0 0
\(673\) 4.92417 + 27.9264i 0.189813 + 1.07648i 0.919614 + 0.392823i \(0.128501\pi\)
−0.729801 + 0.683659i \(0.760387\pi\)
\(674\) −21.8182 0.340446i −0.840407 0.0131135i
\(675\) 0 0
\(676\) 32.8310 + 1.02482i 1.26273 + 0.0394163i
\(677\) 39.6598 6.99309i 1.52425 0.268766i 0.652148 0.758092i \(-0.273868\pi\)
0.872101 + 0.489326i \(0.162757\pi\)
\(678\) 0 0
\(679\) −6.61336 18.1700i −0.253797 0.697302i
\(680\) −9.56301 8.81889i −0.366725 0.338189i
\(681\) 0 0
\(682\) −8.78524 + 23.0135i −0.336404 + 0.881234i
\(683\) 2.35647 + 4.08153i 0.0901678 + 0.156175i 0.907582 0.419876i \(-0.137926\pi\)
−0.817414 + 0.576051i \(0.804593\pi\)
\(684\) 0 0
\(685\) 29.7536 51.5348i 1.13683 1.96904i
\(686\) 14.1559 + 17.4151i 0.540476 + 0.664912i
\(687\) 0 0
\(688\) −22.0997 5.33661i −0.842542 0.203456i
\(689\) −39.3834 6.94435i −1.50039 0.264559i
\(690\) 0 0
\(691\) 31.2420 + 37.2328i 1.18850 + 1.41640i 0.886270 + 0.463169i \(0.153288\pi\)
0.302234 + 0.953234i \(0.402268\pi\)
\(692\) −19.4665 12.0641i −0.740006 0.458607i
\(693\) 0 0
\(694\) −14.8070 26.5963i −0.562065 1.00958i
\(695\) −36.2358 13.1888i −1.37450 0.500278i
\(696\) 0 0
\(697\) 2.92017 + 2.45031i 0.110609 + 0.0928121i
\(698\) −16.8923 + 5.85150i −0.639385 + 0.221482i
\(699\) 0 0
\(700\) 39.8723 5.75428i 1.50703 0.217491i
\(701\) 5.10945i 0.192981i −0.995334 0.0964906i \(-0.969238\pi\)
0.995334 0.0964906i \(-0.0307618\pi\)
\(702\) 0 0
\(703\) 0.503788i 0.0190007i
\(704\) 1.69030 + 20.8435i 0.0637057 + 0.785569i
\(705\) 0 0
\(706\) 5.17937 + 14.9520i 0.194928 + 0.562727i
\(707\) −18.5049 15.5274i −0.695947 0.583969i
\(708\) 0 0
\(709\) 8.59158 + 3.12708i 0.322663 + 0.117440i 0.498273 0.867020i \(-0.333968\pi\)
−0.175610 + 0.984460i \(0.556190\pi\)
\(710\) −50.4101 + 28.0649i −1.89186 + 1.05326i
\(711\) 0 0
\(712\) −34.5816 22.1855i −1.29600 0.831438i
\(713\) 3.63619 + 4.33345i 0.136176 + 0.162289i
\(714\) 0 0
\(715\) 48.1199 + 8.48484i 1.79958 + 0.317315i
\(716\) 8.74886 41.9226i 0.326960 1.56672i
\(717\) 0 0
\(718\) −35.4897 + 28.8479i −1.32446 + 1.07659i
\(719\) −11.2528 + 19.4904i −0.419658 + 0.726869i −0.995905 0.0904064i \(-0.971183\pi\)
0.576247 + 0.817276i \(0.304517\pi\)
\(720\) 0 0
\(721\) −23.5797 40.8412i −0.878153 1.52101i
\(722\) −25.0921 9.57872i −0.933832 0.356483i
\(723\) 0 0
\(724\) −21.8142 19.4959i −0.810719 0.724559i
\(725\) 1.17854 + 3.23802i 0.0437700 + 0.120257i
