Properties

Label 9702.2.a.k
Level $9702$
Weight $2$
Character orbit 9702.a
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1386)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - q^{5} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + q^{11} - 2q^{13} + q^{16} + 5q^{17} + 6q^{19} - q^{20} - q^{22} - 7q^{23} - 4q^{25} + 2q^{26} + 8q^{29} - 10q^{31} - q^{32} - 5q^{34} - 8q^{37} - 6q^{38} + q^{40} + 7q^{41} + 4q^{43} + q^{44} + 7q^{46} - q^{47} + 4q^{50} - 2q^{52} - 6q^{53} - q^{55} - 8q^{58} + 6q^{59} - q^{61} + 10q^{62} + q^{64} + 2q^{65} + 3q^{67} + 5q^{68} + 8q^{71} - 10q^{73} + 8q^{74} + 6q^{76} - 9q^{79} - q^{80} - 7q^{82} - 15q^{83} - 5q^{85} - 4q^{86} - q^{88} - 12q^{89} - 7q^{92} + q^{94} - 6q^{95} - 13q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 −1.00000 0 0 −1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9702.2.a.k 1
3.b odd 2 1 9702.2.a.bw 1
7.b odd 2 1 9702.2.a.p 1
7.d odd 6 2 1386.2.k.m yes 2
21.c even 2 1 9702.2.a.bj 1
21.g even 6 2 1386.2.k.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1386.2.k.g 2 21.g even 6 2
1386.2.k.m yes 2 7.d odd 6 2
9702.2.a.k 1 1.a even 1 1 trivial
9702.2.a.p 1 7.b odd 2 1
9702.2.a.bj 1 21.c even 2 1
9702.2.a.bw 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9702))\):

\( T_{5} + 1 \)
\( T_{13} + 2 \)
\( T_{17} - 5 \)
\( T_{19} - 6 \)
\( T_{23} + 7 \)
\( T_{29} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( T \)
$5$ \( 1 + T \)
$7$ \( T \)
$11$ \( -1 + T \)
$13$ \( 2 + T \)
$17$ \( -5 + T \)
$19$ \( -6 + T \)
$23$ \( 7 + T \)
$29$ \( -8 + T \)
$31$ \( 10 + T \)
$37$ \( 8 + T \)
$41$ \( -7 + T \)
$43$ \( -4 + T \)
$47$ \( 1 + T \)
$53$ \( 6 + T \)
$59$ \( -6 + T \)
$61$ \( 1 + T \)
$67$ \( -3 + T \)
$71$ \( -8 + T \)
$73$ \( 10 + T \)
$79$ \( 9 + T \)
$83$ \( 15 + T \)
$89$ \( 12 + T \)
$97$ \( 13 + T \)
show more
show less