Properties

Label 972.2.l.a.107.4
Level $972$
Weight $2$
Character 972.107
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,-3,0,3,-6,0,0,9,0,-3,0,0,6,-33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 107.4
Character \(\chi\) \(=\) 972.107
Dual form 972.2.l.a.863.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.06904 - 0.925831i) q^{2} +(0.285675 + 1.97949i) q^{4} +(-1.17862 + 3.23823i) q^{5} +(2.88522 + 0.508742i) q^{7} +(1.52728 - 2.38064i) q^{8} +(4.25804 - 2.37058i) q^{10} +(2.45635 - 0.894038i) q^{11} +(4.15529 - 3.48670i) q^{13} +(-2.61340 - 3.21509i) q^{14} +(-3.83678 + 1.13098i) q^{16} +(-1.15583 + 0.667320i) q^{17} +(-0.0790760 - 0.0456546i) q^{19} +(-6.74675 - 1.40799i) q^{20} +(-3.45365 - 1.31840i) q^{22} +(0.147416 + 0.836038i) q^{23} +(-5.26677 - 4.41934i) q^{25} +(-7.67024 - 0.119685i) q^{26} +(-0.182815 + 5.85661i) q^{28} +(0.322160 - 0.383935i) q^{29} +(6.56230 - 1.15711i) q^{31} +(5.14875 + 2.34314i) q^{32} +(1.85345 + 0.356716i) q^{34} +(-5.04800 + 8.74340i) q^{35} +(2.75869 + 4.77819i) q^{37} +(0.0422667 + 0.122017i) q^{38} +(5.90897 + 7.75154i) q^{40} +(1.83593 + 2.18798i) q^{41} +(1.94395 + 5.34095i) q^{43} +(2.47146 + 4.60692i) q^{44} +(0.616436 - 1.03024i) q^{46} +(1.14746 - 6.50759i) q^{47} +(1.48783 + 0.541527i) q^{49} +(1.53880 + 9.60057i) q^{50} +(8.08896 + 7.22929i) q^{52} +7.37249i q^{53} +9.00795i q^{55} +(5.61766 - 6.09167i) q^{56} +(-0.699859 + 0.112175i) q^{58} +(2.86152 + 1.04151i) q^{59} +(-0.421082 + 2.38808i) q^{61} +(-8.08663 - 4.83859i) q^{62} +(-3.33485 - 7.27178i) q^{64} +(6.39324 + 17.5653i) q^{65} +(-3.09917 - 3.69345i) q^{67} +(-1.65115 - 2.09732i) q^{68} +(13.4914 - 4.67341i) q^{70} +(-5.91940 - 10.2527i) q^{71} +(-5.83049 + 10.0987i) q^{73} +(1.47466 - 7.66214i) q^{74} +(0.0677828 - 0.169573i) q^{76} +(7.54195 - 1.32985i) q^{77} +(1.08439 - 1.29232i) q^{79} +(0.859714 - 13.7574i) q^{80} +(0.0630204 - 4.03879i) q^{82} +(-1.65438 - 1.38819i) q^{83} +(-0.798649 - 4.52937i) q^{85} +(2.86667 - 7.50943i) q^{86} +(1.62315 - 7.21311i) q^{88} +(12.5801 + 7.26310i) q^{89} +(13.7628 - 7.94593i) q^{91} +(-1.61282 + 0.530644i) q^{92} +(-7.25160 + 5.89449i) q^{94} +(0.241041 - 0.202257i) q^{95} +(-6.20195 + 2.25733i) q^{97} +(-1.08919 - 1.95639i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 9 q^{8} - 3 q^{10} + 6 q^{13} - 33 q^{14} + 3 q^{16} + 18 q^{17} + 18 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} - 30 q^{29} - 33 q^{32} + 15 q^{34} - 6 q^{37} + 63 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.06904 0.925831i −0.755923 0.654661i
\(3\) 0 0
\(4\) 0.285675 + 1.97949i 0.142838 + 0.989746i
\(5\) −1.17862 + 3.23823i −0.527095 + 1.44818i 0.335381 + 0.942082i \(0.391135\pi\)
−0.862476 + 0.506098i \(0.831087\pi\)
\(6\) 0 0
\(7\) 2.88522 + 0.508742i 1.09051 + 0.192287i 0.689859 0.723944i \(-0.257672\pi\)
0.400652 + 0.916230i \(0.368784\pi\)
\(8\) 1.52728 2.38064i 0.539974 0.841682i
\(9\) 0 0
\(10\) 4.25804 2.37058i 1.34651 0.749644i
\(11\) 2.45635 0.894038i 0.740617 0.269563i 0.0559651 0.998433i \(-0.482176\pi\)
0.684652 + 0.728870i \(0.259954\pi\)
\(12\) 0 0
\(13\) 4.15529 3.48670i 1.15247 0.967037i 0.152695 0.988273i \(-0.451205\pi\)
0.999774 + 0.0212368i \(0.00676040\pi\)
\(14\) −2.61340 3.21509i −0.698459 0.859269i
\(15\) 0 0
\(16\) −3.83678 + 1.13098i −0.959195 + 0.282746i
\(17\) −1.15583 + 0.667320i −0.280330 + 0.161849i −0.633573 0.773683i \(-0.718412\pi\)
0.353243 + 0.935532i \(0.385079\pi\)
\(18\) 0 0
\(19\) −0.0790760 0.0456546i −0.0181413 0.0104739i 0.490902 0.871215i \(-0.336667\pi\)
−0.509043 + 0.860741i \(0.670001\pi\)
\(20\) −6.74675 1.40799i −1.50862 0.314835i
\(21\) 0 0
\(22\) −3.45365 1.31840i −0.736321 0.281085i
\(23\) 0.147416 + 0.836038i 0.0307384 + 0.174326i 0.996312 0.0858037i \(-0.0273458\pi\)
−0.965574 + 0.260130i \(0.916235\pi\)
\(24\) 0 0
\(25\) −5.26677 4.41934i −1.05335 0.883869i
\(26\) −7.67024 0.119685i −1.50426 0.0234721i
\(27\) 0 0
\(28\) −0.182815 + 5.85661i −0.0345487 + 1.10679i
\(29\) 0.322160 0.383935i 0.0598236 0.0712950i −0.735303 0.677739i \(-0.762960\pi\)
0.795126 + 0.606444i \(0.207404\pi\)
\(30\) 0 0
\(31\) 6.56230 1.15711i 1.17862 0.207823i 0.450186 0.892935i \(-0.351358\pi\)
0.728438 + 0.685111i \(0.240246\pi\)
\(32\) 5.14875 + 2.34314i 0.910180 + 0.414213i
\(33\) 0 0
\(34\) 1.85345 + 0.356716i 0.317864 + 0.0611762i
\(35\) −5.04800 + 8.74340i −0.853268 + 1.47790i
\(36\) 0 0
\(37\) 2.75869 + 4.77819i 0.453526 + 0.785530i 0.998602 0.0528563i \(-0.0168325\pi\)
−0.545076 + 0.838387i \(0.683499\pi\)
\(38\) 0.0422667 + 0.122017i 0.00685657 + 0.0197938i
\(39\) 0 0
\(40\) 5.90897 + 7.75154i 0.934290 + 1.22563i
\(41\) 1.83593 + 2.18798i 0.286725 + 0.341705i 0.890111 0.455744i \(-0.150627\pi\)
−0.603386 + 0.797449i \(0.706182\pi\)
\(42\) 0 0
\(43\) 1.94395 + 5.34095i 0.296449 + 0.814487i 0.995086 + 0.0990112i \(0.0315680\pi\)
−0.698637 + 0.715476i \(0.746210\pi\)
\(44\) 2.47146 + 4.60692i 0.372587 + 0.694519i
\(45\) 0 0
\(46\) 0.616436 1.03024i 0.0908886 0.151900i
\(47\) 1.14746 6.50759i 0.167375 0.949229i −0.779207 0.626766i \(-0.784378\pi\)
0.946582 0.322463i \(-0.104511\pi\)
\(48\) 0 0
\(49\) 1.48783 + 0.541527i 0.212548 + 0.0773611i
\(50\) 1.53880 + 9.60057i 0.217619 + 1.35773i
\(51\) 0 0
\(52\) 8.08896 + 7.22929i 1.12174 + 1.00252i
\(53\) 7.37249i 1.01269i 0.862331 + 0.506345i \(0.169004\pi\)
−0.862331 + 0.506345i \(0.830996\pi\)
\(54\) 0 0
\(55\) 9.00795i 1.21463i
\(56\) 5.61766 6.09167i 0.750692 0.814033i
\(57\) 0 0
\(58\) −0.699859 + 0.112175i −0.0918960 + 0.0147293i
\(59\) 2.86152 + 1.04151i 0.372538 + 0.135593i 0.521502 0.853250i \(-0.325372\pi\)
−0.148965 + 0.988843i \(0.547594\pi\)
\(60\) 0 0
\(61\) −0.421082 + 2.38808i −0.0539141 + 0.305762i −0.999826 0.0186620i \(-0.994059\pi\)
0.945912 + 0.324424i \(0.105170\pi\)
\(62\) −8.08663 4.83859i −1.02700 0.614501i
\(63\) 0 0
\(64\) −3.33485 7.27178i −0.416856 0.908973i
\(65\) 6.39324 + 17.5653i 0.792983 + 2.17870i
\(66\) 0 0
\(67\) −3.09917 3.69345i −0.378624 0.451227i 0.542755 0.839891i \(-0.317381\pi\)
−0.921380 + 0.388664i \(0.872937\pi\)
\(68\) −1.65115 2.09732i −0.200231 0.254338i
\(69\) 0 0
\(70\) 13.4914 4.67341i 1.61253 0.558579i
\(71\) −5.91940 10.2527i −0.702504 1.21677i −0.967585 0.252546i \(-0.918732\pi\)
0.265081 0.964226i \(-0.414601\pi\)
\(72\) 0 0
\(73\) −5.83049 + 10.0987i −0.682408 + 1.18197i 0.291836 + 0.956468i \(0.405734\pi\)
−0.974244 + 0.225497i \(0.927600\pi\)
\(74\) 1.47466 7.66214i 0.171426 0.890706i