\(726\) 0 0
\(727\) 17.2598 3.04338i 0.640132 0.112873i 0.155845 0.987782i \(-0.450190\pi\)
0.484287 + 0.874909i \(0.339079\pi\)
\(728\) −2.10318 + 44.8997i −0.0779491 + 1.66409i
\(729\) 0 0
\(730\) −0.886643 + 56.8224i −0.0328161 + 2.10309i
\(731\) 1.31725 + 7.47048i 0.0487201 + 0.276306i
\(732\) 0 0
\(733\) 21.1222 7.68786i 0.780167 0.283958i 0.0789247 0.996881i \(-0.474851\pi\)
0.701242 + 0.712923i \(0.252629\pi\)
\(734\) 0.617033 0.712474i 0.0227751 0.0262979i
\(735\) 0 0
\(736\) 4.37096 + 1.98918i 0.161116 + 0.0733221i
\(737\) −10.9147 + 6.30162i −0.402049 + 0.232123i
\(738\) 0 0
\(739\) −7.76664 4.48407i −0.285700 0.164949i 0.350301 0.936637i \(-0.386079\pi\)
−0.636001 + 0.771688i \(0.719413\pi\)
\(740\) −23.5221 29.8783i −0.864691 1.09835i
\(741\) 0 0
\(742\) 5.77298 29.9957i 0.211933 1.10118i
\(743\) 8.24486 46.7589i 0.302474 1.71542i −0.332686 0.943038i \(-0.607955\pi\)
0.635161 0.772380i \(-0.280934\pi\)
\(744\) 0 0
\(745\) 48.1818 40.4293i 1.76524 1.48122i
\(746\) −15.1259 + 25.2796i −0.553800 + 0.925554i
\(747\) 0 0
\(748\) 6.14858 3.29851i 0.224814 0.120605i
\(749\) −9.73778 + 26.7543i −0.355811 + 0.977582i
\(750\) 0 0
\(751\) −8.95708 + 10.6746i −0.326848 + 0.389523i −0.904297 0.426904i \(-0.859604\pi\)
0.577448 + 0.816427i \(0.304049\pi\)
\(752\) 25.3533 7.47352i 0.924541 0.272531i
\(753\) 0 0
\(754\) −3.79628 + 0.608476i −0.138252 + 0.0221594i
\(755\) −66.3349 −2.41418
\(756\) 0 0
\(757\) 12.8098 0.465582 0.232791 0.972527i \(-0.425214\pi\)
0.232791 + 0.972527i \(0.425214\pi\)
\(758\) −26.7973 + 4.29513i −0.973321 + 0.156006i
\(759\) 0 0
\(760\) 0.849636 0.264927i 0.0308195 0.00960992i
\(761\) 19.9205 23.7403i 0.722117 0.860586i −0.272718 0.962094i \(-0.587922\pi\)
0.994835 + 0.101509i \(0.0323669\pi\)
\(762\) 0 0
\(763\) −4.70813 + 12.9355i −0.170446 + 0.468295i
\(764\) 1.81718 + 3.38732i 0.0657434 + 0.122549i
\(765\) 0 0
\(766\) −5.75993 + 9.62644i −0.208115 + 0.347817i
\(767\) 12.6535 10.6176i 0.456892 0.383378i
\(768\) 0 0
\(769\) 2.97310 16.8613i 0.107213 0.608034i −0.883101 0.469184i \(-0.844548\pi\)
0.990313 0.138850i \(-0.0443406\pi\)
\(770\) −7.05362 + 36.6497i −0.254195 + 1.32076i
\(771\) 0 0
\(772\) −9.83961 + 7.74637i −0.354135 + 0.278798i
\(773\) −37.1476 21.4472i −1.33610 0.771401i −0.349877 0.936795i \(-0.613777\pi\)
−0.986227 + 0.165395i \(0.947110\pi\)
\(774\) 0 0