\(75\) 0 0
\(76\) 0.0677828 0.169573i 0.00777522 0.0194513i
\(77\) 7.54195 1.32985i 0.859484 0.151550i
\(78\) 0 0
\(79\) 1.08439 1.29232i 0.122003 0.145398i −0.701586 0.712585i \(-0.747524\pi\)
0.823589 + 0.567188i \(0.191969\pi\)
\(80\) 0.859714 13.7574i 0.0961190 1.53812i
\(81\) 0 0
\(82\) 0.0630204 4.03879i 0.00695944 0.446010i
\(83\) −1.65438 1.38819i −0.181592 0.152374i 0.547461 0.836831i \(-0.315595\pi\)
−0.729052 + 0.684458i \(0.760039\pi\)
\(84\) 0 0
\(85\) −0.798649 4.52937i −0.0866257 0.491279i
\(86\) 2.86667 7.50943i 0.309121 0.809763i
\(87\) 0 0
\(88\) 1.62315 7.21311i 0.173028 0.768921i
\(89\) 12.5801 + 7.26310i 1.33348 + 0.769887i 0.985832 0.167737i \(-0.0536458\pi\)
0.347652 + 0.937624i \(0.386979\pi\)
\(90\) 0 0
\(91\) 13.7628 7.94593i 1.44273 0.832960i
\(92\) −1.61282 + 0.530644i −0.168148 + 0.0553235i
\(93\) 0 0
\(94\) −7.25160 + 5.89449i −0.747945 + 0.607970i
\(95\) 0.241041 0.202257i 0.0247302 0.0207511i
\(96\) 0 0
\(97\) −6.20195 + 2.25733i −0.629713 + 0.229197i −0.637106 0.770776i \(-0.719869\pi\)
0.00739349 + 0.999973i \(0.497647\pi\)
\(98\) −1.08919 1.95639i −0.110024 0.197626i
\(99\) 0 0
\(100\) 7.24347 11.6880i 0.724347 1.16880i
\(101\) −8.11999 1.43177i −0.807970 0.142467i −0.245620 0.969366i \(-0.578991\pi\)
−0.562350 + 0.826899i \(0.690103\pi\)
\(102\) 0 0
\(103\) −5.50544 + 15.1261i −0.542467 + 1.49042i 0.301206 + 0.953559i \(0.402611\pi\)
−0.843673 + 0.536857i \(0.819611\pi\)
\(104\) −1.95429 15.2174i −0.191633 1.49219i
\(105\) 0 0
\(106\) 6.82568 7.88146i 0.662969 0.765515i
\(107\) 9.71808 0.939482 0.469741 0.882804i \(-0.344347\pi\)
0.469741 + 0.882804i \(0.344347\pi\)
\(108\) 0 0
\(109\) −4.69860 −0.450044 −0.225022 0.974354i \(-0.572245\pi\)
−0.225022 + 0.974354i \(0.572245\pi\)
\(110\) 8.33984 9.62983i 0.795172 0.918168i
\(111\) 0 0
\(112\) −11.6453 + 1.31121i −1.10038 + 0.123898i
\(113\) 0.193057 0.530421i 0.0181613 0.0498978i −0.930281 0.366848i \(-0.880437\pi\)
0.948442 + 0.316951i \(0.102659\pi\)
\(114\) 0 0
\(115\) −2.88103 0.508003i −0.268658 0.0473716i
\(116\) 0.852030 + 0.528032i 0.0791090 + 0.0490266i
\(117\) 0 0
\(118\) −2.09480 3.76269i −0.192842 0.346383i
\(119\) −3.67432 + 1.33734i −0.336825 + 0.122594i
\(120\) 0 0
\(121\) −3.19214 + 2.67853i −0.290195 + 0.243502i
\(122\) 2.66111 2.16309i 0.240925 0.195837i
\(123\) 0 0
\(124\) 4.16518 + 12.6595i 0.374044 + 1.13685i
\(125\) 5.59652 3.23116i 0.500568 0.289003i
\(126\) 0 0
\(127\) −9.63141 5.56070i −0.854649 0.493432i 0.00756758 0.999971i \(-0.497591\pi\)
−0.862217 + 0.506539i \(0.830924\pi\)
\(128\) −3.16736 + 10.8613i −0.279958 + 0.960012i
\(129\) 0 0
\(130\) 9.42787 24.6970i 0.826879 2.16607i
\(131\) 0.538705 + 3.05515i 0.0470669 + 0.266930i 0.999255 0.0385813i \(-0.0122839\pi\)
−0.952189 + 0.305511i \(0.901173\pi\)
\(132\) 0 0
\(133\) −0.204925 0.171953i −0.0177693 0.0149102i
\(134\) −0.106382 + 6.81774i −0.00919004 + 0.588963i
\(135\) 0 0
\(136\) −0.176631 + 3.77080i −0.0151459 + 0.323343i
\(137\) 11.0998 13.2282i 0.948321 1.13017i −0.0430492 0.999073i \(-0.513707\pi\)
0.991370 0.131092i \(-0.0418483\pi\)
\(138\) 0 0
\(139\) 11.0200 1.94313i 0.934705 0.164814i 0.314504 0.949256i \(-0.398162\pi\)
0.620201 + 0.784443i \(0.287051\pi\)
\(140\) −18.7496 7.49471i −1.58463 0.633418i
\(141\) 0 0
\(142\) −3.16421 + 16.4409i −0.265535 + 1.37969i
\(143\) 7.08959 12.2795i 0.592862 1.02687i
\(144\) 0 0
\(145\) 0.863567 + 1.49574i 0.0717153 + 0.124215i
\(146\) 15.5827 5.39784i 1.28963 0.446728i
\(147\) 0 0
\(148\) −8.67031 + 6.82582i −0.712695 + 0.561079i
\(149\) 11.7321 + 13.9817i 0.961128 + 1.14543i 0.989310 + 0.145825i \(0.0465836\pi\)
−0.0281824 + 0.999603i \(0.508972\pi\)
\(150\) 0 0
\(151\) −6.58373 18.0887i −0.535776 1.47203i −0.852098 0.523382i \(-0.824670\pi\)
0.316322 0.948652i \(-0.397552\pi\)
\(152\) −0.229458 + 0.118524i −0.0186115 + 0.00961357i
\(153\) 0 0
\(154\) −9.29382 5.56091i −0.748918 0.448111i
\(155\) −3.98747 + 22.6140i −0.320281 + 1.81640i
\(156\) 0 0
\(157\) 15.8245 + 5.75965i 1.26293 + 0.459670i 0.884752 0.466061i \(-0.154327\pi\)
0.378181 + 0.925732i \(0.376550\pi\)
\(158\) −2.35572 + 0.377580i −0.187411 + 0.0300386i
\(159\) 0 0
\(160\) −13.6561 + 13.9112i −1.07961 + 1.09978i
\(161\) 2.48715i 0.196015i
\(162\) 0 0
\(163\) 8.02606i 0.628650i −0.949315 0.314325i \(-0.898222\pi\)
0.949315 0.314325i \(-0.101778\pi\)
\(164\) −3.80661 + 4.25927i −0.297246 + 0.332593i
\(165\) 0 0
\(166\) 0.483363 + 3.01570i 0.0375162 + 0.234064i
\(167\) −1.22693 0.446565i −0.0949425 0.0345563i 0.294112 0.955771i \(-0.404976\pi\)
−0.389055 + 0.921215i \(0.627198\pi\)
\(168\) 0 0
\(169\) 2.85191 16.1740i 0.219378 1.24415i
\(170\) −3.33964 + 5.58147i −0.256139 + 0.428079i
\(171\) 0 0
\(172\) −10.0170 + 5.37381i −0.763792 + 0.409749i
\(173\) 3.91642 + 10.7603i 0.297760 + 0.818089i 0.994873 + 0.101128i \(0.0322452\pi\)
−0.697113 + 0.716961i \(0.745533\pi\)
\(174\) 0 0
\(175\) −12.9475 15.4302i −0.978738 1.16641i
\(176\) −8.41333 + 6.20832i −0.634178 + 0.467970i
\(177\) 0 0
\(178\) −6.72413 19.4115i −0.503995 1.45495i
\(179\) 10.7064 + 18.5441i 0.800237 + 1.38605i 0.919460 + 0.393184i \(0.128627\pi\)
−0.119222 + 0.992868i \(0.538040\pi\)
\(180\) 0 0
\(181\) 7.31416 12.6685i 0.543657 0.941641i −0.455033 0.890474i \(-0.650373\pi\)
0.998690 0.0511670i \(-0.0162941\pi\)
\(182\) −22.0695 4.24749i −1.63590 0.314845i
\(183\) 0 0
\(184\) 2.21545 + 0.925918i 0.163325 + 0.0682596i
\(185\) −18.7243 + 3.30161i −1.37664 + 0.242739i
\(186\) 0 0
\(187\) −2.24252 + 2.67253i −0.163989 + 0.195435i
\(188\) 13.2095 + 0.412337i 0.963403 + 0.0300728i
\(189\) 0 0
\(190\) −0.444937 0.00694269i −0.0322791 0.000503676i
\(191\) 1.47232 + 1.23543i 0.106534 + 0.0893924i 0.694499 0.719494i \(-0.255626\pi\)
−0.587965 + 0.808886i \(0.700071\pi\)
\(192\) 0 0
\(193\) −1.08729 6.16635i −0.0782651 0.443863i −0.998608 0.0527503i \(-0.983201\pi\)
0.920343 0.391113i \(-0.127910\pi\)
\(194\) 8.72001 + 3.32879i 0.626060 + 0.238994i
\(195\) 0 0
\(196\) −0.646912 + 3.09986i −0.0462080 + 0.221418i
\(197\) −13.1022 7.56456i −0.933494 0.538953i −0.0455788 0.998961i \(-0.514513\pi\)
−0.887915 + 0.460008i \(0.847847\pi\)
\(198\) 0 0
\(199\) −22.4427 + 12.9573i −1.59092 + 0.918517i −0.597769 + 0.801669i \(0.703946\pi\)
−0.993150 + 0.116849i \(0.962721\pi\)
\(200\) −18.5647 + 5.78869i −1.31272 + 0.409322i
\(201\) 0 0
\(202\) 7.35498 + 9.04836i 0.517495 + 0.636640i
\(203\) 1.12483 0.943842i 0.0789473 0.0662447i