\(775\) 39.6758 22.9068i 1.42520 0.822838i
\(776\) −17.2238 7.19848i −0.618299 0.258410i
\(777\) 0 0
\(778\) 11.4304 13.1984i 0.409799 0.473186i
\(779\) −0.245070 + 0.0891981i −0.00878053 + 0.00319585i
\(780\) 0 0
\(781\) −5.37381 30.4764i −0.192290 1.09053i
\(782\) 0.0249994 1.60214i 0.000893978 0.0572924i
\(783\) 0 0
\(784\) −6.32095 0.395004i −0.225748 0.0141073i
\(785\) 57.1502 10.0771i 2.03978 0.359668i
\(786\) 0 0
\(787\) 2.03832 + 5.60024i 0.0726582 + 0.199627i 0.970706 0.240272i \(-0.0772366\pi\)
−0.898047 + 0.439899i \(0.855014\pi\)
\(788\) 20.1633 22.5611i 0.718290 0.803704i
\(789\) 0 0
\(790\) −7.68092 2.93213i −0.273275 0.104320i
\(791\) −0.826860 1.43216i −0.0293998 0.0509219i
\(792\) 0 0
\(793\) 6.57679 11.3913i 0.233549 0.404518i
\(794\) −25.4507 + 20.6877i −0.903212 + 0.734179i
\(795\) 0 0
\(796\) −50.7361 10.5881i −1.79829 0.375287i
\(797\) 40.7435 + 7.18417i 1.44321 + 0.254477i 0.839774 0.542936i \(-0.182688\pi\)
0.603434 + 0.797413i \(0.293799\pi\)
\(798\) 0 0
\(799\) −5.66892 6.75595i −0.200552 0.239008i
\(800\) 22.0120 32.0639i 0.778243 1.13363i
\(801\) 0 0
\(802\) 8.39715 4.67495i 0.296514 0.165078i
\(803\) −28.6435 10.4254i −1.01081 0.367903i
\(804\) 0 0
\(805\) 6.56566 + 5.50924i 0.231409 + 0.194175i
\(806\) 16.7316 + 48.3014i 0.589344 + 1.70134i
\(807\) 0 0
\(808\) −23.1311 + 2.97061i −0.813751 + 0.104506i
\(809\) 45.8780i 1.61298i −0.591245 0.806492i \(-0.701363\pi\)
0.591245 0.806492i \(-0.298637\pi\)
\(810\) 0 0
\(811\) 25.4302i 0.892974i 0.894790 + 0.446487i \(0.147325\pi\)
−0.894790 + 0.446487i \(0.852675\pi\)
\(812\) −0.419473 2.90660i −0.0147206 0.102002i
\(813\) 0 0
\(814\) 19.2728 6.67608i 0.675511 0.233997i
\(815\) 21.1874 + 17.7784i 0.742163 + 0.622749i
\(816\) 0 0
\(817\) −0.487678 0.177500i −0.0170617 0.00620994i
\(818\) −12.4975 22.4480i −0.436965 0.784877i
\(819\) 0 0
\(820\) −10.3697 + 16.7326i −0.362127 + 0.584326i
\(821\) −5.04053 6.00706i −0.175916 0.209648i 0.670881 0.741565i \(-0.265916\pi\)
−0.846796 + 0.531917i \(0.821472\pi\)
\(822\) 0 0
\(823\) −8.63034 1.52176i −0.300835 0.0530453i 0.0211934 0.999775i \(-0.493253\pi\)
−0.322028 + 0.946730i \(0.604365\pi\)
\(824\) −44.4180 9.99526i −1.54737 0.348201i
\(825\) 0 0
\(826\) 7.95821 + 9.79047i 0.276902 + 0.340654i
\(827\) −9.57006 + 16.5758i −0.332784 + 0.576398i −0.983057 0.183303i \(-0.941321\pi\)
0.650273 + 0.759701i \(0.274655\pi\)