\(204\) 0 0
\(205\) −9.24905 + 3.36638i −0.645982 + 0.235118i
\(206\) 19.8897 11.0732i 1.38578 0.771507i
\(207\) 0 0
\(208\) −11.9995 + 18.0773i −0.832017 + 1.25343i
\(209\) −0.235055 0.0414466i −0.0162591 0.00286692i
\(210\) 0 0
\(211\) −5.96780 + 16.3964i −0.410840 + 1.12877i 0.545905 + 0.837847i \(0.316186\pi\)
−0.956745 + 0.290928i \(0.906036\pi\)
\(212\) −14.5938 + 2.10614i −1.00231 + 0.144650i
\(213\) 0 0
\(214\) −10.3890 8.99730i −0.710176 0.615042i
\(215\) −19.5864 −1.33578
\(216\) 0 0
\(217\) 19.5224 1.32526
\(218\) 5.02297 + 4.35011i 0.340199 + 0.294627i
\(219\) 0 0
\(220\) −17.8312 + 2.57335i −1.20218 + 0.173495i
\(221\) −2.47607 + 6.80295i −0.166558 + 0.457616i
\(222\) 0 0
\(223\) −17.4075 3.06941i −1.16569 0.205543i −0.442874 0.896584i \(-0.646041\pi\)
−0.722816 + 0.691041i \(0.757152\pi\)
\(224\) 13.6632 + 9.37988i 0.912914 + 0.626720i
\(225\) 0 0
\(226\) −0.697465 + 0.388300i −0.0463947 + 0.0258294i
\(227\) −8.76686 + 3.19088i −0.581877 + 0.211786i −0.616153 0.787626i \(-0.711310\pi\)
0.0342759 + 0.999412i \(0.489088\pi\)
\(228\) 0 0
\(229\) 12.8827 10.8099i 0.851311 0.714335i −0.108767 0.994067i \(-0.534690\pi\)
0.960078 + 0.279732i \(0.0902457\pi\)
\(230\) 2.60960 + 3.21042i 0.172072 + 0.211689i
\(231\) 0 0
\(232\) −0.421982 1.35332i −0.0277045 0.0888499i
\(233\) −15.2659 + 8.81379i −1.00010 + 0.577410i −0.908279 0.418365i \(-0.862603\pi\)
−0.0918250 + 0.995775i \(0.529270\pi\)
\(234\) 0 0
\(235\) 19.7206 + 11.3857i 1.28643 + 0.742722i
\(236\) −1.24419 + 5.96188i −0.0809899 + 0.388085i
\(237\) 0 0
\(238\) 5.16614 + 1.97213i 0.334871 + 0.127834i
\(239\) −1.60006 9.07439i −0.103499 0.586974i −0.991809 0.127729i \(-0.959231\pi\)
0.888310 0.459245i \(-0.151880\pi\)
\(240\) 0 0
\(241\) 4.76992 + 4.00244i 0.307257 + 0.257820i 0.783357 0.621572i \(-0.213506\pi\)
−0.476100 + 0.879391i \(0.657950\pi\)
\(242\) 5.89238 + 0.0919433i 0.378776 + 0.00591034i
\(243\) 0 0
\(244\) −4.84747 0.151315i −0.310328 0.00968692i
\(245\) −3.50718 + 4.17970i −0.224066 + 0.267031i
\(246\) 0 0
\(247\) −0.487767 + 0.0860066i −0.0310359 + 0.00547247i
\(248\) 7.26780 17.3897i 0.461506 1.10425i
\(249\) 0 0
\(250\) −8.97439 1.72721i −0.567590 0.109239i
\(251\) 14.1765 24.5545i 0.894814 1.54986i 0.0607805 0.998151i \(-0.480641\pi\)
0.834034 0.551713i \(-0.186026\pi\)
\(252\) 0 0
\(253\) 1.10955 + 1.92181i 0.0697571 + 0.120823i
\(254\) 5.14806 + 14.8616i 0.323018 + 0.932502i
\(255\) 0 0
\(256\) 13.4417 8.67868i 0.840109 0.542417i
\(257\) −10.6047 12.6382i −0.661505 0.788351i 0.326096 0.945337i \(-0.394267\pi\)
−0.987601 + 0.156986i \(0.949822\pi\)
\(258\) 0 0
\(259\) 5.52857 + 15.1896i 0.343528 + 0.943837i
\(260\) −32.9439 + 17.6733i −2.04310 + 1.09605i
\(261\) 0 0
\(262\) 2.25266 3.76481i 0.139170 0.232591i
\(263\) 4.20521 23.8489i 0.259304 1.47059i −0.525473 0.850810i \(-0.676111\pi\)
0.784777 0.619778i \(-0.212777\pi\)
\(264\) 0 0
\(265\) −23.8738 8.68936i −1.46656 0.533783i
\(266\) 0.0598734 + 0.373550i 0.00367108 + 0.0229038i
\(267\) 0 0
\(268\) 6.42580 7.18992i 0.392518 0.439194i
\(269\) 12.1956i 0.743578i −0.928317 0.371789i \(-0.878745\pi\)
0.928317 0.371789i \(-0.121255\pi\)
\(270\) 0 0
\(271\) 25.0009i 1.51870i −0.650683 0.759349i \(-0.725517\pi\)
0.650683 0.759349i \(-0.274483\pi\)
\(272\) 3.67994 3.86759i 0.223129 0.234507i
\(273\) 0 0
\(274\) −24.1132 + 3.86492i −1.45673 + 0.233488i
\(275\) −16.8881 6.14676i −1.01839 0.370664i
\(276\) 0 0
\(277\) −1.51731 + 8.60510i −0.0911664 + 0.517030i 0.904688 + 0.426074i \(0.140104\pi\)
−0.995855 + 0.0909566i \(0.971008\pi\)
\(278\) −13.5798 8.12539i −0.814462 0.487329i
\(279\) 0 0
\(280\) 13.1051 + 25.3710i 0.783182 + 1.51621i
\(281\) −7.48611 20.5679i −0.446584 1.22698i −0.935087 0.354417i \(-0.884679\pi\)
0.488504 0.872562i \(-0.337543\pi\)
\(282\) 0 0
\(283\) −19.3494 23.0597i −1.15020 1.37076i −0.917270 0.398266i \(-0.869612\pi\)
−0.232933 0.972493i \(-0.574832\pi\)
\(284\) 18.6041 14.6464i 1.10395 0.869101i
\(285\) 0 0
\(286\) −18.9478 + 6.56350i −1.12041 + 0.388108i
\(287\) 4.18396 + 7.24682i 0.246971 + 0.427766i
\(288\) 0 0
\(289\) −7.60937 + 13.1798i −0.447610 + 0.775283i
\(290\) 0.461619 2.39852i 0.0271072 0.140846i
\(291\) 0 0
\(292\) −21.6560 8.65647i −1.26732 0.506581i
\(293\) 13.0378 2.29891i 0.761675 0.134304i 0.220699 0.975342i \(-0.429166\pi\)
0.540976 + 0.841038i \(0.318055\pi\)
\(294\) 0 0
\(295\) −6.74528 + 8.03871i −0.392725 + 0.468032i
\(296\) 15.5884 + 0.730189i 0.906059 + 0.0424413i
\(297\) 0 0
\(298\) 0.402716 25.8089i 0.0233287 1.49507i
\(299\) 3.52757 + 2.95998i 0.204005 + 0.171180i
\(300\) 0 0
\(301\) 2.89155 + 16.3988i 0.166666 + 0.945211i
\(302\) −9.70878 + 25.4328i −0.558678 + 1.46350i
\(303\) 0 0
\(304\) 0.355032 + 0.0857327i 0.0203625 + 0.00491711i
\(305\) −7.23685 4.17820i −0.414381 0.239243i
\(306\) 0 0
\(307\) −11.4064 + 6.58546i −0.650995 + 0.375852i −0.788837 0.614602i \(-0.789317\pi\)
0.137842 + 0.990454i \(0.455983\pi\)
\(308\) 4.78697 + 14.5493i 0.272763 + 0.829024i
\(309\) 0 0
\(310\) 25.1995 20.4835i 1.43124 1.16338i
\(311\) −4.73104 + 3.96982i −0.268273 + 0.225108i −0.766993 0.641655i \(-0.778248\pi\)
0.498720 + 0.866763i \(0.333804\pi\)
\(312\) 0 0
\(313\) 20.1441 7.33187i 1.13861 0.414422i 0.297201 0.954815i \(-0.403947\pi\)
0.841413 + 0.540393i \(0.181724\pi\)
\(314\) −11.5845 20.8081i −0.653752 1.17427i
\(315\) 0 0
\(316\) 2.86792 + 1.77735i 0.161333 + 0.0999838i
\(317\) −14.4792 2.55307i −0.813231 0.143395i −0.248460 0.968642i \(-0.579924\pi\)
−0.564771 + 0.825247i \(0.691036\pi\)
\(318\) 0 0
\(319\) 0.448084 1.23110i 0.0250879 0.0689285i
\(320\) 27.4782 2.22835i 1.53608 0.124568i
\(321\) 0 0
\(322\) 2.30268 2.65885i 0.128323 0.148172i
\(323\) 0.121865 0.00678074
\(324\) 0 0
\(325\) −37.2939 −2.06869
\(326\) −7.43077 + 8.58015i −0.411552 + 0.475210i
\(327\) 0 0
\(328\) 8.01276 1.02904i 0.442431 0.0568190i
\(329\) 6.62137 18.1921i 0.365048 1.00296i
\(330\) 0 0
\(331\) 26.1208 + 4.60580i 1.43573 + 0.253158i 0.836741 0.547600i \(-0.184458\pi\)
0.598989 + 0.800757i \(0.295569\pi\)
\(332\) 2.27529 3.67140i 0.124873 0.201494i
\(333\) 0 0
\(334\) 0.898186 + 1.61332i 0.0491466 + 0.0882770i
\(335\) 15.6130 5.68266i 0.853029 0.310477i
\(336\) 0 0
\(337\) −11.8198 + 9.91801i −0.643867 + 0.540269i −0.905203 0.424979i \(-0.860281\pi\)
0.261336 + 0.965248i \(0.415837\pi\)
\(338\) −18.0232 + 14.6502i −0.980330 + 0.796865i
\(339\) 0 0
\(340\) 8.73769 2.87485i 0.473868 0.155911i
\(341\) 15.0848 8.70922i 0.816888 0.471631i
\(342\) 0 0
\(343\) −13.7433 7.93471i −0.742069 0.428434i
\(344\) 15.6838 + 3.52928i 0.845614 + 0.190286i
\(345\) 0 0
\(346\) 5.77540 15.1291i 0.310487 0.813344i
\(347\) −3.73769 21.1975i −0.200650 1.13794i −0.904140 0.427237i \(-0.859487\pi\)
0.703490 0.710705i \(-0.251624\pi\)
\(348\) 0 0
\(349\) 9.68359 + 8.12550i 0.518351 + 0.434948i 0.864056 0.503395i \(-0.167916\pi\)
−0.345706 + 0.938343i \(0.612360\pi\)
\(350\) −0.444436 + 28.4826i −0.0237561 + 1.52246i
\(351\) 0 0
\(352\) 14.7420 + 1.15240i 0.785751 + 0.0614231i
\(353\) −7.19217 + 8.57129i −0.382800 + 0.456204i −0.922696 0.385528i \(-0.874019\pi\)
0.539896 + 0.841732i \(0.318464\pi\)
\(354\) 0 0
\(355\) 40.1773 7.08435i 2.13239 0.375998i
\(356\) −10.7834 + 26.9770i −0.571521 + 1.42978i
\(357\) 0 0
\(358\) 5.72313 29.7367i 0.302477 1.57163i
\(359\) −16.1699 + 28.0070i −0.853413 + 1.47816i 0.0246959 + 0.999695i \(0.492138\pi\)
−0.878109 + 0.478460i \(0.841195\pi\)
\(360\) 0 0
\(361\) −9.49583 16.4473i −0.499781 0.865645i
\(362\) −19.5480 + 6.77140i −1.02742 + 0.355897i
\(363\) 0 0
\(364\) 19.6606 + 24.9733i 1.03049 + 1.30896i
\(365\) −25.8300 30.7830i −1.35201 1.61126i
\(366\) 0 0
\(367\) 0.227944 + 0.626272i 0.0118986 + 0.0326911i 0.945500 0.325623i \(-0.105574\pi\)
−0.933601 + 0.358314i \(0.883352\pi\)
\(368\) −1.51115 3.04097i −0.0787741 0.158521i
\(369\) 0 0
\(370\) 23.0737 + 13.8060i 1.19955 + 0.717741i
\(371\) −3.75070 + 21.2713i −0.194727 + 1.10435i
\(372\) 0 0
\(373\) −19.5747 7.12459i −1.01354 0.368897i −0.218747 0.975782i \(-0.570197\pi\)
−0.794790 + 0.606884i \(0.792419\pi\)
\(374\) 4.87164 0.780837i 0.251907 0.0403761i
\(375\) 0 0
\(376\) −13.7397 12.6706i −0.708571 0.653435i
\(377\) 2.71864i 0.140017i
\(378\) 0 0
\(379\) 19.1904i 0.985744i 0.870102 + 0.492872i \(0.164053\pi\)
−0.870102 + 0.492872i \(0.835947\pi\)
\(380\) 0.469226 + 0.419358i 0.0240708 + 0.0215126i
\(381\) 0 0
\(382\) −0.430172 2.68384i −0.0220095 0.137317i
\(383\) 7.45399 + 2.71303i 0.380881 + 0.138629i 0.525363 0.850878i \(-0.323929\pi\)
−0.144482 + 0.989507i \(0.546152\pi\)
\(384\) 0 0
\(385\) −4.58273 + 25.9899i −0.233557 + 1.32457i
\(386\) −4.54664 + 7.59870i −0.231418 + 0.386763i
\(387\) 0 0
\(388\) −6.24010 11.6319i −0.316793 0.590518i
\(389\) −4.22261 11.6015i −0.214095 0.588220i 0.785433 0.618947i \(-0.212440\pi\)
−0.999528 + 0.0307262i \(0.990218\pi\)
\(390\) 0 0
\(391\) −0.728293 0.867946i −0.0368314 0.0438939i
\(392\) 3.56151 2.71493i 0.179884 0.137125i
\(393\) 0 0
\(394\) 7.00323 + 20.2172i 0.352817 + 1.01853i
\(395\) 2.90676 + 5.03465i 0.146255 + 0.253321i
\(396\) 0 0
\(397\) 11.5959 20.0847i 0.581982 1.00802i −0.413263 0.910612i \(-0.635611\pi\)
0.995244 0.0974099i \(-0.0310558\pi\)
\(398\) 35.9883 + 6.92631i 1.80393 + 0.347185i
\(399\) 0 0
\(400\) 25.2056 + 10.9994i 1.26028 + 0.549971i
\(401\) 6.69261 1.18009i 0.334213 0.0589308i −0.00402354 0.999992i \(-0.501281\pi\)
0.338236 + 0.941061i \(0.390170\pi\)
\(402\) 0 0
\(403\) 23.2338 27.6889i 1.15736 1.37928i
\(404\) 0.514503 16.4825i 0.0255975 0.820034i
\(405\) 0 0
\(406\) −2.07632 0.0323984i −0.103046 0.00160790i
\(407\) 11.0482 + 9.27054i 0.547639 + 0.459523i
\(408\) 0 0
\(409\) 3.15472 + 17.8913i 0.155991 + 0.884668i 0.957874 + 0.287187i \(0.0927202\pi\)
−0.801884 + 0.597480i \(0.796169\pi\)
\(410\) 13.0043 + 4.96427i 0.642235 + 0.245168i
\(411\) 0 0
\(412\) −31.5147 6.57683i −1.55262 0.324017i
\(413\) 7.72625 + 4.46075i 0.380184 + 0.219499i
\(414\) 0 0
\(415\) 6.44516 3.72111i 0.316380 0.182662i
\(416\) 29.5644 8.21572i 1.44951 0.402809i
\(417\) 0 0
\(418\) 0.212910 + 0.261929i 0.0104138 + 0.0128114i
\(419\) 3.77003 3.16343i 0.184178 0.154544i −0.546037 0.837761i \(-0.683864\pi\)
0.730215 + 0.683217i \(0.239420\pi\)
\(420\) 0 0
\(421\) 11.0588 4.02508i 0.538974 0.196171i −0.0581667 0.998307i \(-0.518525\pi\)
0.597141 + 0.802136i \(0.296303\pi\)
\(422\) 21.5601 12.0032i 1.04953 0.584305i
\(423\) 0 0
\(424\) 17.5512 + 11.2598i 0.852362 + 0.546826i
\(425\) 9.03662 + 1.59340i 0.438340 + 0.0772912i
\(426\) 0 0
\(427\) −2.42983 + 6.67591i −0.117588 + 0.323070i
\(428\) 2.77622 + 19.2369i 0.134193 + 0.929849i
\(429\) 0 0
\(430\) 20.9386 + 18.1337i 1.00975 + 0.874484i
\(431\) 4.40894 0.212371 0.106186 0.994346i \(-0.466136\pi\)
0.106186 + 0.994346i \(0.466136\pi\)
\(432\) 0 0
\(433\) 28.5232 1.37074 0.685369 0.728196i \(-0.259641\pi\)
0.685369 + 0.728196i \(0.259641\pi\)
\(434\) −20.8701 18.0744i −1.00180 0.867599i
\(435\) 0 0
\(436\) −1.34228 9.30085i −0.0642833 0.445430i
\(437\) 0.0265119 0.0728408i 0.00126824 0.00348445i
\(438\) 0 0
\(439\) −4.76337 0.839911i −0.227343 0.0400867i 0.0588159 0.998269i \(-0.481267\pi\)
−0.286159 + 0.958182i \(0.592379\pi\)
\(440\) 21.4447 + 13.7576i 1.02233 + 0.655870i
\(441\) 0 0
\(442\) 8.94538 4.98017i 0.425488 0.236883i
\(443\) 6.82844 2.48535i 0.324429 0.118083i −0.174671 0.984627i \(-0.555886\pi\)
0.499100 + 0.866544i \(0.333664\pi\)
\(444\) 0 0
\(445\) −38.3467 + 32.1767i −1.81781 + 1.52532i
\(446\) 15.7675 + 19.3977i 0.746611 + 0.918506i
\(447\) 0 0
\(448\) −5.92231 22.6773i −0.279803 1.07140i
\(449\) 5.50442 3.17798i 0.259769 0.149978i −0.364460 0.931219i \(-0.618746\pi\)
0.624229 + 0.781241i \(0.285413\pi\)
\(450\) 0 0
\(451\) 6.46583 + 3.73305i 0.304464 + 0.175782i
\(452\) 1.10512 + 0.230627i 0.0519802 + 0.0108478i
\(453\) 0 0
\(454\) 12.3263 + 4.70547i 0.578502 + 0.220839i
\(455\) 9.50970 + 53.9322i 0.445822 + 2.52838i
\(456\) 0 0
\(457\) −0.684966 0.574755i −0.0320413 0.0268859i 0.626626 0.779320i \(-0.284435\pi\)
−0.658668 + 0.752434i \(0.728880\pi\)
\(458\) −23.7801 0.371060i −1.11117 0.0173385i
\(459\) 0 0
\(460\) 0.182549 5.84810i 0.00851140 0.272669i
\(461\) 8.42157 10.0364i 0.392232 0.467443i −0.533403 0.845861i \(-0.679087\pi\)
0.925635 + 0.378418i \(0.123532\pi\)
\(462\) 0 0
\(463\) −1.32810 + 0.234180i −0.0617220 + 0.0108833i −0.204424 0.978882i \(-0.565532\pi\)
0.142702 + 0.989766i \(0.454421\pi\)
\(464\) −0.801832 + 1.83743i −0.0372241 + 0.0853007i
\(465\) 0 0
\(466\) 24.4799 + 4.71141i 1.13401 + 0.218252i
\(467\) −9.81172 + 16.9944i −0.454032 + 0.786407i −0.998632 0.0522890i \(-0.983348\pi\)
0.544600 + 0.838696i \(0.316682\pi\)
\(468\) 0 0
\(469\) −7.06278 12.2331i −0.326129 0.564872i
\(470\) −10.5408 30.4297i −0.486212 1.40362i
\(471\) 0 0
\(472\) 6.84978 5.22156i 0.315287 0.240342i
\(473\) 9.55002 + 11.3813i 0.439111 + 0.523312i
\(474\) 0 0
\(475\) 0.214712 + 0.589916i 0.00985166 + 0.0270672i