\(828\) 0 0
\(829\) −0.0258029 0.0446919i −0.000896172 0.00155222i 0.865577 0.500776i \(-0.166952\pi\)
−0.866473 + 0.499224i \(0.833619\pi\)
\(830\) 3.75360 9.83281i 0.130289 0.341302i
\(831\) 0 0
\(832\) 30.4893 + 30.8789i 1.05703 + 1.07053i
\(833\) 0.722744 + 1.98572i 0.0250416 + 0.0688012i
\(834\) 0 0
\(835\) 4.43105 0.781314i 0.153343 0.0270385i
\(836\) −0.0148937 + 0.477130i −0.000515109 + 0.0165019i
\(837\) 0 0
\(838\) −6.95909 0.108588i −0.240398 0.00375111i
\(839\) 1.86814 + 10.5948i 0.0644954 + 0.365771i 0.999925 + 0.0122581i \(0.00390198\pi\)
−0.935429 + 0.353513i \(0.884987\pi\)
\(840\) 0 0
\(841\) −27.0150 + 9.83267i −0.931553 + 0.339058i
\(842\) −12.5810 10.8957i −0.433570 0.375490i
\(843\) 0 0
\(844\) −12.9529 + 32.4044i −0.445858 + 1.11541i
\(845\) 49.0137 28.2981i 1.68612 0.973484i
\(846\) 0 0
\(847\) 10.5727 + 6.10416i 0.363283 + 0.209741i
\(848\) −17.5099 23.7289i −0.601293 0.814854i
\(849\) 0 0
\(850\) −12.7430 2.45252i −0.437081 0.0841207i
\(851\) 0.813351 4.61274i 0.0278813 0.158123i
\(852\) 0 0
\(853\) 30.2999 25.4247i 1.03745 0.870524i 0.0457315 0.998954i \(-0.485438\pi\)
0.991719 + 0.128430i \(0.0409937\pi\)
\(854\) 8.62159 + 5.15868i 0.295025 + 0.176526i
\(855\) 0 0
\(856\) 12.6146 + 24.4213i 0.431157 + 0.834704i
\(857\) 3.50870 9.64007i 0.119855 0.329299i −0.865228 0.501378i \(-0.832826\pi\)
0.985083 + 0.172080i \(0.0550487\pi\)
\(858\) 0 0
\(859\) −2.27840 + 2.71529i −0.0777381 + 0.0926446i −0.803512 0.595289i \(-0.797038\pi\)
0.725774 + 0.687934i \(0.241482\pi\)
\(860\) −37.2105 + 12.2429i −1.26887 + 0.417479i
\(861\) 0 0
\(862\) −0.986794 6.15661i −0.0336104 0.209695i
\(863\) 6.36151 0.216548 0.108274 0.994121i \(-0.465468\pi\)
0.108274 + 0.994121i \(0.465468\pi\)
\(864\) 0 0
\(865\) −39.4602 −1.34169
\(866\) 6.38397 + 39.8296i 0.216936 + 1.35346i
\(867\) 0 0
\(868\) −37.0888 + 12.2029i −1.25888 + 0.414192i
\(869\) 2.83458 3.37812i 0.0961565 0.114595i
\(870\) 0 0
\(871\) −8.94493 + 24.5760i −0.303087 + 0.832726i
\(872\) 6.09903 + 11.8075i 0.206539 + 0.399852i
\(873\) 0 0
\(874\) 0.0940700 + 0.0562863i 0.00318197 + 0.00190391i
\(875\) 14.5034 12.1698i 0.490304 0.411414i
\(876\) 0 0
\(877\) −2.83565 + 16.0818i −0.0957531 + 0.543043i 0.898761 + 0.438439i \(0.144468\pi\)
−0.994514 + 0.104604i \(0.966643\pi\)
\(878\) −6.71707 1.29277i −0.226690 0.0436288i
\(879\) 0 0
\(880\) 21.3942 + 28.9928i 0.721198 + 0.977346i
\(881\) 43.1593 + 24.9180i 1.45407 + 0.839509i 0.998709 0.0507963i \(-0.0161759\pi\)
0.455364 + 0.890306i \(0.349509\pi\)
\(882\) 0 0
\(883\) 38.2077 22.0592i 1.28579 0.742352i 0.307890 0.951422i \(-0.400377\pi\)
0.977901 + 0.209070i \(0.0670437\pi\)
\(884\) 5.37423 13.4448i 0.180755 0.452196i
\(885\) 0 0
\(886\) 7.76834 + 6.72771i 0.260982 + 0.226022i
\(887\) 2.25857 0.822052i 0.0758353 0.0276018i −0.303824 0.952728i \(-0.598263\pi\)
0.379659 + 0.925126i \(0.376041\pi\)
\(888\) 0 0
\(889\) −5.65792 32.0877i −0.189761 1.07619i
\(890\) −70.7842 1.10450i −2.37269 0.0370229i
\(891\) 0 0
\(892\) 1.10298 35.3348i 0.0369305 1.18310i
\(893\) 0.594202 0.104774i 0.0198842 0.00350612i
\(894\) 0 0
\(895\) −25.2377 69.3399i −0.843602 2.31778i
\(896\) −23.9466 + 22.9178i −0.800001 + 0.765628i
\(897\) 0 0
\(898\) −3.20572 + 8.39760i −0.106976 + 0.280231i
\(899\) −1.66986 2.89227i −0.0556928 0.0964627i
\(900\) 0 0
\(901\) −4.91981 + 8.52136i −0.163903 + 0.283888i
\(902\) −6.65995 8.19331i −0.221752 0.272807i
\(903\) 0 0
\(904\) −1.55759 0.350500i −0.0518047 0.0116575i
\(905\) −49.6441 8.75359i −1.65023 0.290979i
\(906\) 0 0
\(907\) −22.5530 26.8776i −0.748858 0.892455i 0.248231 0.968701i \(-0.420151\pi\)
−0.997089 + 0.0762463i \(0.975706\pi\)
\(908\) 9.82912 15.8602i 0.326191 0.526340i
\(909\) 0 0
\(910\) 37.6730 + 67.6682i 1.24885 + 2.24318i
\(911\) 10.1501 + 3.69433i 0.336287 + 0.122399i 0.504644 0.863328i \(-0.331624\pi\)
−0.168357 + 0.985726i \(0.553846\pi\)
\(912\) 0 0
\(913\) 4.32453 + 3.62872i 0.143121 + 0.120093i
\(914\) 1.19487 0.413904i 0.0395229 0.0136907i
\(915\) 0 0
\(916\) 4.80424 + 33.2894i 0.158737 + 1.09991i
\(917\) 9.08884i 0.300140i
\(918\) 0 0
\(919\) 20.9319i 0.690481i 0.938514 + 0.345241i \(0.112203\pi\)
−0.938514 + 0.345241i \(0.887797\pi\)
\(920\) 8.20709 1.05399i 0.270580 0.0347491i
\(921\) 0 0
\(922\) −6.06471 17.5079i −0.199730 0.576591i
\(923\) −49.1936 41.2783i −1.61923 1.35869i
\(924\) 0 0
\(925\) −35.6459 12.9740i −1.17203 0.426584i
\(926\) 1.66635 0.927710i 0.0547598 0.0304865i
\(927\) 0 0
\(928\) −2.33738 1.60463i −0.0767284 0.0526744i
\(929\) 21.6205 + 25.7663i 0.709345 + 0.845365i 0.993550 0.113399i \(-0.0361738\pi\)
−0.284204 + 0.958764i \(0.591729\pi\)
\(930\) 0 0
\(931\) −0.142375 0.0251046i −0.00466616 0.000822770i
\(932\) 34.5116 + 7.20226i 1.13047 + 0.235918i