\(476\) −3.69693 6.89125i −0.169448 0.315860i
\(477\) 0 0
\(478\) −6.69083 + 11.1822i −0.306031 + 0.511464i
\(479\) 3.30994 18.7716i 0.151235 0.857698i −0.810912 0.585168i \(-0.801029\pi\)
0.962147 0.272530i \(-0.0878603\pi\)
\(480\) 0 0
\(481\) 28.1233 + 10.2360i 1.28231 + 0.466723i
\(482\) −1.39364 8.69488i −0.0634783 0.396041i
\(483\) 0 0
\(484\) −6.21404 5.55363i −0.282456 0.252438i
\(485\) 22.7439i 1.03275i
\(486\) 0 0
\(487\) 12.7440i 0.577486i 0.957407 + 0.288743i \(0.0932373\pi\)
−0.957407 + 0.288743i \(0.906763\pi\)
\(488\) 5.04203 + 4.64970i 0.228242 + 0.210482i
\(489\) 0 0
\(490\) 7.61899 1.22119i 0.344191 0.0551677i
\(491\) 23.2409 + 8.45899i 1.04885 + 0.381749i 0.808227 0.588871i \(-0.200427\pi\)
0.240619 + 0.970620i \(0.422650\pi\)
\(492\) 0 0
\(493\) −0.116155 + 0.658748i −0.00523136 + 0.0296685i
\(494\) 0.601068 + 0.359646i 0.0270433 + 0.0161812i
\(495\) 0 0
\(496\) −23.8694 + 11.8614i −1.07177 + 0.532595i
\(497\) −11.8628 32.5928i −0.532119 1.46199i
\(498\) 0 0
\(499\) 25.3958 + 30.2655i 1.13687 + 1.35487i 0.926074 + 0.377341i \(0.123161\pi\)
0.210797 + 0.977530i \(0.432394\pi\)
\(500\) 7.99484 + 10.1552i 0.357540 + 0.454155i
\(501\) 0 0
\(502\) −37.8885 + 13.1245i −1.69105 + 0.585777i
\(503\) −18.2058 31.5334i −0.811757 1.40600i −0.911633 0.411005i \(-0.865178\pi\)
0.0998757 0.995000i \(-0.468155\pi\)
\(504\) 0 0
\(505\) 14.2068 24.6069i 0.632194 1.09499i
\(506\) 0.593112 3.08174i 0.0263671 0.137000i
\(507\) 0 0
\(508\) 8.25590 20.6539i 0.366296 0.916366i
\(509\) −3.56810 + 0.629152i −0.158153 + 0.0278867i −0.252164 0.967685i \(-0.581142\pi\)
0.0940109 + 0.995571i \(0.470031\pi\)
\(510\) 0 0
\(511\) −21.9599 + 26.1708i −0.971449 + 1.15773i
\(512\) −22.4047 3.16697i −0.990157 0.139961i
\(513\) 0 0
\(514\) −0.364019 + 23.3289i −0.0160562 + 1.02899i
\(515\) −42.4929 35.6558i −1.87246 1.57118i
\(516\) 0 0
\(517\) −2.99946 17.0108i −0.131916 0.748133i
\(518\) 8.15277 21.3568i 0.358212 0.938362i
\(519\) 0 0
\(520\) 51.5807 + 11.6071i 2.26197 + 0.509004i
\(521\) −18.0443 10.4179i −0.790534 0.456415i 0.0496162 0.998768i \(-0.484200\pi\)
−0.840151 + 0.542353i \(0.817534\pi\)
\(522\) 0 0
\(523\) 19.0780 11.0147i 0.834223 0.481639i −0.0210733 0.999778i \(-0.506708\pi\)
0.855296 + 0.518139i \(0.173375\pi\)
\(524\) −5.89375 + 1.93914i −0.257470 + 0.0847119i
\(525\) 0 0
\(526\) −26.5756 + 21.6021i −1.15875 + 0.941894i
\(527\) −6.81276 + 5.71658i −0.296768 + 0.249018i
\(528\) 0 0
\(529\) 20.9357 7.61997i 0.910248 0.331303i
\(530\) 17.4771 + 31.3924i 0.759157 + 1.36360i
\(531\) 0 0
\(532\) 0.281837 0.454771i 0.0122192 0.0197168i
\(533\) 15.2577 + 2.69034i 0.660883 + 0.116531i
\(534\) 0 0
\(535\) −11.4539 + 31.4694i −0.495196 + 1.36054i
\(536\) −13.5261 + 1.73708i −0.584237 + 0.0750303i
\(537\) 0 0
\(538\) −11.2910 + 13.0375i −0.486792 + 0.562087i
\(539\) 4.13879 0.178270
\(540\) 0 0
\(541\) −13.2610 −0.570135 −0.285067 0.958507i \(-0.592016\pi\)
−0.285067 + 0.958507i \(0.592016\pi\)
\(542\) −23.1466 + 26.7269i −0.994233 + 1.14802i
\(543\) 0 0
\(544\) −7.51472 + 0.727585i −0.322191 + 0.0311950i
\(545\) 5.53786 15.2152i 0.237216 0.651746i
\(546\) 0 0
\(547\) 14.0853 + 2.48362i 0.602245 + 0.106192i 0.466454 0.884546i \(-0.345531\pi\)
0.135791 + 0.990738i \(0.456642\pi\)
\(548\) 29.3561 + 18.1930i 1.25403 + 0.777167i
\(549\) 0 0
\(550\) 12.3631 + 22.2066i 0.527165 + 0.946893i
\(551\) −0.0430035 + 0.0156520i −0.00183201 + 0.000666798i
\(552\) 0 0
\(553\) 3.78615 3.17696i 0.161004 0.135098i
\(554\) 9.58892 7.79439i 0.407394 0.331152i
\(555\) 0 0
\(556\) 6.99455 + 21.2589i 0.296635 + 0.901579i
\(557\) −6.40425 + 3.69750i −0.271357 + 0.156668i −0.629504 0.776997i \(-0.716742\pi\)
0.358147 + 0.933665i \(0.383409\pi\)
\(558\) 0 0
\(559\) 26.6999 + 15.4152i 1.12929 + 0.651994i
\(560\) 9.47942 39.2557i 0.400579 1.65886i
\(561\) 0 0
\(562\) −11.0395 + 28.9187i −0.465673 + 1.21986i
\(563\) −3.67837 20.8611i −0.155025 0.879189i −0.958763 0.284206i \(-0.908270\pi\)
0.803739 0.594983i \(-0.202841\pi\)
\(564\) 0 0
\(565\) 1.49008 + 1.25033i 0.0626883 + 0.0526017i
\(566\) −0.664189 + 42.5660i −0.0279180 + 1.78918i
\(567\) 0 0
\(568\) −33.4485 1.56679i −1.40347 0.0657409i
\(569\) 2.86471 3.41403i 0.120095 0.143124i −0.702647 0.711539i \(-0.747999\pi\)
0.822742 + 0.568415i \(0.192443\pi\)
\(570\) 0 0
\(571\) 2.11796 0.373453i 0.0886338 0.0156285i −0.129155 0.991624i \(-0.541227\pi\)
0.217789 + 0.975996i \(0.430115\pi\)
\(572\) 26.3326 + 10.5258i 1.10102 + 0.440107i
\(573\) 0 0
\(574\) 2.23653 11.6207i 0.0933511 0.485041i
\(575\) 2.91833 5.05470i 0.121703 0.210796i
\(576\) 0 0
\(577\) −16.0706 27.8351i −0.669028 1.15879i −0.978176 0.207777i \(-0.933377\pi\)
0.309148 0.951014i \(-0.399956\pi\)
\(578\) 20.3370 7.04471i 0.845906 0.293021i
\(579\) 0 0
\(580\) −2.71411 + 2.13672i −0.112697 + 0.0887225i
\(581\) −4.06702 4.84689i −0.168728 0.201083i
\(582\) 0 0
\(583\) 6.59129 + 18.1094i 0.272983 + 0.750015i
\(584\) 15.1366 + 29.3038i 0.626356 + 1.21260i
\(585\) 0 0
\(586\) −16.0663 9.61316i −0.663691 0.397116i
\(587\) 6.25991 35.5017i 0.258374 1.46531i −0.528887 0.848692i \(-0.677391\pi\)
0.787261 0.616620i \(-0.211498\pi\)
\(588\) 0 0
\(589\) −0.571748 0.208099i −0.0235585 0.00857459i
\(590\) 14.6534 2.34868i 0.603272 0.0966938i
\(591\) 0 0
\(592\) −15.9886 15.2128i −0.657126 0.625244i
\(593\) 4.09387i 0.168115i −0.996461 0.0840576i \(-0.973212\pi\)
0.996461 0.0840576i \(-0.0267880\pi\)
\(594\) 0 0
\(595\) 13.4745i 0.552402i
\(596\) −24.3252 + 27.2178i −0.996397 + 1.11488i
\(597\) 0 0
\(598\) −1.03066 6.43026i −0.0421467 0.262953i
\(599\) 7.94531 + 2.89186i 0.324637 + 0.118158i 0.499197 0.866488i \(-0.333628\pi\)
−0.174561 + 0.984646i \(0.555851\pi\)
\(600\) 0 0
\(601\) 5.07141 28.7614i 0.206867 1.17320i −0.687607 0.726083i \(-0.741339\pi\)
0.894474 0.447120i \(-0.147550\pi\)
\(602\) 12.0913 20.2080i 0.492806 0.823616i
\(603\) 0 0
\(604\) 33.9255 18.1999i 1.38041 0.740544i
\(605\) −4.91136 13.4939i −0.199675 0.548603i
\(606\) 0 0
\(607\) −24.9423 29.7251i −1.01238 1.20651i −0.978323 0.207085i \(-0.933602\pi\)
−0.0340554 0.999420i \(-0.510842\pi\)
\(608\) −0.300168 0.420351i −0.0121734 0.0170475i
\(609\) 0 0
\(610\) 3.86815 + 11.1667i 0.156617 + 0.452128i
\(611\) −17.9220 31.0417i −0.725045 1.25581i
\(612\) 0 0
\(613\) −0.677216 + 1.17297i −0.0273525 + 0.0473759i −0.879378 0.476125i \(-0.842041\pi\)
0.852025 + 0.523501i \(0.175374\pi\)
\(614\) 18.2908 + 3.52026i 0.738157 + 0.142066i
\(615\) 0 0
\(616\) 8.35276 19.9857i 0.336542 0.805245i
\(617\) −21.8700 + 3.85627i −0.880453 + 0.155248i −0.595559 0.803311i \(-0.703069\pi\)
−0.284894 + 0.958559i \(0.591958\pi\)
\(618\) 0 0
\(619\) 1.42295 1.69581i 0.0571934 0.0681604i −0.736689 0.676231i \(-0.763612\pi\)
0.793883 + 0.608071i \(0.208056\pi\)
\(620\) −45.9034 1.43288i −1.84353 0.0575459i
\(621\) 0 0
\(622\) 8.73303 + 0.136268i 0.350163 + 0.00546386i
\(623\) 32.6012 + 27.3557i 1.30614 + 1.09598i
\(624\) 0 0
\(625\) −2.10235 11.9230i −0.0840939 0.476920i
\(626\) −28.3229 10.8120i −1.13201 0.432136i
\(627\) 0 0
\(628\) −6.88051 + 32.9699i −0.274562 + 1.31564i
\(629\) −6.37717 3.68186i −0.254274 0.146805i
\(630\) 0 0
\(631\) 10.3534 5.97752i 0.412161 0.237961i −0.279557 0.960129i \(-0.590187\pi\)
0.691718 + 0.722168i \(0.256854\pi\)
\(632\) −1.42039 4.55526i −0.0565000 0.181199i
\(633\) 0 0
\(634\) 13.1150 + 16.1346i 0.520865 + 0.640786i
\(635\) 29.3586 24.6348i 1.16506 0.977601i
\(636\) 0 0
\(637\) 8.07052 2.93743i 0.319766 0.116385i
\(638\) −1.61881 + 0.901242i −0.0640893 + 0.0356805i
\(639\) 0 0
\(640\) −31.4383 23.0580i −1.24271 0.911447i
\(641\) 13.2770 + 2.34110i 0.524412 + 0.0924680i 0.429586 0.903026i \(-0.358659\pi\)
0.0948258 + 0.995494i \(0.469771\pi\)
\(642\) 0 0
\(643\) 9.44529 25.9507i 0.372486 1.02340i −0.601911 0.798563i \(-0.705594\pi\)
0.974397 0.224833i \(-0.0721838\pi\)
\(644\) −4.92330 + 0.710518i −0.194005 + 0.0279983i
\(645\) 0 0
\(646\) −0.130278 0.112826i −0.00512571 0.00443909i
\(647\) −15.2634 −0.600064 −0.300032 0.953929i \(-0.596997\pi\)
−0.300032 + 0.953929i \(0.596997\pi\)
\(648\) 0 0
\(649\) 7.96003 0.312458
\(650\) 39.8685 + 34.5278i 1.56377 + 1.35429i
\(651\) 0 0
\(652\) 15.8875 2.29285i 0.622204 0.0897949i
\(653\) −10.4641 + 28.7499i −0.409493 + 1.12507i 0.547966 + 0.836501i \(0.315402\pi\)
−0.957458 + 0.288571i \(0.906820\pi\)
\(654\) 0 0
\(655\) −10.5282 1.85641i −0.411371 0.0725358i
\(656\) −9.51864 6.31838i −0.371641 0.246691i
\(657\) 0 0
\(658\) −23.9212 + 13.3177i −0.932547 + 0.519178i
\(659\) −39.2583 + 14.2888i −1.52929 + 0.556614i −0.963446 0.267901i \(-0.913670\pi\)
−0.565839 + 0.824516i \(0.691448\pi\)
\(660\) 0 0
\(661\) 25.0624 21.0298i 0.974812 0.817965i −0.00848622 0.999964i \(-0.502701\pi\)
0.983299 + 0.181999i \(0.0582568\pi\)
\(662\) −23.6599 29.1072i −0.919568 1.13128i
\(663\) 0 0
\(664\) −5.83147 + 1.81832i −0.226305 + 0.0705647i
\(665\) 0.798352 0.460929i 0.0309588 0.0178741i
\(666\) 0 0
\(667\) 0.368476 + 0.212740i 0.0142674 + 0.00823731i
\(668\) 0.533469 2.55627i 0.0206405 0.0989049i
\(669\) 0 0
\(670\) −21.9520 8.38001i −0.848081 0.323748i
\(671\) 1.10071 + 6.24241i 0.0424923 + 0.240986i
\(672\) 0 0
\(673\) 21.7229 + 18.2276i 0.837354 + 0.702624i 0.956967 0.290197i \(-0.0937208\pi\)
−0.119613 + 0.992821i \(0.538165\pi\)
\(674\) 21.8182 + 0.340446i 0.840407 + 0.0131135i
\(675\) 0 0
\(676\) 32.8310 + 1.02482i 1.26273 + 0.0394163i
\(677\) −25.8861 + 30.8498i −0.994883 + 1.18566i −0.0122822 + 0.999925i \(0.503910\pi\)
−0.982601 + 0.185731i \(0.940535\pi\)
\(678\) 0 0
\(679\) −19.0424 + 3.35769i −0.730780 + 0.128856i
\(680\) −12.0025 5.01631i −0.460276 0.192367i
\(681\) 0 0
\(682\) −24.1895 4.65551i −0.926262 0.178269i
\(683\) −2.35647 + 4.08153i −0.0901678 + 0.156175i −0.907582 0.419876i \(-0.862074\pi\)
0.817414 + 0.576051i \(0.195407\pi\)
\(684\) 0 0
\(685\) 29.7536 + 51.5348i 1.13683 + 1.96904i
\(686\) 7.34590 + 21.2065i 0.280468 + 0.809667i
\(687\) 0 0
\(688\) −13.4990 18.2935i −0.514646 0.697432i
\(689\) 25.7057 + 30.6348i 0.979308 + 1.16709i
\(690\) 0 0
\(691\) −16.6235 45.6728i −0.632389 1.73748i −0.674408 0.738359i \(-0.735601\pi\)
0.0420184 0.999117i \(-0.486621\pi\)
\(692\) −20.1811 + 10.8265i −0.767169 + 0.411561i
\(693\) 0 0
\(694\) −15.6296 + 26.1214i −0.593291 + 0.991553i
\(695\) −6.69611 + 37.9755i −0.253998 + 1.44049i
\(696\) 0 0
\(697\) −3.58211 1.30378i −0.135682 0.0493843i
\(698\) −2.82927 17.6518i −0.107090 0.668131i
\(699\) 0 0
\(700\) 26.8452 30.0375i 1.01465 1.13531i
\(701\) 5.10945i 0.192981i 0.995334 + 0.0964906i \(0.0307618\pi\)
−0.995334 + 0.0964906i \(0.969238\pi\)
\(702\) 0 0
\(703\) 0.503788i 0.0190007i
\(704\) −14.6928 14.8805i −0.553756 0.560832i
\(705\) 0 0
\(706\) 15.6242 2.50429i 0.588026 0.0942502i
\(707\) −22.6996 8.26197i −0.853705 0.310723i
\(708\) 0 0
\(709\) −1.58766 + 9.00406i −0.0596258 + 0.338155i −0.999998 0.00199245i \(-0.999366\pi\)
0.940372 + 0.340147i \(0.110477\pi\)
\(710\) −49.5099 29.6240i −1.85807 1.11177i
\(711\) 0 0
\(712\) 36.5040 18.8558i 1.36805 0.706650i
\(713\) 1.93478 + 5.31576i 0.0724580 + 0.199077i
\(714\) 0 0
\(715\) 31.4080 + 37.4306i 1.17459 + 1.39983i
\(716\) −33.6494 + 26.4909i −1.25754 + 0.990012i
\(717\) 0 0
\(718\) 43.2160 14.9700i 1.61281 0.558674i
\(719\) 11.2528 + 19.4904i 0.419658 + 0.726869i 0.995905 0.0904064i \(-0.0288166\pi\)
−0.576247 + 0.817276i \(0.695483\pi\)
\(720\) 0 0
\(721\) −23.5797 + 40.8412i −0.878153 + 1.52101i
\(722\) −5.07599 + 26.3742i −0.188909 + 0.981548i
\(723\) 0 0
\(724\) 27.1667 + 10.8592i 1.00964 + 0.403580i
\(725\) −3.39348 + 0.598363i −0.126031 + 0.0222226i
\(726\) 0 0
\(727\) 11.2656 13.4258i 0.417817 0.497934i −0.515550 0.856860i \(-0.672412\pi\)
0.933366 + 0.358925i \(0.116857\pi\)
\(728\) 2.10318 44.8997i 0.0779491 1.66409i
\(729\) 0 0
\(730\) −0.886643 + 56.8224i −0.0328161 + 2.10309i
\(731\) −5.81100 4.87601i −0.214928 0.180346i
\(732\) 0 0
\(733\) −3.90323 22.1363i −0.144169 0.817623i −0.968031 0.250832i \(-0.919296\pi\)
0.823862 0.566791i \(-0.191815\pi\)
\(734\) 0.336141 0.880545i 0.0124072 0.0325015i
\(735\) 0 0
\(736\) −1.19995 + 4.64997i −0.0442307 + 0.171400i
\(737\) −10.9147 6.30162i −0.402049 0.232123i
\(738\) 0 0
\(739\) 7.76664 4.48407i 0.285700 0.164949i −0.350301 0.936637i \(-0.613921\pi\)
0.636001 + 0.771688i \(0.280587\pi\)
\(740\) −11.8846 36.1215i −0.436886 1.32785i
\(741\) 0 0
\(742\) 23.7032 19.2672i 0.870173 0.707323i
\(743\) −36.3720 + 30.5197i −1.33436 + 1.11966i −0.351321 + 0.936255i \(0.614267\pi\)
−0.983038 + 0.183404i \(0.941288\pi\)
\(744\) 0 0
\(745\) −59.1037 + 21.5120i −2.16539 + 0.788138i
\(746\) 14.3298 + 25.7393i 0.524653 + 0.942381i
\(747\) 0 0
\(748\) −5.93088 3.67557i −0.216854 0.134392i
\(749\) 28.0388 + 4.94400i 1.02452 + 0.180650i
\(750\) 0 0
\(751\) 4.76596 13.0944i 0.173912 0.477820i −0.821858 0.569692i \(-0.807063\pi\)
0.995771 + 0.0918713i \(0.0292848\pi\)
\(752\) 2.95742 + 26.2659i 0.107846 + 0.957820i
\(753\) 0 0