\(933\) 0 0
\(934\) −21.5348 + 17.5046i −0.704640 + 0.572769i
\(935\) 6.01119 10.4117i 0.196587 0.340498i
\(936\) 0 0
\(937\) −12.5767 21.7834i −0.410862 0.711634i 0.584122 0.811666i \(-0.301439\pi\)
−0.994984 + 0.100032i \(0.968106\pi\)
\(938\) −18.6630 7.12443i −0.609367 0.232621i
\(939\) 0 0
\(940\) 30.3486 33.9575i 0.989863 1.10757i
\(941\) −14.1661 38.9209i −0.461801 1.26879i −0.924130 0.382078i \(-0.875208\pi\)
0.462329 0.886708i \(-0.347014\pi\)
\(942\) 0 0
\(943\) −2.38790 + 0.421051i −0.0777606 + 0.0137113i
\(944\) 12.1569 + 0.759701i 0.395675 + 0.0247262i
\(945\) 0 0
\(946\) 0.327815 21.0087i 0.0106582 0.683052i
\(947\) −9.81759 55.6783i −0.319029 1.80930i −0.548684 0.836030i \(-0.684871\pi\)
0.229656 0.973272i \(-0.426240\pi\)
\(948\) 0 0
\(949\) −59.4386 + 21.6339i −1.92946 + 0.702265i
\(950\) 0.581214 0.671115i 0.0188571 0.0217738i
\(951\) 0 0
\(952\) 10.2042 + 4.26471i 0.330720 + 0.138220i
\(953\) 31.8569 18.3926i 1.03195 0.595795i 0.114405 0.993434i \(-0.463504\pi\)
0.917542 + 0.397639i \(0.130170\pi\)
\(954\) 0 0
\(955\) 5.73591 + 3.31163i 0.185610 + 0.107162i
\(956\) 14.4800 11.3996i 0.468315 0.368688i
\(957\) 0 0
\(958\) −5.09458 + 26.4708i −0.164598 + 0.855234i
\(959\) −8.78509 + 49.8227i −0.283685 + 1.60886i
\(960\) 0 0
\(961\) −10.2671 + 8.61511i −0.331196 + 0.277907i
\(962\) 21.7317 36.3197i 0.700659 1.17100i
\(963\) 0 0
\(964\) −5.88716 10.9740i −0.189613 0.353447i
\(965\) −7.37989 + 20.2761i −0.237567 + 0.652711i
\(966\) 0 0
\(967\) −28.9550 + 34.5072i −0.931129 + 1.10968i 0.0626196 + 0.998037i \(0.480055\pi\)
−0.993749 + 0.111639i \(0.964390\pi\)
\(968\) 11.2519 3.50848i 0.361649 0.112767i
\(969\) 0 0
\(970\) −31.7593 + 5.09046i −1.01973 + 0.163445i
\(971\) 40.1053 1.28704 0.643520 0.765429i \(-0.277473\pi\)
0.643520 + 0.765429i \(0.277473\pi\)
\(972\) 0 0
\(973\) 32.7837 1.05100
\(974\) −17.7956 + 2.85232i −0.570208 + 0.0913942i
\(975\) 0 0
\(976\) 9.30387 2.74254i 0.297810 0.0877867i
\(977\) −23.6105 + 28.1379i −0.755368 + 0.900213i −0.997546 0.0700194i \(-0.977694\pi\)
0.242178 + 0.970232i \(0.422138\pi\)
\(978\) 0 0
\(979\) 12.9870 35.6814i 0.415066 1.14038i
\(980\) −9.61606 + 5.15870i −0.307174 + 0.164788i
\(981\) 0 0
\(982\) −17.9589 + 30.0144i −0.573093 + 0.957797i
\(983\) 14.5073 12.1730i 0.462710 0.388259i −0.381417 0.924403i \(-0.624564\pi\)
0.844127 + 0.536144i \(0.180119\pi\)