\(754\) −2.51700 + 2.90632i −0.0916636 + 0.105842i
\(755\) 66.3349 2.41418
\(756\) 0 0
\(757\) 12.8098 0.465582 0.232791 0.972527i \(-0.425214\pi\)
0.232791 + 0.972527i \(0.425214\pi\)
\(758\) 17.7671 20.5152i 0.645328 0.745146i
\(759\) 0 0
\(760\) −0.113365 0.882732i −0.00411216 0.0320201i
\(761\) 10.5995 29.1218i 0.384230 1.05566i −0.585326 0.810798i \(-0.699034\pi\)
0.969557 0.244867i \(-0.0787442\pi\)
\(762\) 0 0
\(763\) −13.5565 2.39038i −0.490778 0.0865375i
\(764\) −2.02491 + 3.26739i −0.0732587 + 0.118210i
\(765\) 0 0
\(766\) −5.45678 9.80146i −0.197161 0.354141i
\(767\) 15.5218 5.64949i 0.560461 0.203991i
\(768\) 0 0
\(769\) 13.1158 11.0054i 0.472966 0.396866i −0.374909 0.927062i \(-0.622326\pi\)
0.847875 + 0.530196i \(0.177882\pi\)
\(770\) 28.9614 23.5413i 1.04370 0.848371i
\(771\) 0 0
\(772\) 11.8956 3.91386i 0.428133 0.140863i
\(773\) −37.1476 + 21.4472i −1.33610 + 0.771401i −0.986227 0.165395i \(-0.947110\pi\)
−0.349877 + 0.936795i \(0.613777\pi\)
\(774\) 0 0
\(775\) −39.6758 22.9068i −1.42520 0.822838i
\(776\) −4.09823 + 18.2121i −0.147118 + 0.653778i
\(777\) 0 0
\(778\) −6.22692 + 16.3119i −0.223246 + 0.584808i
\(779\) −0.0452870 0.256836i −0.00162258 0.00920209i
\(780\) 0 0
\(781\) −23.7064 19.8920i −0.848282 0.711793i
\(782\) −0.0249994 + 1.60214i −0.000893978 + 0.0572924i
\(783\) 0 0
\(784\) −6.32095 0.395004i −0.225748 0.0141073i
\(785\) −37.3022 + 44.4550i −1.33137 + 1.58667i
\(786\) 0 0
\(787\) 5.86911 1.03488i 0.209211 0.0368896i −0.0680603 0.997681i \(-0.521681\pi\)
0.277271 + 0.960792i \(0.410570\pi\)
\(788\) 11.2310 28.0967i 0.400088 1.00090i
\(789\) 0 0
\(790\) 1.55381 8.07339i 0.0552819 0.287238i
\(791\) 0.826860 1.43216i 0.0293998 0.0509219i
\(792\) 0 0
\(793\) 6.57679 + 11.3913i 0.233549 + 0.404518i
\(794\) −30.9915 + 10.7354i −1.09985 + 0.380986i
\(795\) 0 0
\(796\) −32.0602 40.7235i −1.13634 1.44341i
\(797\) −26.5934 31.6928i −0.941987 1.12262i −0.992297 0.123883i \(-0.960465\pi\)
0.0503097 0.998734i \(-0.483979\pi\)
\(798\) 0 0
\(799\) 3.01637 + 8.28740i 0.106711 + 0.293187i
\(800\) −16.7621 35.0949i −0.592631 1.24079i
\(801\) 0 0
\(802\) −8.24720 4.93467i −0.291219 0.174249i
\(803\) −5.29310 + 30.0186i −0.186789 + 1.05934i
\(804\) 0 0
\(805\) −8.05397 2.93140i −0.283865 0.103318i
\(806\) −50.4730 + 8.08992i −1.77783 + 0.284955i
\(807\) 0 0
\(808\) −15.8100 + 17.1440i −0.556194 + 0.603125i
\(809\) 45.8780i 1.61298i 0.591245 + 0.806492i \(0.298637\pi\)
−0.591245 + 0.806492i \(0.701363\pi\)
\(810\) 0 0
\(811\) 25.4302i 0.892974i 0.894790 + 0.446487i \(0.147325\pi\)
−0.894790 + 0.446487i \(0.852675\pi\)
\(812\) 2.18966 + 1.95695i 0.0768421 + 0.0686756i
\(813\) 0 0
\(814\) −3.22797 20.1393i −0.113140 0.705882i
\(815\) 25.9902 + 9.45967i 0.910398 + 0.331358i
\(816\) 0 0
\(817\) 0.0901192 0.511091i 0.00315287 0.0178808i
\(818\) 13.1918 22.0472i 0.461241 0.770861i
\(819\) 0 0
\(820\) −9.30595 17.3467i −0.324978 0.605774i
\(821\) −2.68201 7.36876i −0.0936027 0.257171i 0.884052 0.467389i \(-0.154805\pi\)
−0.977655 + 0.210217i \(0.932583\pi\)
\(822\) 0 0
\(823\) −5.63305 6.71321i −0.196356 0.234008i 0.658878 0.752250i \(-0.271031\pi\)
−0.855234 + 0.518242i \(0.826587\pi\)
\(824\) 27.6013 + 36.2082i 0.961538 + 1.26137i
\(825\) 0 0
\(826\) −4.12974 11.9219i −0.143692 0.414816i
\(827\) 9.57006 + 16.5758i 0.332784 + 0.576398i 0.983057 0.183303i \(-0.0586788\pi\)
−0.650273 + 0.759701i \(0.725345\pi\)
\(828\) 0 0
\(829\) −0.0258029 + 0.0446919i −0.000896172 + 0.00155222i −0.866473 0.499224i \(-0.833619\pi\)
0.865577 + 0.500776i \(0.166952\pi\)
\(830\) −10.3352 1.98912i −0.358741 0.0690434i
\(831\) 0 0
\(832\) −39.2118 18.5887i −1.35942 0.644448i
\(833\) −2.08106 + 0.366947i −0.0721044 + 0.0127140i
\(834\) 0 0
\(835\) 2.89216 3.44674i 0.100087 0.119280i
\(836\) 0.0148937 0.477130i 0.000515109 0.0165019i
\(837\) 0 0
\(838\) −6.95909 0.108588i −0.240398 0.00375111i
\(839\) −8.24125 6.91523i −0.284520 0.238740i 0.489347 0.872089i \(-0.337235\pi\)
−0.773866 + 0.633349i \(0.781680\pi\)
\(840\) 0 0
\(841\) 4.99218 + 28.3120i 0.172144 + 0.976278i
\(842\) −15.5488 5.93564i −0.535848 0.204556i
\(843\) 0 0
\(844\) −34.1614 7.12917i −1.17588 0.245396i
\(845\) 49.0137 + 28.2981i 1.68612 + 0.973484i
\(846\) 0 0
\(847\) −10.5727 + 6.10416i −0.363283 + 0.209741i
\(848\) −8.33818 28.2866i −0.286334 0.971367i
\(849\) 0 0
\(850\) −8.18525 10.0698i −0.280752 0.345391i
\(851\) −3.58808 + 3.01075i −0.122998 + 0.103207i
\(852\) 0 0
\(853\) −37.1684 + 13.5282i −1.27262 + 0.463196i −0.887985 0.459872i \(-0.847895\pi\)
−0.384636 + 0.923068i \(0.625673\pi\)
\(854\) 8.77834 4.88717i 0.300389 0.167236i
\(855\) 0 0
\(856\) 14.8422 23.1352i 0.507296 0.790745i
\(857\) −10.1029 1.78141i −0.345108 0.0608519i −0.00159234 0.999999i \(-0.500507\pi\)
−0.343516 + 0.939147i \(0.611618\pi\)
\(858\) 0 0
\(859\) 1.21231 3.33080i 0.0413636 0.113645i −0.917291 0.398217i \(-0.869629\pi\)
0.958655 + 0.284572i \(0.0918513\pi\)
\(860\) −5.59535 38.7711i −0.190800 1.32208i
\(861\) 0 0
\(862\) −4.71332 4.08193i −0.160536 0.139031i
\(863\) −6.36151 −0.216548 −0.108274 0.994121i \(-0.534532\pi\)
−0.108274 + 0.994121i \(0.534532\pi\)
\(864\) 0 0
\(865\) −39.4602 −1.34169
\(866\) −30.4924 26.4077i −1.03617 0.897369i
\(867\) 0 0
\(868\) 5.57706 + 38.6444i 0.189298 + 1.31168i
\(869\) 1.50825 4.14388i 0.0511638 0.140571i
\(870\) 0 0
\(871\) −25.7559 4.54146i −0.872706 0.153882i
\(872\) −7.17607 + 11.1857i −0.243012 + 0.378794i
\(873\) 0 0
\(874\) −0.0957804 + 0.0533239i −0.00323982 + 0.00180371i
\(875\) 17.7910 6.47541i 0.601447 0.218909i
\(876\) 0 0
\(877\) −12.5094 + 10.4966i −0.422412 + 0.354446i −0.829080 0.559130i \(-0.811135\pi\)
0.406668 + 0.913576i \(0.366691\pi\)
\(878\) 4.31460 + 5.30797i 0.145611 + 0.179135i
\(879\) 0 0
\(880\) −10.1879 34.5615i −0.343433 1.16507i
\(881\) 43.1593 24.9180i 1.45407 0.839509i 0.455364 0.890306i \(-0.349509\pi\)
0.998709 + 0.0507963i \(0.0161759\pi\)
\(882\) 0 0
\(883\) −38.2077 22.0592i −1.28579 0.742352i −0.307890 0.951422i \(-0.599623\pi\)
−0.977901 + 0.209070i \(0.932956\pi\)
\(884\) −14.1737 2.95793i −0.476714 0.0994858i
\(885\) 0 0
\(886\) −9.60086 3.66505i −0.322547 0.123130i
\(887\) 0.417367 + 2.36700i 0.0140138 + 0.0794762i 0.991013 0.133769i \(-0.0427079\pi\)
−0.976999 + 0.213245i \(0.931597\pi\)
\(888\) 0 0
\(889\) −24.9598 20.9437i −0.837124 0.702431i
\(890\) 70.7842 + 1.10450i 2.37269 + 0.0370229i
\(891\) 0 0
\(892\) 1.10298 35.3348i 0.0369305 1.18310i