\(984\) 0 0
\(985\) 9.05328 51.3437i 0.288462 1.63595i
\(986\) −0.178783 + 0.928934i −0.00569361 + 0.0295833i
\(987\) 0 0
\(988\) 0.612750 + 0.778328i 0.0194942 + 0.0247619i
\(989\) −4.17867 2.41256i −0.132874 0.0767148i
\(990\) 0 0
\(991\) 30.3997 17.5513i 0.965680 0.557535i 0.0677633 0.997701i \(-0.478414\pi\)
0.897916 + 0.440166i \(0.145080\pi\)
\(992\) −15.6136 + 34.3089i −0.495733 + 1.08931i
\(993\) 0 0
\(994\) 32.1120 37.0790i 1.01853 1.17607i
\(995\) −83.9173 + 30.5434i −2.66036 + 0.968291i
\(996\) 0 0
\(997\) 4.16898 + 23.6435i 0.132033 + 0.748796i 0.976880 + 0.213788i \(0.0685803\pi\)
−0.844847 + 0.535008i \(0.820309\pi\)
\(998\) −0.871737 + 55.8671i −0.0275944 + 1.76844i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.b.215.10 96
3.2 odd 2 972.2.l.c.215.7 96
4.3 odd 2 inner 972.2.l.b.215.8 96
9.2 odd 6 972.2.l.d.863.5 96
9.4 even 3 324.2.l.a.179.2 96
9.5 odd 6 108.2.l.a.23.15 yes 96
9.7 even 3 972.2.l.a.863.12 96
12.11 even 2 972.2.l.c.215.9 96
27.2 odd 18 inner 972.2.l.b.755.8 96
27.7 even 9 972.2.l.d.107.13 96
27.11 odd 18 324.2.l.a.143.15 96
27.16 even 9 108.2.l.a.47.2 yes 96
27.20 odd 18 972.2.l.a.107.4 96
27.25 even 9 972.2.l.c.755.9 96
36.7 odd 6 972.2.l.a.863.4 96
36.11 even 6 972.2.l.d.863.13 96
36.23 even 6 108.2.l.a.23.2 96
36.31 odd 6 324.2.l.a.179.15 96
108.7 odd 18 972.2.l.d.107.5 96
108.11 even 18 324.2.l.a.143.2 96
108.43 odd 18 108.2.l.a.47.15 yes 96
108.47 even 18 972.2.l.a.107.12 96
108.79 odd 18 972.2.l.c.755.7 96
108.83 even 18 inner 972.2.l.b.755.10 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.2 96 36.23 even 6
108.2.l.a.23.15 yes 96 9.5 odd 6
108.2.l.a.47.2 yes 96 27.16 even 9
108.2.l.a.47.15 yes 96 108.43 odd 18
324.2.l.a.143.2 96 108.11 even 18
324.2.l.a.143.15 96 27.11 odd 18
324.2.l.a.179.2 96 9.4 even 3
324.2.l.a.179.15 96 36.31 odd 6
972.2.l.a.107.4 96 27.20 odd 18
972.2.l.a.107.12 96 108.47 even 18
972.2.l.a.863.4 96 36.7 odd 6
972.2.l.a.863.12 96 9.7 even 3
972.2.l.b.215.8 96 4.3 odd 2 inner
972.2.l.b.215.10 96 1.1 even 1 trivial
972.2.l.b.755.8 96 27.2 odd 18 inner
972.2.l.b.755.10 96 108.83 even 18 inner
972.2.l.c.215.7 96 3.2 odd 2
972.2.l.c.215.9 96 12.11 even 2
972.2.l.c.755.7 96 108.79 odd 18
972.2.l.c.755.9 96 27.25 even 9
972.2.l.d.107.5 96 108.7 odd 18
972.2.l.d.107.13 96 27.7 even 9
972.2.l.d.863.5 96 9.2 odd 6
972.2.l.d.863.13 96 36.11 even 6