\(893\) −0.387838 + 0.462207i −0.0129785 + 0.0154672i
\(894\) 0 0
\(895\) −72.6689 + 12.8135i −2.42905 + 0.428308i
\(896\) −14.6641 + 29.7259i −0.489895 + 0.993072i
\(897\) 0 0
\(898\) −8.82668 1.69879i −0.294550 0.0566892i
\(899\) 1.66986 2.89227i 0.0556928 0.0964627i
\(900\) 0 0
\(901\) −4.91981 8.52136i −0.163903 0.283888i
\(902\) −3.45603 9.97703i −0.115073 0.332199i
\(903\) 0 0
\(904\) −0.967886 1.26970i −0.0321914 0.0422295i
\(905\) 32.4029 + 38.6163i 1.07711 + 1.28365i
\(906\) 0 0
\(907\) 12.0002 + 32.9702i 0.398459 + 1.09476i 0.963035 + 0.269376i \(0.0868176\pi\)
−0.564576 + 0.825381i \(0.690960\pi\)
\(908\) −8.82079 16.4424i −0.292728 0.545660i
\(909\) 0 0
\(910\) 39.7659 66.4598i 1.31823 2.20312i
\(911\) 1.87566 10.6374i 0.0621434 0.352433i −0.937842 0.347062i \(-0.887179\pi\)
0.999986 0.00537068i \(-0.00170955\pi\)
\(912\) 0 0
\(913\) −5.30483 1.93080i −0.175564 0.0639001i
\(914\) 0.200128 + 1.24860i 0.00661963 + 0.0412999i
\(915\) 0 0
\(916\) 25.0783 + 22.4131i 0.828610 + 0.740548i
\(917\) 9.08884i 0.300140i
\(918\) 0 0
\(919\) 20.9319i 0.690481i 0.938514 + 0.345241i \(0.112203\pi\)
−0.938514 + 0.345241i \(0.887797\pi\)
\(920\) −5.60950 + 6.08282i −0.184940 + 0.200545i
\(921\) 0 0
\(922\) −18.2950 + 2.93236i −0.602514 + 0.0965722i
\(923\) −60.3449 21.9637i −1.98628 0.722946i
\(924\) 0 0
\(925\) 6.58709 37.3573i 0.216582 1.22830i
\(926\) 1.63660 + 0.979249i 0.0537819 + 0.0321801i
\(927\) 0 0
\(928\) 2.55834 1.22192i 0.0839816 0.0401115i
\(929\) 11.5040 + 31.6070i 0.377435 + 1.03699i 0.972416 + 0.233254i \(0.0749373\pi\)
−0.594981 + 0.803740i \(0.702840\pi\)
\(930\) 0 0
\(931\) −0.0929288 0.110748i −0.00304562 0.00362963i
\(932\) −21.8079 27.7009i −0.714342 0.907373i
\(933\) 0 0
\(934\) 26.2230 9.08363i 0.858043 0.297226i
\(935\) −6.01119 10.4117i −0.196587 0.340498i
\(936\) 0 0
\(937\) −12.5767 + 21.7834i −0.410862 + 0.711634i −0.994984 0.100032i \(-0.968106\pi\)
0.584122 + 0.811666i \(0.301439\pi\)
\(938\) −3.77541 + 19.6166i −0.123271 + 0.640504i
\(939\) 0 0
\(940\) −16.9042 + 42.2895i −0.551355 + 1.37933i
\(941\) 40.7896 7.19230i 1.32970 0.234462i 0.536747 0.843743i \(-0.319653\pi\)
0.792955 + 0.609281i \(0.208542\pi\)
\(942\) 0 0
\(943\) −1.55859 + 1.85745i −0.0507546 + 0.0604870i
\(944\) −12.1569 0.759701i −0.395675 0.0247262i
\(945\) 0 0
\(946\) 0.327815 21.0087i 0.0106582 0.683052i
\(947\) 43.3100 + 36.3414i 1.40739 + 1.18094i 0.957706 + 0.287748i \(0.0929067\pi\)
0.449681 + 0.893189i \(0.351538\pi\)
\(948\) 0 0
\(949\) 10.9838 + 62.2922i 0.356549 + 2.02209i
\(950\) 0.316628 0.829429i 0.0102728 0.0269102i
\(951\) 0 0
\(952\) −2.42798 + 10.7897i −0.0786914 + 0.349697i
\(953\) 31.8569 + 18.3926i 1.03195 + 0.595795i 0.917542 0.397639i \(-0.130170\pi\)
0.114405 + 0.993434i \(0.463504\pi\)
\(954\) 0 0
\(955\) −5.73591 + 3.31163i −0.185610 + 0.107162i
\(956\) 17.5056 5.75964i 0.566171 0.186280i
\(957\) 0 0
\(958\) −20.9178 + 17.0031i −0.675823 + 0.549345i
\(959\) 38.7552 32.5195i 1.25147 1.05011i
\(960\) 0 0
\(961\) 12.5945 4.58401i 0.406273 0.147871i
\(962\) −20.5880 36.9801i −0.663783 1.19229i
\(963\) 0 0
\(964\) −6.56014 + 10.5854i −0.211288 + 0.340933i
\(965\) 21.2496 + 3.74687i 0.684047 + 0.120616i
\(966\) 0 0
\(967\) 15.4066 42.3293i 0.495444 1.36122i −0.400192 0.916431i \(-0.631057\pi\)
0.895636 0.444789i \(-0.146721\pi\)
\(968\) 1.50131 + 11.6902i 0.0482538 + 0.375737i
\(969\) 0 0
\(970\) −21.0570 + 24.3140i −0.676099 + 0.780676i
\(971\) −40.1053 −1.28704 −0.643520 0.765429i \(-0.722527\pi\)
−0.643520 + 0.765429i \(0.722527\pi\)
\(972\) 0 0
\(973\) 32.7837 1.05100
\(974\) 11.7988 13.6238i 0.378058 0.436535i
\(975\) 0 0
\(976\) −1.08528 9.63876i −0.0347389 0.308529i
\(977\) −12.5629 + 34.5163i −0.401923 + 1.10427i 0.559411 + 0.828890i \(0.311027\pi\)
−0.961334 + 0.275384i \(0.911195\pi\)
\(978\) 0 0
\(979\) 37.3945 + 6.59366i 1.19513 + 0.210734i
\(980\) −9.27559 5.74840i −0.296298 0.183626i
\(981\) 0 0
\(982\) −17.0137 30.5601i −0.542930 0.975211i
\(983\) 17.7958 6.47713i 0.567597 0.206588i −0.0422506 0.999107i \(-0.513453\pi\)
0.609848 + 0.792519i \(0.291231\pi\)
\(984\) 0 0
\(985\) 39.9383 33.5122i 1.27254 1.06779i
\(986\) 0.734063 0.596686i 0.0233773 0.0190023i
\(987\) 0 0
\(988\) −0.309592 0.940962i −0.00984945 0.0299360i
\(989\) −4.17867 + 2.41256i −0.132874 + 0.0767148i
\(990\) 0 0
\(991\) −30.3997 17.5513i −0.965680 0.557535i −0.0677633 0.997701i \(-0.521586\pi\)
−0.897916 + 0.440166i \(0.854920\pi\)
\(992\) 36.4990 + 9.41874i 1.15884 + 0.299045i
\(993\) 0 0
\(994\) −17.4936 + 45.8258i −0.554864 + 1.45351i
\(995\) −15.5073 87.9462i −0.491614 2.78808i
\(996\) 0 0
\(997\) 18.3914 + 15.4322i 0.582460 + 0.488742i 0.885754 0.464155i \(-0.153642\pi\)
−0.303294 + 0.952897i \(0.598086\pi\)
\(998\) 0.871737 55.8671i 0.0275944 1.76844i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.a.107.4 96
3.2 odd 2 972.2.l.d.107.13 96
4.3 odd 2 inner 972.2.l.a.107.12 96
9.2 odd 6 972.2.l.c.755.9 96
9.4 even 3 324.2.l.a.143.15 96
9.5 odd 6 108.2.l.a.47.2 yes 96
9.7 even 3 972.2.l.b.755.8 96
12.11 even 2 972.2.l.d.107.5 96
27.4 even 9 972.2.l.c.215.7 96
27.5 odd 18 inner 972.2.l.a.863.12 96
27.13 even 9 108.2.l.a.23.15 yes 96
27.14 odd 18 324.2.l.a.179.2 96
27.22 even 9 972.2.l.d.863.5 96
27.23 odd 18 972.2.l.b.215.10 96
36.7 odd 6 972.2.l.b.755.10 96
36.11 even 6 972.2.l.c.755.7 96
36.23 even 6 108.2.l.a.47.15 yes 96
36.31 odd 6 324.2.l.a.143.2 96
108.23 even 18 972.2.l.b.215.8 96
108.31 odd 18 972.2.l.c.215.9 96
108.59 even 18 inner 972.2.l.a.863.4 96
108.67 odd 18 108.2.l.a.23.2 96
108.95 even 18 324.2.l.a.179.15 96
108.103 odd 18 972.2.l.d.863.13 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.2 96 108.67 odd 18
108.2.l.a.23.15 yes 96 27.13 even 9
108.2.l.a.47.2 yes 96 9.5 odd 6
108.2.l.a.47.15 yes 96 36.23 even 6
324.2.l.a.143.2 96 36.31 odd 6
324.2.l.a.143.15 96 9.4 even 3
324.2.l.a.179.2 96 27.14 odd 18
324.2.l.a.179.15 96 108.95 even 18
972.2.l.a.107.4 96 1.1 even 1 trivial
972.2.l.a.107.12 96 4.3 odd 2 inner
972.2.l.a.863.4 96 108.59 even 18 inner
972.2.l.a.863.12 96 27.5 odd 18 inner
972.2.l.b.215.8 96 108.23 even 18
972.2.l.b.215.10 96 27.23 odd 18
972.2.l.b.755.8 96 9.7 even 3
972.2.l.b.755.10 96 36.7 odd 6
972.2.l.c.215.7 96 27.4 even 9
972.2.l.c.215.9 96 108.31 odd 18
972.2.l.c.755.7 96 36.11 even 6
972.2.l.c.755.9 96 9.2 odd 6
972.2.l.d.107.5 96 12.11 even 2
972.2.l.d.107.13 96 3.2 odd 2
972.2.l.d.863.5 96 27.22 even 9
972.2.l.d.863.13 96 108.103 odd 18